楊 敏, 李 珂, 周曉建, 崔寶東, 陳永正
(遵義醫(yī)學(xué)院 藥學(xué)院,貴州 遵義 563000)
?
·快遞論文·
微生物酶催化的不對(duì)稱(chēng)還原反應(yīng)合成(S)-(+)-4-苯基-2-丁醇
楊敏, 李珂, 周曉建, 崔寶東, 陳永正*
(遵義醫(yī)學(xué)院 藥學(xué)院,貴州 遵義563000)
摘要:以LB培養(yǎng)基培養(yǎng)Pseudomonas monteilii TA-5,將其整細(xì)胞作為生物催化劑(Cat),催化4-苯基-2-丁酮(1)的不對(duì)稱(chēng)還原反應(yīng),對(duì)映選擇性地合成了(S)-(+)-4-苯基-2-丁醇。在最佳反應(yīng)條件[1 10 mmol·L(-1), c(Cat) 30 g cdw·L(-1), 10%丙三醇,pH 8.0, 300 r·min(-1),于30 ℃反應(yīng)24 h]下,轉(zhuǎn)化率82%, ee值91%。
關(guān)鍵詞:生物催化; LB培養(yǎng)基; Pseudomonas monteilii TA-5; 不對(duì)稱(chēng)還原; (S)-(+)-4-苯基-2-丁醇; 合成
手性二級(jí)醇是許多藥物的重要中間體和合成模塊,其中(S)-(+)-4-苯基-2-丁醇(2)為抗高血壓藥拉貝洛爾、丁苯碘銨,解痙鎮(zhèn)癇劑依美溴銨的重要關(guān)鍵中間體(Chart 1)[1]。因此,研究該類(lèi)化合物的不對(duì)稱(chēng)合成方法極為重要。目前,手性2的合成大多采用金屬-手性配體催化酮的不對(duì)稱(chēng)還原[2-7]或者烯醇的異構(gòu)化和不對(duì)稱(chēng)轉(zhuǎn)移氫化串聯(lián)反應(yīng)[8]等方法來(lái)實(shí)現(xiàn)。近年來(lái),科研工作者發(fā)現(xiàn)利用生物催化劑進(jìn)行不對(duì)稱(chēng)還原的方法也可實(shí)現(xiàn)[9-14]。生物催化的不對(duì)稱(chēng)氧化還原反應(yīng)合成手性藥物中間體的方法越來(lái)越引起相關(guān)科研人員的關(guān)注[15-18]。
本課題組研究[19]發(fā)現(xiàn),PseudomonasmonteiliiTA-5在M9培養(yǎng)基中以甲苯為誘導(dǎo)碳源進(jìn)行菌株培養(yǎng),可實(shí)現(xiàn)4-苯基-2-丁酮(1)芐位亞甲基的不對(duì)稱(chēng)羥基化反應(yīng),獲得(R)-3-羥基-4-苯基-2-丁酮,對(duì)映選擇性達(dá)99%,且未檢測(cè)到羰基還原產(chǎn)物2的產(chǎn)生。本文以LB培養(yǎng)基培養(yǎng)PseudomonasmonteiliiTA-5,將其整細(xì)胞作為生物催化劑(Cat),催化1的不對(duì)稱(chēng)還原反應(yīng),對(duì)映選擇性地合成了2(Scheme 1),其結(jié)構(gòu)經(jīng)1H NMR和13C NMR確證。并對(duì)催化反應(yīng)條件進(jìn)行了優(yōu)化。
Scheme 1
1實(shí)驗(yàn)部分
1.1儀器與試劑
Agilent 400 MHz型核磁共振儀;SHIMADZU LC-20A型正相高效液相色譜儀[色譜柱:CHIRALCEL OD-H(4.6 mmΦ×250 mm, 5 μm);流動(dòng)相:95%正己烷/5%異丙醇;流速:0.5 mL·min-1;分析時(shí)間:35 min;檢測(cè)波長(zhǎng):210 nm, tR=22.2 min, tS=33.6 min]; BHC-1300ⅡA/B3型生物潔凈安全柜;FE20型pH酸度計(jì);Multiskan Spectrun型全波長(zhǎng)酶標(biāo)儀。
PseudomonasmonteiliiTA-5,自制;氯化鈉(99.5%),氯化銨(99.5%),磷酸二氫鉀(99%)和十二水磷酸氫二鈉(99%),百靈威科技公司;酵母浸粉,蛋白胨,瓊脂,OXOID;其余所用試劑均為分析純。
1.2合成
(1) 細(xì)胞培養(yǎng)
