• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ClassicalFourierAnalysisoverHomogeneous Spaces of Compact Groups

    2016-04-18 06:26:36ArashGhaaniFarashahi
    Analysis in Theory and Applications 2016年4期

    Arash Ghaani Farashahi

    Numerical Harmonic Analysis Group(NuHAG),Faculty Mathematics,University of Vienna,Vienna,Austria.

    ClassicalFourierAnalysisoverHomogeneous Spaces of Compact Groups

    Arash Ghaani Farashahi?

    Numerical Harmonic Analysis Group(NuHAG),Faculty Mathematics,University of Vienna,Vienna,Austria.

    .This paper introduces a unif i ed operator theory approach to the abstract Fourier analysis over homogeneous spaces of compact groups.Let G be a compact group and H be a closed subgroup of G.Let G/H be the left coset space of H in G and μ be the normalized G-invariant measure on G/H associated to the Weil’s formula. Then,we present a generalized abstract framework of Fourier analysis for the Hilbert function space L2(G/H,μ).

    Compact group,homogeneous space,dual space,Fourier transform,Plancherel (trace)formula,Peter-Weyl Theorem.

    AMS SubjectClassif i cations:20G05,43A85,43A32,43A40,43A90.

    1 Introduction

    The abstract aspects of harmonic analysis over homogeneous spaces of compact non-Abelian groups or precisely left coset(resp.right coset)spaces of non-normal subgroups of compact non-Abelian groups is placed as building blocks for coherent states analysis[2–4,12],theoretical and particle physics[1,9–11,13].Over the last decades,abstract and computational aspects of Plancherel formulas over symmetric spaces have achieved signi fi cant popularity in geometric analysis,mathematical physics and scienti fi c computing(computational engineering),see[6,7,13–18]and references therein.

    Let G be a compact group,H be a closed subgroup of G,and μ be the normalized G-invariant measure on G/H associated to the Weil’s formula.The left coset space G/H is considered as a compact homogeneous space,which G acts on it via the left action. This paper which contains 5 sections,is organized as follows.Section 2 is devoted to fi x notations and preliminaries including a brief summary on Hilbert-Schmidt operators,non-Abelian Fourier analysis over compact groups,and classical results on abstract harmonic analysis over locally compact homogeneous spaces.We present some abstract harmonic analysis aspects of the Hilbert function space L2(G/H,μ),in Section 3.Then we def i ne the abstract notion of dual spacefor the homogeneous space G/H and we will show that this def i nition is precisely the standard dual space for the compact quotient group G/H,when H is a closed normal subgroup of G.We then introduce the def i nition of abstract operator-valued Fourier transform over the Banach function space L1(G/H,μ)and also generalized version of the abstract Plancherel(trace)formula for the Hilbert function space L2(G/H,μ).The paper closes by a presentation of Peter-Weyl Theorem for the Hilbert function space L2(G/H,μ).

    2 Preliminaries and notations

    Let H be a separable Hilbert space.An operator T ∈ B(H)is called a Hilbert-Schmidt operator if for one,hence for any orthonormal basis{ek}of H we have< ∞. The set of all Hilbert-Schmidt operators on H is denoted by HS(H)and for T ∈ HS(H) the Hilbert-Schmidt norm of T isThe set HS(H)is a self adjoint two sided ideal in B(H)and if H is f i nite-dimensional we have HS(H)=B(H).An operator T ∈ B(H)is trace-class,whenever=tr[|T|]< ∞,if tr[T]=and |T|=[20].

    Let G be a compact group with the probability Haar measure dx.Then each irreducible representation of G is f i nite dimensional and every unitary representation of G is a direct sumofirreducible representations,see[1,10].The setof ofall unitary equivalence classes of irreducible unitary representations of G is denoted byThis def i nition ofis in essential agreement with the classical def i nition when G is Abelian,since each characterofanAbelian groupis a onedimensionalrepresentationof G.If π is any unitary representationof G,for ζ,ξ∈Hπthe functions πζ,ξ(x)= 〈π(x)ζ,ξ〉are called matrix elements of π.If{ej}is an orthonormal basis for Hπ,then πijmeansThe notation Eπis used for the linear span of the matrix elements of π and the notation E is used for the linear spanThen Peter-Weyl Theorem[1,10]guarantees that if G is a compact group,E is uniformly dense in C(G),L2(G)=andis an orthonormal basis for L2(G).For f∈ L1(G)and[π ]∈ bG,the Fourier transform of f at π is def i ned in the weak sense as an operator in B(Hπ)by

