• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Note on the Operator Equation Generalizing the Notion of Slant Hankel Operators

    2016-04-18 06:26:44GopalDattandRituAggarwal
    Analysis in Theory and Applications 2016年4期

    Gopal Dattand Ritu Aggarwal

    1Department of Mathematics,PGDAV College,University of Delhi,Delhi–110065, India.

    2Department of Mathematics,University of Delhi,Delhi–110007,India.

    A Note on the Operator Equation Generalizing the Notion of Slant Hankel Operators

    Gopal Datt1,?and Ritu Aggarwal2

    1Department of Mathematics,PGDAV College,University of Delhi,Delhi–110065, India.

    2Department of Mathematics,University of Delhi,Delhi–110007,India.

    .The operator equation λMzX=XMzk,for k ≥ 2,λ ∈ C,is completely solved. Further,some algebraic and spectral properties of the solutions of the equation are discussed.

    Hankel operators,slant Hankel operators,generalized slant Toeplitz operators,generalized slant Toeplitz operators,spectrum of an operator.

    AMS SubjectClassif i cations:47B35

    1 Introduction

    Let Z,C and T denote the set of integers,set of complex numbers and the unit circle, respectively.Let L2(T)(simply written as L2)denote the classical Hilbert space with standard orthonormal basis{en:n ∈ Z},where en(z)=znfor each z ∈ T.The symbol H2denotes the space generated by{en:n ≥ 0}.The symbol L∞is used to denote the space of all essentially bounded measurable functions on T and H∞=L∞∩ H2.The theory of Hankel operators,which is a beautiful area of mathematical analysis,admits of vast applications.In 1861,Hankel[12]began the study of f i nite matrices whose entries depend only on the sum of the coordinates and such objects are called Hankel matrices.In 1881, Kronecker[14]obtained f i rst theorem about inf i nite Hankel matrices that characterizes Hankel matrices of f i nite rank.

    The development of the theory of Hankel operators led to different generalizations of the original concept,like,slant Hankel operators,λ-Hankel operators and(λ,μ)-Hankel operators(see[2,5]and[8]).A lot of progress has taken place in the study of Hankel operators on Bergman spaces on the disk,Dirichlet type spaces,Bergman and Hardy spaces on the unit ball in Cnor on symmetric domains,etc.[16].

    Hankel operators on the space L2are characterized by the operator equation MzX= XMz,whereas on the Hardy space H2these are characterized by the operator equation U?X=XU,where U is the forward unilateral shift operator on the Hardy space H2. We refer to[10,11,16]and the references therein for the basic study of Hankel operators on these spaces.Motivated by the approach initiated by Barr′ia and Halmos[2], various equations,like,MzX=XMz2(solutions of which are named as slant Hankel operators[2]),U?X ? XU= λX, λ ∈ C(solutions of which are named as λ-Hankel operators[5])etc.are attained by mathematicians.In this row,generalized slant Hankel operators[3]have also been obtained which are nothing but the solution of the operator equation MzX=XMzk,for k≥2 and are named as kth-order slant Hankel operators.Work of Avenda ?no[5]dragged our attention to the operator equation λ MzX=XMzk,for k ≥ 2 and λ ∈ C.Clearly,for λ =1,this equation characterizes the kth-order slant Hankel operators and if further k=2 then it is nothing but the equation characterizing slant Hankel operators.

    From the work of Nehari[15],it is known that each Hankel operator is induced by an essentially bounded measurable symbol φ ∈ L∞and is denoted as Hφ.Not much is known about spectral properties of Hankel operators in terms of the inducing symbol. Power[17]described the essential spectrum of Hφfor piecewise continuous functions φ ∈ L∞.In this paper,we completely solve the operator equation λ MzX=XMzk,for k ≥ 2 and λ ∈ C.We describe some of the spectral properties of the solutions of the equation λ MzX=XMzk,for k ≥ 2 and λ ∈ C.We achieve the containment of a closed disc in the spectrum of each non-zero operator satisfying the equation λ MzX=XMzk,for k ≥ 2 and λ∈C.

    2 Operator equation:λMzX=XMzkfor k≥ 2,λ ∈ C

    In last two decades various operator equations generalizing the notion of Hankel operators have been discussed,for the details and importance of which we suggest the references[2,3]and[4].The purpose here is to call attention to the operator equation λ MzX=XMzk,for an integer k ≥ 2 and λ ∈ C.Throughout the paper,k is assumed to be an integer greater than or equal to 2.We begin with the following result.

    Theorem 2.1.The only solution of the operator equation λ MzX=XMzk,|λ |/=1 is the zero operator.

    Proof.Suppose that X satisf i es λ MzX=XMzk.First,consider the case|λ|< 1.Def i ne a map τ :B(L2)→ B(L2)as τ(X)= λMzXMzk.Then ‖τ‖ ≤ |λ|< 1 and(I? τ)is invertible. Now(I? τ)X=0,which implies that X=0.