稱(chēng)取胰蛋白胨10.0 g,酵母浸粉5.0 g和氯化鈉10.0 g,用適量重蒸水溶解,混勻,定容至1 000 mL,并調(diào)至pH 7.0。取10 mL分裝于20 mL螺口瓶中;另取50 mL分裝于250 mL錐形瓶中,于121 ℃滅菌30 min得LB培養(yǎng)基,備用。
將PseudomonasmonteiliiTA-5接種于20 mL螺口瓶的LB培養(yǎng)基中,標(biāo)記為一級(jí)培養(yǎng),在 30 ℃, 300 r·min-1條件下于搖床中培養(yǎng)7 h。取種子菌液2 mL于250 mL錐形瓶的LB培養(yǎng)基中,標(biāo)記為二級(jí)培養(yǎng),在30 ℃, 300 r·min-1條件下于搖床中培養(yǎng)17 h。將菌液取出并快速分裝于已冰浴好的50 mL離心管中,用全波長(zhǎng)酶標(biāo)儀測(cè)量各管菌液的OD值。利用冷凍離心機(jī)(8 000 r·min-1,于4 ℃離心5 min)離心后倒掉上層液體。根據(jù)OD值與細(xì)胞濃度關(guān)系計(jì)算出應(yīng)加入適量的Na2HPO4-KH2PO4緩沖溶液,振搖使細(xì)胞與緩沖溶液混合均勻,制得c(Cat) 30 g cdw·L-1細(xì)胞溶液。
(2) 2的合成
配制反應(yīng)液5 mL[c(Cat) 30 g cdw·L-14.5 mL, 10 mmol·L-11 7.62 μL, 丙三醇492.38 μL],調(diào)至pH 7, 300 r·min-1,于30 ℃反應(yīng)24 h[HPLC監(jiān)測(cè)(在EP管內(nèi)加入反應(yīng)液850 μL,用乙酸乙酯850 μL萃取,漩渦振蕩器振搖,使其充分混合。在10 000 r·min-1, 5 min, 4 ℃條件下離心。取上清液600 μL加入裝有適量無(wú)水硫酸鈉的EP管中,振搖,干燥。取上清液400 μL到HPLC樣品瓶中,并加入400 μL含有2 mmol·L-1苯甲醇內(nèi)標(biāo)的乙酸乙酯溶液。根據(jù)內(nèi)標(biāo)物、底物和產(chǎn)物的峰面積,用內(nèi)標(biāo)法得到相應(yīng)底物濃度、產(chǎn)物濃度,計(jì)算轉(zhuǎn)化率、產(chǎn)率及ee值)]。合并50瓶反應(yīng)液,用乙酸乙酯(3×200 mL)萃取,合并有機(jī)相,用無(wú)水Na2SO4干燥,減壓旋蒸后經(jīng)柱層析[洗脫劑:V(乙酸乙酯) ∶V(石油醚)=1 ∶20]純化得無(wú)色油狀液體2 223.5 mg,轉(zhuǎn)化率82%,ee值91%;1H NMRδ: 7.35(d,J=8.0 Hz, 3H), 7.29~7.23(m, 2H), 4.56(d,J=6.4 Hz, 3H), 3.82~3.86(m, 1H), 2.67~2.78(m, 2H), 2.01(s, 1H), 1.75~1.83(m, 2H);13C NMRδ: 142.1, 128.5, 125.9, 67.5, 40.9, 32.2, 23.6;其絕對(duì)構(gòu)型用標(biāo)準(zhǔn)品經(jīng)手性液相色譜對(duì)照鑒定(圖1)。
2結(jié)果與討論
2.1反應(yīng)條件優(yōu)化
為了探索最佳反應(yīng)條件,考察了反應(yīng)時(shí)間、細(xì)胞濃度、底物濃度、pH和輔助溶劑對(duì)1的不對(duì)稱(chēng)還原反應(yīng)的影響。
Time/min
(1) 反應(yīng)時(shí)間
反應(yīng)液5 mL,c(Cat) 50 g cdw·L-1,其余反應(yīng)條件同1.2(2),考察反應(yīng)時(shí)間對(duì)不對(duì)稱(chēng)還原反應(yīng)的影響,結(jié)果見(jiàn)圖2。
Time/h
由圖2可見(jiàn),其反應(yīng)時(shí)間達(dá)6 h時(shí)轉(zhuǎn)化率的曲線已基本平穩(wěn),即在反應(yīng)6 h后底物已基本不再轉(zhuǎn)化為產(chǎn)物;而反應(yīng)時(shí)間從40 min至24 h時(shí),其產(chǎn)物對(duì)映選擇性變化不大,ee值均為91%~92%。由于在實(shí)際反應(yīng)過(guò)程中生物催化劑的不穩(wěn)定性,6 h反應(yīng)結(jié)果的重現(xiàn)性較差,而24 h反應(yīng)結(jié)果重現(xiàn)性較好。因此,最佳反應(yīng)時(shí)間確定為24 h。