    If π (x)is represented by the matrix(πij(x)) ∈ Cdπ×dπ.Then∈ Cdπ×dπis the matrix with entries given bywhich satisf i es

    Let H be a closed subgroup of G with the probability Haar measure dh.The left coset space G/H is considered as a compact homogeneous space that G acts on it from the left and q:G → G/H given by xq(x):=xH is the surjective canonical map.The classical aspects of abstract harmonic analysis on locally compact homogeneous spaces are quite well studiedby several authors,see[5,8,10,11,22]and references therein.If G is compact, each transitive G-space can be considered as a left coset space G/H for some closed subgroup H of G.The function space C(G/H)consists of all functions TH(f),where f∈ C(G) and

    Let μ be a Radon measure on G/H and x ∈ G.The translation μxof μ is def i ned by μx(E)= μ(xE),for all Borel subsets E of G/H.The measure μ is called G-invariant if μx= μ,for all x ∈ G.The homogeneousspace G/H has a normalized G-invariant measure μ,which satisf i es the following Weil’s formula[1,22]

    and also the following norm-decreasing formula

    3 Abstract harmonic analysis of Hilbert function spaces over homogeneous spaces of compact groups

    Throughout this paper we assume that G is a compact group with the probability Haar measure dx,H is a closed subgroup of G with the probability Haar measure dh,and also μ is the normalized G-invariant measure on the homogeneousspace G/H which satisf i es (2.4).

    In this section,we present some properties of the Hilbert function space L2(G/H,μ) in the framework of abstract harmonic analysis.

    First we shall show that the linear map THhas a unique extensionto a bounded linear map from L2(G)onto L2(G/H,μ).

    Theorem 3.1.Let H be a closed subgroup of a compact group G and μ be the normalized G-invariant measure on G/H associated to the Weil’s formula.The linear map TH:C(G)→C(G/H) has a unique extension to a bounded linear map from L2(G)onto L2(G/H,μ).

    Proof.Let μ be the normalized G-invariant measure on the homogeneous space G/H which satisf i es(2.4)and f ∈ C(G).Then we claim that

    To this end,using compactness of H,we have

    Then,by the Weil’s formula,we get

    which implies(3.1).Thus,we can extend THto a bounded linear operator from L2(G) onto L2(G/H,μ),which we still denote it by THand satisf i es

    Thus,we complete the proof.

    Let J2(G,H):={f∈ L2(G):TH(f)=0}and J2(G,H)⊥be the orthogonal completion of the closed subspace J2(G,H)in L2(G).

    As an immediate consequence of Theorem 3.1 we deduce the following result.

    Proposition 3.1.Let H be a closed subgroup of a compact group G and μ be the normalized G-invariant measure on G/H associated to the Weil’s formula.Then TH:L2(G)→L2(G/H,μ)is a partial isometric linear map.

    Proof.Let ? ∈ L2(G/H,μ)and ?q:= ?? q.Then ?q∈ L2(G)with

    Indeed,using the Weil’s formula we can write

    and since H is compact and dh is a probability measure,we get

    forall f∈ L2(G),which implies that(?)= ?q.Nowa straightforwardcalculation shows that TH=THT?HTH.Then by Theorem 2.3.3 of[20],THis a partial isometric operator.

    We then can conclude the following corollaries as well.

    Corollary 3.1.Let H be a closed subgroup of a compact group G.Let PJ2(G,H)and PJ2(G,H)⊥be the orthogonal projections onto the closed subspaces J2(G,H)and J2(G,H)⊥respectively.Then,for each f∈ L2(G)and a.e.x ∈ G,we have

    1.PJ2(G,H)⊥(f)(x)=TH(f)(xH).

    2.PJ2(G,H)(f)(x)=f(x)?TH(f)(xH).

    Corollary 3.2.Let H be a compact subgroup of a compact group G and μ be the normalized G-invariant measure on G/H associated to the Weil’s formula.Then

    1.J2(G,H)⊥={ψq:ψ ∈ L2(G/H,μ)}.