    Now consider the case|λ|> 1.This time we def i ne the mapping τ as τ(X)=MzXMzk. Now ‖τ ‖≤ 1 so(λ I? τ )is invertible and this provides that X=0.This completes the proof.

    Now in view of thelast result,we are left to solve the operatorequation λMzX=XMzkfor|λ|=1.We consider the operators Wkand J(the f l ip operator)on L2def i ned as

    and Jen=e?nfor each n ∈ Z.Then the facts WkJ=JWk,Mφ(z)Wk=WkMφ(zk)and Mφ(z)J= JMφ(z),where φ ∈ L∞,are well known about these operators.It is interesting to know that each kth-order slant Hankel operator on L2is of the form WkJMφfor some φ ∈ L∞(see[3]). Using these facts,we claim the following.

    Theorem 2.2.Let λ ∈ C be such that|λ|=1.The operator equation λMzX=XMzkadmits of non-zero solutions and each non-zero solution is of the form X=DλWkJMφfor some φ ∈ L∞, where Dλis the composition operator on L2induced by zi.e.,Dλf(z)=ffor all f∈ L2. Proof.Suppose X is an operatorof the form DλWkJMφfor some φ∈ L∞,where symbol Dλis used in the sense it is def i ned in the statement.Now it can be seen that λ MzDλ=DλMzand Mz(WkJMφ)=(WkJMφ)Mzk,which provides that λ MzX=XMzk.

    Conversely,suppose that X is an operator satisfying λMzX=XMzk.Pre-multiplying by Dλ,wegetthatX=XMzk.Therefore,X isa kth-orderslant Hankeloperator on L2and hence we get the result.

    Now onward,we are focussed to study the behavior of the solutions of the equation λ MzX=XMzk,|λ|=1.In fact,here onward,the term solution is always used in reference to the solution of this equation only.The notion of Toeplitz operators,Hankel operators, slant Toeplitzoperatorsand slant Hankel operatorsare characterized in terms of matrices (see[2,7,13,17])and in the same direction we would like to have a look at the matrix characterization to the solutions of the equation λ MzX=XMzk,|λ|=1.For φ = ∑n∈Zanenin L∞and λ ∈ C with|λ|=1,the solution X=DλWkJMφsatisf i es

    for each i,j∈ Z.So the matrix representation of the solution X is

    We now have the following characterization to the solutions in terms of matrices.

    Theorem 2.3.A necessary and suff i cient condition for an operator X on L2to be a solution of the equation λMzX=XMzk,|λ|=1 is that its matrix[aij]with respect to the standard orthonormal basis{en:n ∈ Z}satisf i es

    for every i,j∈ Z.

    Theorem 2.2 can be restated in the following form.

    Theorem 2.4.Let λ ∈ C be such that|λ|=1.An operator X on L2is a solution of the operator equation λ MzX=XMzkif and only if it is of the form X=DλWkJMφfor some φ ∈ L∞.

    As each solution is induced by an element of L∞and also depend on the choice of λ, we’ll denote the solution X of the form X=DλWkJMφby Xφ,λ.It is clear that for φ ∈ L∞,‖Xφ,λ‖ = ‖DλWkJMφ‖ ≤ ‖φ‖∞.We see the following.

    Proof.Proof follows as

    where ψ and ξλare elements of L∞given by

    Thus,we complete the proof.

    Without any extra efforts,along the lines of techniques used in[4],it is easy to check the following observation about the set Sλof all the solutions of the equation λMzX= XMzk,|λ|=1.

    Theorem 2.6.We have the following:

    2.Sλis weakly and hence strongly closed.

    3.Sλis a norm closed subspace of B(L2),the algebra of all bounded operators on L2.

    4.Sλis not self adjoint.

    Proof.We just give proof for(4).It follows using Theorem 2.3 and the fact that for φ =∑n∈Zanen∈ L∞,the adjoint of a non-zero Xφ,λis=MφJ?W?kDλand hence

    for each i,j∈ Z.

    In order to see whether Sλform an algebra or not,we f i rst claim the following about a solution Xφ,λ,φ ∈ L∞.

    Lemma 2.1.DλWkJXφ,λis a solution if and only if Xφ,λis zero.

    Proof.Let φ= ∑n∈Zanen∈ L∞and let DλWkJXφ,λbe a solution.Thenonapplying Theorem 2.3,we have

    for each i,j∈ Z.This gives

    which implies that ak(ki)?j= λ?kak2(i?1)?(j+k)for each i,j∈ Z.Hence,if i=0 then we get= λ?ka?k2?j?kfor each j∈ Z.This gives that for integer t,at= λ?kna?n(k2+k)+t→ 0 as n → 0.As a matter of fact φ =0 and Xφ,λ=0.Converse is obvious.