(2)c(Cat)
1 5 mmol·L-1,反應(yīng)時(shí)間24 h,其余反應(yīng)條件同2.1(1),考察c(Cat)對(duì)不對(duì)稱(chēng)還原反應(yīng)的影響,結(jié)果見(jiàn)表1。由表1可見(jiàn),c(Cat)對(duì)產(chǎn)物對(duì)映選擇性的影響不明顯;當(dāng)c(Cat)為30 g cdw·L-1時(shí),轉(zhuǎn)化效果較好(轉(zhuǎn)化率52%,ee值90%)。因此最佳c(Cat)為30 g cdw·L-1。
表1 c(Cat)對(duì)不對(duì)稱(chēng)還原反應(yīng)的影響*
*1 5 mmol·L-1,反應(yīng)時(shí)間24 h,其余反應(yīng)條件同2.1(1)。
(3)c(1)
反應(yīng)時(shí)間為24 h,其余反應(yīng)條件同2.1(1),考察c(1)對(duì)不對(duì)稱(chēng)還原反應(yīng)的影響,結(jié)果見(jiàn)表2。由表2可見(jiàn),隨著c(1)增大,轉(zhuǎn)化率增加,可能是因?yàn)閏(1)在一定范圍內(nèi)的增加導(dǎo)致反應(yīng)中酶與底物接觸的幾率有所增大,從而使反應(yīng)速率提高而得到較高的轉(zhuǎn)化率。因此,最佳的c(1)為10 mmol·L-1。
表2 c(1)對(duì)不對(duì)稱(chēng)還原反應(yīng)的影響*
*反應(yīng)時(shí)間24 h,其余反應(yīng)條件同表1。
(4) pH
反應(yīng)時(shí)間為24 h,其余反應(yīng)條件同2.1(1),考察反應(yīng)體系pH對(duì)不對(duì)稱(chēng)還原反應(yīng)的影響,結(jié)果見(jiàn)表3。由表3可見(jiàn),當(dāng)pH逐漸升高時(shí),ee值變化不大(90%~92%);但轉(zhuǎn)化率隨著pH的增高而逐漸增加,且pH 8.0時(shí),轉(zhuǎn)化率達(dá)到最大值(69%)。
表3 pH值對(duì)不對(duì)稱(chēng)羥基化反應(yīng)的影響*
*反應(yīng)時(shí)間24 h,其余反應(yīng)條件同表1。
(5) 輔助溶劑
當(dāng)加入少量的有機(jī)溶劑時(shí),可以提高底物在水中的濃度,增加底物與酶反應(yīng)的接觸面,提升反應(yīng)的轉(zhuǎn)化率[20]。反應(yīng)時(shí)間24 h,其余反應(yīng)條件同2.1(1),考察輔助溶劑對(duì)不對(duì)稱(chēng)還原反應(yīng)的影響,結(jié)果見(jiàn)表4。由表4可見(jiàn),采用親水性較強(qiáng)的有機(jī)溶劑丙三醇為輔助溶劑時(shí),ee值提高至93%,而轉(zhuǎn)化率也有了較大的提升。因此,輔助溶劑確定為丙三醇。
表4 輔溶劑對(duì)不對(duì)稱(chēng)羥基化反應(yīng)的影響
*反應(yīng)時(shí)間24 h,其余反應(yīng)條件同表1。
綜上所述,最佳還原反應(yīng)條件為:反應(yīng)液5 mL,細(xì)胞濃度為30 g cdw·L-1,底物濃度10 mmol·L-1, 10%(體積百分?jǐn)?shù))丙三醇為輔溶劑,pH 8.0, 300 r·min-1,于30 ℃反應(yīng)24 h,轉(zhuǎn)化率82%,ee值91%。
以LB培養(yǎng)基培養(yǎng)的PseudomonasmonteiliiTA-5催化還原4-苯基-2-丁酮,合成了(S)-(+)-4-苯基-2-丁醇。該方法具有高效,高選擇性,專(zhuān)一性強(qiáng),反應(yīng)條件溫和,環(huán)境友好等特點(diǎn),為手性二級(jí)醇的合成提供了一個(gè)新的思路。
參考文獻(xiàn)