    2.For f∈ J2(G,H)⊥and h ∈ H we have Rhf=f.

    3.For ψ ∈ L2(G/H,μ)we have ‖ψq‖L2(G)= ‖ψ‖L2(G/H,μ).

    4.For f,g ∈ J2(G,H)⊥we have 〈TH(f),TH(g)〉L2(G/H,μ)= 〈f,g〉L2(G). We f i nish this section by the following remark.

    Remark 3.1.Invoking Corollary 3.2one can regard theHilbert functionspace L2(G/H,μ) as a closed linear subspace of the Hilbert function space L2(G),that is the closed linear subspace consists of all f∈ L2(G)which satisf i es Rhf=f for all h ∈ H.Then Theorem 3.1 and Proposition 3.1 guarantees that the bounded linear map

    is an orthogonal projection.

    4 Abstract trace formulas over homogeneous spaces of compact groups

    In this section,we present the abstract notions of dual spaces and Plancherel(trace)formulas over homogeneous spaces of compact groups.

    For a closed subgroup H of G,let

    Then by def i nition we have

    If G is Abelian,each closed subgroup H of G is normal and the compact group G/H is Abelian and sois precisely the set of all characters(one dimensional irreducible representations)of G which are constant on H,that is precisely H⊥.If G is a non-Abelian group and H is a closed normal subgroup of G,then the dual spacewhich is the set of all unitary equivalence classes of unitary representations of the quotient group G/H, has meaning and it is well-def i ned.Indeed,G/H is a non-Abelian group.In this case,the map Φ→ H⊥def i ned by σΦ(σ):= σ ? q is a Borel isomorphism and=H⊥, see[1,19,23].Thus if H is normal,H⊥coincides with the classic def i nitions of the dual space either when G is Abelian or non-Abelian.

    For a given closed subgroup H of G and also a continuous unitary representation (π,Hπ)of G,def i ne

    where the operator valued integral(4.3)is considered in the weak sense.In other words,

    Def i nition 4.1.Let H be a compact subgroup of a compact group G.The dual spaceof the left coset space G/H,is def i ned as the subset ofbG given by

    Then evidently we have

    First we shall present an interesting property of(4.5),when the left coset space G/H has the canonical quotient group structure.

    Next theorem shows that the reverse inclusion of(4.6)holds,if H is a normal subgroup of G.

    Theorem 4.1.Let H be a closed normal subgroup of a compact group G.Then,

    Proof.Let H be a closed normal subgroup of a compact group G.Invoking the inclusion (4.6),it is suff i cient to show that? H⊥.Let[π]∈be given.Due to normality of H in G the map τx:H → H given by hτx(h):=x?1hx belongs to Aut(H)and also we have x?1Hx=H,for all x ∈ G.Let x ∈ G.Then by compactness of G we have d(τx(h))=dh and hence we can write

    which implies[π]∈ H⊥.

    Let

    It is easy to see that[π ]∈ H⊥if and only if=

    Then,we can also present the following results.

    Proposition 4.1.Let H be a closed subgroup of a compact group G and(π,Hπ)be a continuous unitary representation of G.Then,

    Proof.(1)Using compactness of H,we have

    As well as,we can write

    Let ? ∈ L1(G/H,μ)and[π]∈.The Fourier transform of ? at[π]is def i ned as the linear operator

    on the Hilbert space Hπ,where for each xH ∈ G/H the notation Γπ(xH)stands for the bounded linear operator def i ned on the Hilbert space Hπby Γπ(xH)= π(x)that is

    Then we have

    for all ζ,ξ∈ Hπ.Indeed,

    Remark 4.1.Let H be a closed normal subgroup of a compact group G and μ be the normalized G-invariant measure over the left coset space G/H associated to the Weil’s formula.Then it is easy to check that μ is a Haar measure of the compact quotient group G/H and by Theorem4.1 wehave=H⊥.Also,foreach ?∈L1(G/H,μ)and[π ]∈ H⊥, we have

    Thus,we deduce that the abstract Fourier transform def i ned by(4.8)coincides with the classical Fourier transform over the compact quotient group G/H if H is normal in G.