    For φ,ψ ∈ L∞,the product of two solutions Xφ,λand Xψ,λsatisf i es

    If we multiply the solution Xφ,λwith a Laurent(multiplication)operator A(=Mψ), where φ,ψ ∈ L∞then Xφ,λA=DλWkJMφMψ=DλWkJMφψand AXφ,λ=MψDλWkJMφ= DλMψ(λz)WkJMφ=DλJ=Mψ()WkMφ=DλJWkMψ(λzk)φ(z).These observations land at the conclusion that a solution Xφ,λcommutes with a Laurent operator Mψif and only if ψφ = ψφ.It is interesting to attain the following about these products.

    Theorem 2.7.The product of a solution and a Laurent operator is always a solution.

    Proof.For any φ ∈ L∞,a straight forward computation shows that for any Laurent operator M,λMz(Xφ,λA)=A=(Xφ,λMzk)A=(Xφ,λA)Mzk.Similarly,λMz(Xφ,λA)= (λMzA)Xφ,λ=A(λMzXφ,λ)=A(Xφ,λMzk)=(Xφ,λA)Mzk.Hence the result.

    It is shown in[3]that the only compact kth-order slant Hankel operator is the zero operator.When we use this with the fact that the composition operator Dλis unitary,we get the following.

    Theorem 2.8.The solution Xφ,λis compact if and only if it is zero operator.

    Now we discuss the isometric behavior of the solutions and f i nd a result similar to the result obtained for generalized λ-slant Toeplitz operators in[9].If φ ∈ L∞is unimodular(i.e.,|φ|=1)then simple computation shows that Xφ,λis co-isometry(i.e.,is isometry).However,by the same technique as used in[9],we get the following.

    Theorem 2.9.For φ ∈ L∞,Xφ,λis co-isometry if and only if

    for a.e. θ∈ [0,2π].

    There is a dearth of hyponormal solutions and we f i nd that the only solution Xφ,λwhich is hyponormal is the zero operator.

    Theorem 2.10.For φ ∈ L∞and|λ|=1,the solution Xφ,λis hyponormal if and only if Xφ,λ=0. Proof.Suppose φ = ∑n∈Zanen∈ L∞and Xφ,λis hyponormal.Then for all f∈ L2,

    This,in particular,for f=e0gives

    which implies that a?kn?m=0 for m=1,2,···,k? 1 and for all n ∈ Z.Now on substituting f=e1in the inequality,we f i nd

    which yields that a?kn=0 for all n ∈ Z.Thus φ =0 and so Xφ,λ=0.This completes the proof as converse is trivial.

    3 Spectral behavior of solutions of the equation λMzX=XMzk

    In this section,our aim is to investigate information about the spectral behavior of solutions of the equation λ MzX=XMzk,|λ|=1.We also prove that the spectrum of the solution contains a closed disc for an invertible symbol in L∞,which is a well known result in case of kth-order slant Toeplitz operators[1].For an operator A on a Hilbert space, the symbols σ(A)and σp(A)are used to denote the spectrum and the point spectrum of A respectively.The result here are just stated as can be obtained without any extra efforts by adopting the methods used to obtain the same for kth-order slant Toeplitz operators in[1].

    For φ ∈ L∞,we write

    Theorem 3.1.If φ is invertible in L∞,then σp(X?,λ)= σp(Xφ(zk),λ).

    Theorem 3.2.For φ ∈ L∞,σ(X?,λ)= σ(Xφ(zk),λ).

    Our next result shows the containment of a closed disc in the spectrum of a solution of the operator equation λMzX=XMzk.

    Theorem 3.3.For any invertible φ in L∞,σ(X?,λ)contains a closed disc,where X is a solution of the equation λ MzX=XMzk.

    Proof.Let μ be any non-zero complex number.As φ is invertible in L∞so is φ?1.Now suppose thatis onto.Then for each f ∈ L2,we have

    where Pkis the projection on the closed span of{ekn:n ∈ Z}in L2.Now,pick 0/=g0in (I? Pk)(L2).Beingis onto,we fi nd a f∈ L2such that

    Since g0∈ (I? Pk)(L2),we haveMφ?1J?(μ?1? JMφWk)f=0.This,on using the facts that μ /=0,Wkis co-isometry(i.e.,=I)and Mφ?1and J are invertible,yields that(μ?1Dλ? JMφWk)f=0.This shows that

    It implies that μ?1∈ σp(Xφ(zk),λ).Nowis onto(in fact invertible)for each μ ∈ ρthe resolvent ofso on applying Theorem 3.1,we get that

    where ? = ∑n∈Z〈φ,en〉λne?n.As spectrum of any operator is compact it follows that σ(X?,λ)contains a disc of eigenvalues of X?,λ.