[1]Bracher F, Litz T. Building blocks for the preparation of enantiomerically pure drugs containing a phenylalkylamine moiety[J].Arch Pharm,1994,327:591-593.
[2]Kuwano R, Uemura T, Saitoh M,etal. A trans-chelating bisphosphine possessing only planar chirality and its application to catalytic asymmetric reactions[J].Tetrahedron:Asymmetry,2004,15:2263-2271.
[3]Hosoda N, Kamito H, Takano M,etal. Synthesis of chiral 2-(anilinophenylmethyl) pyrrolidines and 2-(anilinodiphenylmethyl)pyrrolidine and their application to enantioselective borane reduction of prochiral ketones as chiral catalysts[J].Tetrahedron,2013,69:1739-1746.
[4]Ghoshal A, Sarkar A R, Manickam G,etal. Rhodium-catalyzed asymmetric hydrosilylation of ketones employing a new ligand embodying the bis(oxazolinyl)pyridine moiety[J].Synlett,2010,10:1459-1462.
[5]He P, Liu X H, Zheng H F,etal. Asymmetric 1,2-reduction of enones with potassium borohydride catalyzed by chiralN,N'-dioxide-scandium(III) complexes[J].Org Lett,2012,14(19):5134-5137.
[6]Inagaki T, Ito A, Ito J,etal. Asymmetric iron-catalyzed hydrosilane reduction of ketones:Effect of zinc metal upon the absolute configuration[J].Angew Chem Int Ed,2010,49:9384-9387.
[7]Imamoto T, Itoh T, Yamanoi Y,etal. Highly enantioselective hydrosilylation of simple ketones catalyzed by rhodium complexes of P-chiral diphosphine ligands bearing tert-butylmethylphosphino groups[J].Tetrahedron:Asymmetry,2006,17:560-565.
[8]Slagbrand T, Lundberg H, Adolfsson H. Ruthenium-catalyzed tandem-isomerization/asymmetric transfer hydrogenation of allylic alcohols[J].Chem Eur J,2014,20:16102-16106.
[9]Nakamura K, Fujii M, Ida Y. Stereoinversion of arylethanols byGeotrichumcandidum[J].Tetrahedron:Asymmetry,2001,12:3147-3153.
[10]Nakamura K, Takenaka K, Fujii M,etal. Asymmetric synthesis of both enantiomers of secondary alcohols by reduction with a single microbe[J].Tetrahedron Letters,2002,43:3629-3631.