    The operator-valued integral(4.8)is considered in the weak sense.That is

    Because,we can write

    If ζ,ξ∈ Hπ,then we have

    The following propositionpresentsthe canonical connectionofthe abstract Fouriertransform def i ned in(4.8)with the classical Fourier transform(2.1).

    Proposition 4.2.Let H be a closed subgroup of a compact group G and μ be the normalized G-invariant measure on G/H associated to the Weil’s formula.Then,for ? ∈L1(G/H,μ)and[π]∈,we have

    Proof.Using the Weil’s formula and also(4.11),for ζ,ξ∈ Hπ,we can write

    which implies(4.12).

    In the next theorem we show that the abstract Fourier transform def i ned in(4.8)satisf i es a generalized version of the Plancherel(trace)formula.

    Theorem 4.2.Let H be a closed subgroup of a compact group G and μ be the normalized G-invariant measure on G/H associated to the Weil’s formula.Then,each ? ∈ L2(G/H,μ)satisf i es the following Plancherel formula;

    Proof.Let ? ∈ L2(G/H,μ)be given.If[π ]with[π ]thenwe have TπH=0.Hence, for ζ,ξ ∈ Hπ,we have TH(πζ,ξ)=0.Therefore,we get

    Indeed,using the Weil’s formula,for ζ,ξ ∈ Hπwe can write

    Using Eqs.(4.12),(4.14),invoking Plancherel formula(2.2),and also Corollary 3.2 we achieve

    which implies(4.13).

    Remark 4.2.Let H be a closed normal subgroup of a compact group G and μ be the normalized G-invariant measure over the left coset space G/H associated to the Weil’s formula.Then Theorem 4.1 implies that=H⊥and hence the Plancherel(trace) formula(4.13)reads as follows;

    for all ? ∈ L2(G/H,μ),where

    for all[π]∈ H⊥,see Remark 4.1.

    5 Peter-Weyl theorem for homogeneous spaces of compact groups

    In this section we present a version of Peter-Weyl Theorem[21]for the Hilbert function space L2(G/H,μ).

    Let(π ,Hπ)be a continuous unitary representation of G such that0.Then the functionsG/H → C def i ned by

    for ξ,ζ∈ Hπare called H-matrix elements of(π,Hπ). For xH ∈ G/H and ζ,ξ∈ Hπ,we have

    Also we can write

    Invoking def i nition of the linear map THand alsowe have

    which implies that

    Theorem 5.1.Let H be a closed subgroup of a compact group G,μ be the normalized G-invariant measure and(π ,Hπ)be a continuous unitary representation of G such that0.Then

    1.The subspace Eπ(G/H)depends on the unitary equivalence class of π.

    2.The subspace Eπ(G/H)is a closed left invariant subspace of L1(G/H,μ).

    Proof.(1)Let(σ,Hσ)be a continuous unitary representation of G such that[π]=[σ].Let S:Hπ→ Hσbe the unitary operator which satisf i es σ(x)S=Sπ(x)for all x ∈ G.Then=S and also0.Thus for x ∈ G and ζ,ξ∈ Hπwe can write

    which implies that Eπ(G/H)=Eσ(G/H).

    (2)It is straightforward.

    If ζ,ξ belongs to an orthonormal basis{ei}for Hπ,H-matrix elements of[π ]with respect to an orthonormal basis{ej}changes in the form

    The linear span of the H-matrix elements of a continuous unitary representation(π,Hπ) satisfying0,is denoted by Eπ(G/H)which is a subspace of C(G/H).

    Def i nition 5.1.Let H be a closed subgroup of a compact group G and[π]∈An orderedorthonormalbasisB={e?:1≤?≤dπ}oftheHilbertspaceHπiscalled H-admissible, if it is an extension of an orthonormal basis{e?:1 ≤ ?≤ dπ,H}of the closed subspacewhich equivalently means that dπ,H-f i rst elements of B be an orthogonal basis of.

    Proposition 5.1.Let[π]∈Bπbe an H-admissible basis for the representation space Hπ, and 1 ≤?′≤ dπ,H.Then

    (2)It is straightforward.

    (3)Let 1 ≤ i,i′≤ dπ.Applying Theorem 27.19 of[11]we get

    which completes the proof.

    The following theorem shows that H-admissible bases lead to orthogonal decompositions of the subspace Eπ(G/H).