    Remark 3.1.Radius of closed disc contained in σ(X?,λ)iswhere r(A)denotes the spectral radius of the operator A.For,

    [1]S.C.Arora and R.Batra,On generalized slant Toeplitz operators,Indian J.Math.,45(2003), 121–134.

    [2]S.C.Arora,R.Batra And M.P.Singh,Slant Hankel Operators,Archivium Mathematicum (BRNO)Tomus,42(2006),125–133.

    [3]S.C.Arora and J.Bhola,kth-order slant Hankel operators,Mathematical Sciences Research J.,(U.S.A.),12(3)(2008),53–63.

    [4]R.A.M.Avenda ?no,Essentially Hankel operators,J.London Math.Soc.,66(2)(2000),741–752.

    [5]R.A.M.Avenda ?no,Ageneralizationof Hankeloperators,J.Func.Anal.,190(2002),418–446.

    [6]J.Barr′?a and P.R.Halmos,Asymptotic Toeplitz operators,Trans.Amer.Math.Soc.,273 (1982),621–630.

    [7]A.Brown and P.R.Halmos,Algebraic properties of Toeplitz operators,J.Reigne Angew. Math.,213(1963),89–102.

    [8]G.Datt and R.Aggarwal,On a generalization of Hankel operators via operator equations, Extracta Mathematicae,28(2)(2013),197–211.

    [9]G.Datt and R.Aggarwal,A Generalization of slant Toeplitz operators,Jordan J.Math.Stat., 9(2)(2016),73–92.

    [10]R.G.Douglas,Banach Algebra Techniques in Operator Theory,Academic Press,New York, 1952.

    [11]P.R.Halmos,A Hilbert Space Problem Book,Springer-Verlag,New York,1982.

    [12]H.Hankel, ¨Uber eine besondere Classe der Symmetrischen Determinanten,(Leipziger)Dissertation,G¨ottingen,1861.

    [13]M.C.Ho,Properties of slant Toeplitz operators,Indiana University Mathematics J.,45(3) (1996),843–862.

    [14]L.Kronecker,Zur Theorie der Elimination einer Variablen aus zwei algebraischen Gleichungen,Monatsber.K ¨onigl.Preussischen Akad.Wies.(Berlin),1881,535–600.Reprinted as pp. 113–192in Mathematische Werke,Vol.2,B.G.Teubner,Leipzig,1897 or Chelsea,New York, 1968.

    [15]Z.Nehari,On bounded bilinear forms,Ann.Math.,65(1957),153–162.

    [16]V.Peller,Hankel Operators and Applications,Springer-Verlag,New York,2003.

    [17]S.C.Power,Hankel Operators on Hilbert Space,Pitman Publishing,Boston,1982.

    Received 8 June 2015;Accepted(in revised version)23 September 2016

    ?Corresponding author.Email addresses:gopal.d.sati@gmail.com(G.Datt),rituaggawaldu@rediffmail. com(R.Aggarwal)