[11]Matsuda T, Harada T, Nakamura K. Alcohol dehydrogenase is active in supercritical carbon dioxide[J].Chem Commun,2000:1367-1368.
[12]Patel J M, Musa M M, Rodriguez L,etal. Mutation of thermoanaerobacter ethanolicus secondary alcohol dehydrogenase at Trp-110 affects stereoselectivity of aromatic ketone reduction[J].Org Biomol Chem,2014,12:5905-5910.
[13]Voss C V, Gruber C C, Faber K,etal. Orchestration of concurrent oxidation and reduction cycles for stereoinversion and deracemisation of sec-alcohols[J].J Am Chem Soc,2008,130:13969-13972.
[14]Musa M M, Phillips R S, Laivenieks M,etal. Racemization of enantiopure secondary alcohols by thermoanaerobacter ethanolicus secondary alcohol dehydrogenase[J].Org Biomol Chem,2013,11:2911-2915.
[15]Zhuo J R, Chen Y Z. Research progress on asymmetric oxidation of sulfides with biocatalysts[J].Chin J Syn Chem,2015,23(5):456-460.
[16]Chen Y Z, Tang W L, Mou J,etal. High-throughput method for determining the enantioselectivity of enzyme-catalyzed hydroxylations based on mass spectrometry[J].Angew Chem Int Ed,2010,49:1-8.
[17]Wu S K, Chen Y Z, Xu Y,etal. Enantioselective trans-dihydroxylation of aryl olefins by cascade biocatalysis with recombinant escherichia coli coexpressing monooxygenase and epoxide hydrolase[J].ACS Catal,2014,4:409-420.
[18]Paul C E, Tischler D, Riedel A,etal. Nonenzymatic regeneration of styrene monooxygenase for catalysis[J].ACS Catal,2015,5:2961-2965.
[19]Chen Y Z, Lie F, Li Z,etal. Enantioselective benzylic hydroxylation with pseudomonas monteilii TA-5:A simple method for the syntheses of (R)-benzylic alcohols containing reactive functional groups[J].Adv Synth Catal,2009,351:2107-2112.
[20]Griebenow K, Vidal M, Baéz C,etal. Nativelike enzyme properties are important for optimum activity in neat organic solvents[J].J Am Chem Soc,2001,123:5380-5381.
Asymmetric Synthesis of (S)-(+)-4-phenyl-2-butanol by Carbonyl Reduction with Microbial Enzymes
YANG Min,LI Ke,ZHOU Xiao-jian,CUI Bao-dong,CHEN Yong-zheng*
(School of Pharmarcy, Zunyi Medical University, Zunyi 563000, China)
Abstract:Pseudomonas monteilii TA-5 cultivated with LB medium was employed as the biocatalysts(Cat) for the synthesis of (S)-(+)-4-phenyl-2-butanol with high enantioselectivity by asymmetric reduction. In this paper, the optimal reaction conditions for bioreduction of 4-phenyl-2-butanone(1) were optimized. Under the optimized reaction conditions[1 10 mmol·L(-1), c(Cat) 30 g·cdw·L(-1), 10% glycerol as the cosolvent, pH 8.0, 300 r·min(-1), at 30 ℃ for 4 h], the conversion was 82% and ee was 91%.
Keywords:biocatalysis; LB medium; Pseudomonas monteilii TA-5; asymmetric reduction; (S)-(+)-4-phenyl-2-butanol; synthesis
中圖分類(lèi)號(hào):O623.42; O621.3
文獻(xiàn)標(biāo)志碼:A
DOI:10.15952/j.cnki.cjsc.1005-1511.2016.03.16009
作者簡(jiǎn)介:楊敏(1991-),女,苗族,貴州臺(tái)江人,碩士研究生,主要從事生物催化的研究。通信聯(lián)系人: 陳永正,教授, Tel. 0851-28642336, E-mail: yzchen@zmc.edu.cn
基金項(xiàng)目:國(guó)家自然科學(xué)基金資助項(xiàng)目(21262051); 貴州省教育廳自然科學(xué)項(xiàng)目(黔教科2011-046號(hào))
收稿日期:2015-12-29