    久热这里只有精品99| 啦啦啦 在线观看视频| 99国产综合亚洲精品| 啪啪无遮挡十八禁网站| 国产成人免费观看mmmm| 亚洲情色 制服丝袜| 亚洲精品av麻豆狂野| 热re99久久国产66热| 可以免费在线观看a视频的电影网站| 国产精品免费大片| netflix在线观看网站| 水蜜桃什么品种好| 国产亚洲精品第一综合不卡| 亚洲第一青青草原| 亚洲精品国产精品久久久不卡| 国产成人精品无人区| 一区二区三区精品91| 两性夫妻黄色片| 久久性视频一级片| 国产男女内射视频| 女人爽到高潮嗷嗷叫在线视频| 久久精品aⅴ一区二区三区四区| 日韩三级视频一区二区三区| 高清黄色对白视频在线免费看| 在线观看免费日韩欧美大片| √禁漫天堂资源中文www| 精品高清国产在线一区| 亚洲精品在线美女| 国产淫语在线视频| 国产精品国产av在线观看| 国产一区在线观看成人免费| 亚洲少妇的诱惑av| 啦啦啦免费观看视频1| 18禁国产床啪视频网站| 免费观看人在逋| 久久九九热精品免费| 国产男女内射视频| 岛国在线观看网站| 精品国产美女av久久久久小说| 99国产综合亚洲精品| 后天国语完整版免费观看| 无人区码免费观看不卡| 黄色a级毛片大全视频| 一边摸一边做爽爽视频免费| 日韩欧美一区二区三区在线观看 | 亚洲精品国产精品久久久不卡| 如日韩欧美国产精品一区二区三区| 在线av久久热| 久久 成人 亚洲| 飞空精品影院首页| 一本一本久久a久久精品综合妖精| 亚洲av第一区精品v没综合| 久久久国产成人免费| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品亚洲精品国产色婷小说| 天天躁夜夜躁狠狠躁躁| 亚洲视频免费观看视频| 国产精品久久久久久人妻精品电影| 久久香蕉激情| 黄色怎么调成土黄色| 天堂俺去俺来也www色官网| 久久国产精品男人的天堂亚洲| 19禁男女啪啪无遮挡网站| 免费看十八禁软件| 国产精品欧美亚洲77777| 国产精品国产高清国产av | 久久久久久久久久久久大奶| 久久精品国产99精品国产亚洲性色 | 曰老女人黄片| 天天影视国产精品| 亚洲av成人一区二区三| 99精品在免费线老司机午夜| 999久久久国产精品视频| 在线永久观看黄色视频| 亚洲国产欧美一区二区综合| 精品欧美一区二区三区在线| 欧美日韩亚洲国产一区二区在线观看 | 亚洲男人天堂网一区| 成人亚洲精品一区在线观看| 亚洲熟女毛片儿| av电影中文网址| 侵犯人妻中文字幕一二三四区| a级毛片黄视频| 欧美人与性动交α欧美软件| 欧美日韩精品网址| 国产精品亚洲一级av第二区| 国产精品一区二区精品视频观看| 少妇的丰满在线观看| 黄色怎么调成土黄色| 欧美激情久久久久久爽电影 | 久久国产精品人妻蜜桃| 人人澡人人妻人| 美女福利国产在线| 香蕉久久夜色| 99国产精品一区二区三区| 亚洲午夜精品一区,二区,三区| 午夜精品国产一区二区电影| 99国产极品粉嫩在线观看| 午夜福利视频在线观看免费| 一区福利在线观看| 亚洲第一青青草原| 另类亚洲欧美激情| 黄色视频,在线免费观看| 最近最新中文字幕大全免费视频| av超薄肉色丝袜交足视频| 青草久久国产| 99热国产这里只有精品6| 中出人妻视频一区二区| 一级毛片精品| 欧美 亚洲 国产 日韩一| 水蜜桃什么品种好| 免费在线观看影片大全网站| 999精品在线视频| 国产高清激情床上av| 亚洲男人天堂网一区| 国产一区二区三区在线臀色熟女 | 国产淫语在线视频| 亚洲avbb在线观看| 大型av网站在线播放| 午夜精品在线福利| 亚洲欧美激情综合另类| 中文字幕色久视频| 色综合欧美亚洲国产小说| 狠狠婷婷综合久久久久久88av| 国产精品 国内视频| 一区在线观看完整版| 老司机午夜十八禁免费视频| 校园春色视频在线观看| 亚洲情色 制服丝袜| 香蕉久久夜色| 一边摸一边做爽爽视频免费| 久久精品国产a三级三级三级| av在线播放免费不卡| 高清视频免费观看一区二区| 五月开心婷婷网| 欧美亚洲 丝袜 人妻 在线| 国产精品秋霞免费鲁丝片| 大码成人一级视频| 欧美久久黑人一区二区| 99国产精品99久久久久| 一级a爱视频在线免费观看| 久久精品亚洲av国产电影网| 啪啪无遮挡十八禁网站| 青草久久国产| 露出奶头的视频| 国产av精品麻豆| 人成视频在线观看免费观看| 黄色视频不卡| 免费少妇av软件| 国产不卡av网站在线观看| 久久精品人人爽人人爽视色| 欧美在线一区亚洲| tocl精华| 亚洲一区高清亚洲精品| av国产精品久久久久影院| 欧美 亚洲 国产 日韩一| 麻豆乱淫一区二区| 黑人巨大精品欧美一区二区蜜桃| 久久国产精品男人的天堂亚洲| 久久中文看片网| 免费黄频网站在线观看国产| 日本欧美视频一区| 亚洲国产欧美网| www.熟女人妻精品国产| 国产精品一区二区在线不卡| 免费一级毛片在线播放高清视频 | 丝瓜视频免费看黄片| 国产精品久久久av美女十八| 他把我摸到了高潮在线观看| 午夜福利乱码中文字幕| 国产欧美日韩一区二区三| 美女高潮到喷水免费观看| 51午夜福利影视在线观看| 一级片免费观看大全| 久久精品91无色码中文字幕| 久久影院123| 国产亚洲精品久久久久久毛片 | 91麻豆av在线| 久久婷婷成人综合色麻豆| 日韩欧美三级三区| 如日韩欧美国产精品一区二区三区| 精品久久蜜臀av无| 亚洲三区欧美一区| 黑丝袜美女国产一区| 丰满人妻熟妇乱又伦精品不卡| 国产乱人伦免费视频| 日韩欧美一区视频在线观看| av超薄肉色丝袜交足视频| 正在播放国产对白刺激| 欧美+亚洲+日韩+国产| 欧美日韩乱码在线| 国产精品永久免费网站| 亚洲国产欧美日韩在线播放| 免费女性裸体啪啪无遮挡网站| 婷婷丁香在线五月| 国产精品久久久久久精品古装| 叶爱在线成人免费视频播放| 午夜久久久在线观看| 一区二区三区激情视频| 精品国产乱码久久久久久男人| 自拍欧美九色日韩亚洲蝌蚪91| 免费在线观看视频国产中文字幕亚洲| 欧美老熟妇乱子伦牲交| 午夜老司机福利片| 久久精品亚洲精品国产色婷小说| 一进一出好大好爽视频| 精品久久久久久电影网| 麻豆成人av在线观看| www.999成人在线观看| 精品久久久久久电影网| 亚洲精品一卡2卡三卡4卡5卡| 18禁美女被吸乳视频| 久久久国产一区二区| 一级黄色大片毛片| 欧美激情 高清一区二区三区| 免费在线观看亚洲国产| 一级a爱视频在线免费观看| 亚洲av电影在线进入| 女人被狂操c到高潮| 黄网站色视频无遮挡免费观看| 久久久水蜜桃国产精品网| 如日韩欧美国产精品一区二区三区| 亚洲avbb在线观看| 在线国产一区二区在线| 超碰97精品在线观看| av欧美777| 满18在线观看网站| 这个男人来自地球电影免费观看| 亚洲 欧美一区二区三区| 两个人免费观看高清视频| 久久精品国产亚洲av香蕉五月 | 啦啦啦 在线观看视频| 久久精品aⅴ一区二区三区四区| 日本精品一区二区三区蜜桃| www.999成人在线观看| 18在线观看网站| 777米奇影视久久| 亚洲av片天天在线观看| 成年人午夜在线观看视频| 婷婷成人精品国产| 国产av一区二区精品久久| 大陆偷拍与自拍| 男人操女人黄网站| 亚洲欧洲精品一区二区精品久久久| 91在线观看av| 亚洲精品国产区一区二| 欧美老熟妇乱子伦牲交| 人成视频在线观看免费观看| 国产区一区二久久| 国产精品一区二区在线不卡| 国产免费男女视频| 伊人久久大香线蕉亚洲五| 宅男免费午夜| 国产午夜精品久久久久久| 99热国产这里只有精品6| 午夜免费鲁丝| 女同久久另类99精品国产91| 黄色 视频免费看| 久久精品国产亚洲av香蕉五月 | 亚洲欧美一区二区三区黑人| a级毛片在线看网站| 久久亚洲真实| 午夜老司机福利片| 久久精品亚洲熟妇少妇任你| 老熟妇仑乱视频hdxx| 亚洲成av片中文字幕在线观看| 1024视频免费在线观看| 国产精品亚洲av一区麻豆| 中出人妻视频一区二区| 国产精品一区二区在线不卡| 91精品国产国语对白视频| 女性被躁到高潮视频| 欧美av亚洲av综合av国产av| 欧美激情 高清一区二区三区| 大型av网站在线播放| 免费在线观看亚洲国产| 99国产精品99久久久久| 国产一区二区三区视频了| 午夜福利欧美成人| 国产av精品麻豆| 亚洲欧美激情综合另类| 国产在线精品亚洲第一网站| 欧美乱色亚洲激情| 99国产极品粉嫩在线观看| 精品人妻熟女毛片av久久网站| 叶爱在线成人免费视频播放| 在线观看日韩欧美| 欧美另类亚洲清纯唯美| 亚洲 欧美一区二区三区| 麻豆乱淫一区二区| 亚洲精品久久成人aⅴ小说| 欧美日韩亚洲综合一区二区三区_| 久9热在线精品视频| 在线av久久热| 看黄色毛片网站| 久久久精品区二区三区| 日韩欧美一区视频在线观看| 亚洲国产精品一区二区三区在线| 成人黄色视频免费在线看| 国内久久婷婷六月综合欲色啪| 欧美精品啪啪一区二区三区| 日韩成人在线观看一区二区三区| 亚洲中文av在线| 成年女人毛片免费观看观看9 | 超碰成人久久| 在线观看一区二区三区激情| 精品福利永久在线观看| 成人三级做爰电影| 国产亚洲精品一区二区www | 久久99一区二区三区| 精品熟女少妇八av免费久了| 欧美精品av麻豆av| 美国免费a级毛片| 国产成人欧美| 一进一出好大好爽视频| 亚洲五月天丁香| 亚洲综合色网址| 色综合婷婷激情| 久久久久久人人人人人| 人妻一区二区av| 久久天躁狠狠躁夜夜2o2o| 欧美成人免费av一区二区三区 | 老熟妇乱子伦视频在线观看| 好男人电影高清在线观看| 日本黄色日本黄色录像| 又大又爽又粗| 国产激情久久老熟女| 夜夜躁狠狠躁天天躁| 欧美精品亚洲一区二区| 色在线成人网| 黑丝袜美女国产一区| 午夜老司机福利片| 夜夜躁狠狠躁天天躁| 国产精品1区2区在线观看. | 欧美性长视频在线观看| 成人国产一区最新在线观看| 久久香蕉国产精品| 1024视频免费在线观看| 国产精品久久电影中文字幕 | 午夜日韩欧美国产| 亚洲三区欧美一区| 免费少妇av软件| 99久久精品国产亚洲精品| 欧美一级毛片孕妇| 国产精品久久电影中文字幕 | 免费日韩欧美在线观看| av线在线观看网站| 欧美日本中文国产一区发布| 欧美日韩成人在线一区二区| 亚洲精品国产一区二区精华液| 91九色精品人成在线观看| 老司机靠b影院| 欧美黄色片欧美黄色片| 老鸭窝网址在线观看| 99热网站在线观看| 亚洲成人手机| 亚洲熟女毛片儿| 成年动漫av网址| 亚洲av日韩精品久久久久久密| 免费在线观看黄色视频的| 啦啦啦在线免费观看视频4| 亚洲专区国产一区二区| 国产xxxxx性猛交| 黄色视频,在线免费观看| 久久久久久亚洲精品国产蜜桃av| 9191精品国产免费久久| 日韩制服丝袜自拍偷拍| 亚洲熟妇中文字幕五十中出 | 精品视频人人做人人爽| 久热这里只有精品99| 国产精品久久久久久人妻精品电影| 国产男女内射视频| 国产精品98久久久久久宅男小说| 亚洲成人免费av在线播放| 国产亚洲精品久久久久5区| 丰满人妻熟妇乱又伦精品不卡| 亚洲精品在线美女| 91av网站免费观看| 久久影院123| 纯流量卡能插随身wifi吗| 99精国产麻豆久久婷婷| 99久久综合精品五月天人人| 老熟妇乱子伦视频在线观看| 少妇被粗大的猛进出69影院| 桃红色精品国产亚洲av| 91大片在线观看| 国产亚洲一区二区精品| 一级a爱片免费观看的视频| 国产精品 国内视频| 熟女少妇亚洲综合色aaa.| av免费在线观看网站| 人妻 亚洲 视频| 又大又爽又粗| 亚洲欧美日韩高清在线视频| 欧美 日韩 精品 国产| 十八禁网站免费在线| 国产极品粉嫩免费观看在线| 国精品久久久久久国模美| 亚洲精品在线观看二区| 黑丝袜美女国产一区| 777米奇影视久久| 欧美日韩精品网址| 成人免费观看视频高清| 操美女的视频在线观看| 久久精品亚洲精品国产色婷小说| 午夜福利欧美成人| 大香蕉久久成人网| 亚洲在线自拍视频| 亚洲第一av免费看| 国产av又大| 欧美性长视频在线观看| 日本黄色日本黄色录像| 午夜成年电影在线免费观看| 成人av一区二区三区在线看| 欧美日韩乱码在线| 99精品在免费线老司机午夜| 一区福利在线观看| 久久久精品国产亚洲av高清涩受| 老熟妇乱子伦视频在线观看| 久久中文字幕一级| 亚洲在线自拍视频| 国产精品影院久久| 亚洲av第一区精品v没综合| 窝窝影院91人妻| 两个人免费观看高清视频| x7x7x7水蜜桃| 热re99久久精品国产66热6| 叶爱在线成人免费视频播放| 黑人欧美特级aaaaaa片| 精品视频人人做人人爽| 精品国产一区二区久久| 亚洲熟女毛片儿| 久久99一区二区三区| 看黄色毛片网站| 99re6热这里在线精品视频| 免费久久久久久久精品成人欧美视频| 超碰成人久久| 国产精品九九99| 国产亚洲欧美98| 激情在线观看视频在线高清 | 99国产综合亚洲精品| 少妇的丰满在线观看| 又紧又爽又黄一区二区| 18禁国产床啪视频网站| 欧美亚洲 丝袜 人妻 在线| 老司机午夜十八禁免费视频| 国产免费男女视频| 国产欧美日韩一区二区三| 欧美色视频一区免费| 不卡av一区二区三区| av欧美777| 久久久国产成人免费| 欧美乱码精品一区二区三区| а√天堂www在线а√下载 | 午夜日韩欧美国产| 国产欧美日韩一区二区三区在线| 黄色女人牲交| av欧美777| 视频在线观看一区二区三区| 黄片播放在线免费| 自线自在国产av| 欧美在线一区亚洲| 精品国内亚洲2022精品成人 | 成年人午夜在线观看视频| 亚洲视频免费观看视频| 成人亚洲精品一区在线观看| 亚洲色图 男人天堂 中文字幕| 久久精品91无色码中文字幕| 国产高清videossex| 国产精品综合久久久久久久免费 | 久久国产乱子伦精品免费另类| 黑丝袜美女国产一区| 窝窝影院91人妻| 国产精品国产av在线观看| 国产精品亚洲av一区麻豆| 老熟女久久久| 后天国语完整版免费观看| 久久国产精品人妻蜜桃| av中文乱码字幕在线| 久久久久久久久久久久大奶| 午夜精品久久久久久毛片777| 欧美另类亚洲清纯唯美| 自线自在国产av| 18禁美女被吸乳视频| 怎么达到女性高潮| 在线观看66精品国产| 黄片小视频在线播放| 国产精品美女特级片免费视频播放器 | 欧洲精品卡2卡3卡4卡5卡区| 日韩免费高清中文字幕av| 精品人妻在线不人妻| 成人黄色视频免费在线看| 久久精品亚洲精品国产色婷小说| 一区福利在线观看| 免费观看a级毛片全部| 亚洲av片天天在线观看| 亚洲国产看品久久| 日韩人妻精品一区2区三区| 精品国内亚洲2022精品成人 | 在线永久观看黄色视频| 一级作爱视频免费观看| 精品高清国产在线一区| 久久精品aⅴ一区二区三区四区| 操出白浆在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 在线播放国产精品三级| 午夜视频精品福利| 99国产精品一区二区蜜桃av | 国产成+人综合+亚洲专区| 在线观看免费视频网站a站| 国产欧美日韩一区二区精品| 国产亚洲精品一区二区www | 一区在线观看完整版| 精品久久久精品久久久| 在线免费观看的www视频| 亚洲人成伊人成综合网2020| www日本在线高清视频| 深夜精品福利| 国产精品亚洲av一区麻豆| 国产精品电影一区二区三区 | 亚洲av成人不卡在线观看播放网| 一级片免费观看大全| 成年人午夜在线观看视频| 国产精品av久久久久免费| 看黄色毛片网站| 久久精品人人爽人人爽视色| 日日爽夜夜爽网站| 99国产精品免费福利视频| 亚洲人成电影观看| 国产视频一区二区在线看| 国产有黄有色有爽视频| 亚洲欧美激情综合另类| 久久热在线av| 免费黄频网站在线观看国产| 这个男人来自地球电影免费观看| 法律面前人人平等表现在哪些方面| 精品人妻1区二区| 成年人黄色毛片网站| 欧美日韩瑟瑟在线播放| 五月开心婷婷网| 午夜久久久在线观看| www.自偷自拍.com| 最近最新中文字幕大全免费视频| 国产99久久九九免费精品| 在线永久观看黄色视频| 在线av久久热| 不卡一级毛片| 一个人免费在线观看的高清视频| www.精华液| 亚洲少妇的诱惑av| 青草久久国产| 久久热在线av| 99re在线观看精品视频| 热99re8久久精品国产| 国产精品1区2区在线观看. | 国产亚洲精品第一综合不卡| 久久精品亚洲av国产电影网| 久久精品亚洲精品国产色婷小说| 亚洲av美国av| 精品久久久久久电影网| 999久久久精品免费观看国产| 交换朋友夫妻互换小说| netflix在线观看网站| 黄片小视频在线播放| 精品欧美一区二区三区在线| 天天躁夜夜躁狠狠躁躁| 交换朋友夫妻互换小说| 美女福利国产在线| 国产高清激情床上av| 亚洲成a人片在线一区二区| 成人特级黄色片久久久久久久| 中文亚洲av片在线观看爽 | 国产有黄有色有爽视频| 在线国产一区二区在线| 久久精品国产清高在天天线| 中出人妻视频一区二区| 韩国精品一区二区三区| 久久99一区二区三区| 亚洲国产欧美网| 国产一区在线观看成人免费| 欧美一级毛片孕妇| 丝袜在线中文字幕| 在线看a的网站| 一区二区三区国产精品乱码| 欧美黄色片欧美黄色片| 精品少妇久久久久久888优播| 国产高清激情床上av| 91大片在线观看| 日韩欧美一区二区三区在线观看 | a级毛片在线看网站| 亚洲av成人一区二区三| 日韩 欧美 亚洲 中文字幕| 日韩一卡2卡3卡4卡2021年| 国产一区二区三区视频了| 久久久久国内视频| 亚洲欧美日韩高清在线视频| 亚洲第一青青草原| 精品午夜福利视频在线观看一区| 国产精品影院久久| 成年人黄色毛片网站| 欧美乱色亚洲激情| 18禁观看日本| 视频在线观看一区二区三区| 一级毛片精品| 欧美av亚洲av综合av国产av| 日本wwww免费看| 久久香蕉精品热| 日本a在线网址| 黑人操中国人逼视频| 高清黄色对白视频在线免费看| 欧美日韩精品网址| 国产精品偷伦视频观看了| 天天躁夜夜躁狠狠躁躁| www.精华液| 亚洲午夜精品一区,二区,三区|