    Theorem 5.2.Let H be a closed subgroup of a compact group G.Let[π]∈and Bπ= {e?,π:1 ≤ ?≤ dπ}be an H-admissible basis for the representation space Hπ.Then Bπ(G/H):=is an orthonormal basis for the Hilbert space Eπ(G/H)and hence it satisf i es the following direct sum decomposition

    Proof.It is straightforward to check that Bπ(G/H)spans the subspace Eπ(G/H).Then Proposition 5.1 guarantees that Bπ(G/H)is an orthonormal set in Eπ(G/H).Since dimEπ(G/H) ≤ dπ,Hdπwe deduce that it is an orthonormal basis for Eπ(G/H),which automatically implies the decomposition(5.5).

    Next proposition lists basic properties of H-matrix elements.

    Proposition 5.2.Let H be a closed subgroup of a compact group G, μ be the normalized G-invariant measure on G/H,and(π,Hπ)be a continuous unitary representation of G.Then,

    3.Eπ(G)? J2(G,H)⊥if and only if π(h)=I for all h ∈ H.

    Then we can prove the following orthogonality relation concerning the functions in E(G/H).

    Theorem 5.3.Let H be a closed subgroup of a compact group G,μ be a normalized G-invariant measure on G/H and[π ][σ]∈The closed subspaces Eπ(G/H)and Eσ(G/H)are orthogonal to each other as subspaces of the Hilbert space L2(G/H,μ).

    Proof.Let ψ ∈Eπ(G/H)and ? ∈ Eσ(G/H).Then we have ψq∈ Eπ(G)and also ?q∈ Eσ(G). Using Proposition 5.2,Corollary 3.2,and Theorem 27.15 of[11],we get

    which completes the proof.

    We can def i ne

    Next theorem presents some analytic aspects of the function space E(G/H).

    Theorem 5.4.Let H be a closed subgroup of a compact group G and μ be the normalized G-invariant measure on G/H associated to the Weil’s formula.Then,

    1.The linear operator THmaps E(G)onto E(G/H).

    2.E(G/H)is ‖.‖L2(G/H,μ)-dense in L2(G/H,μ).

    3.E(G/H)is ‖.‖sup-dense in C(G/H).

    Proof.(1)It is straightforward.

    (2)Let φ ∈ L2(G/H,μ)and also f ∈ L2(G)with TH(f)= φ.Then by ‖ ·‖L2(G)-density of E(G)in L2(G)we can pick a sequence{fn}in E(G)such that f= ‖·‖L2(G)? limnfn. By Proposition 5.2 we have{TH(fn)} ? E(G/H).Then continuity of the linear map TH: L2(G)→ L2(G/H,μ)implies

    which completes the proof.

    (3)Invoking uniformly boundedness of TH,uniformly density of E(G)in C(G),and the same argument as used in(1),we get ‖·‖sup-density of E(G/H)in C(G/H).

    The following theorem can be considered as an abstract extension of the Peter-Weyl Theorem for homogeneous spaces of compact groups.

    Theorem 5.5.Let H be a closed subgroup of a compact group G and μ be the normalized G-invariant measure on G/H.The Hilbert space L2(G/H,μ)satisf i es the following orthogonality decomposition

    Proof.Using Peter-Weyl Theorem,Proposition 5.2,and since the bounded linear map TH:L2(G) → L2(G/H,μ)is surjective we achieve that each ? ∈ L2(G/H,μ)has a decomposition to elements of Eπ(G/H)withnamely

    with ?π∈ Eπ(G/H)for all[π]∈Since the subspaces Eπ(G/H)with[π ]∈are mutually orthogonal we conclude that decomposition(5.8)is unique for each ?,which guarantees(5.7).

    We immediately deduce the following corollaries.

    Corollary 5.1.Let H be a closed subgroup of a compact group G and μ be the normalizedG-invariant measure on G/H.For each[π]∈let Bπ={e?,π:1 ≤ ?≤ dπ}be an H-admissible basis forthe representationspaceHπ.Thenwe have thefollowing statements.

    1.The Hilbert space L2(G/H,μ)satisf i es the following direct sum decomposition

    2.The set B(G/H):={πi?:1 ≤ i≤ dπ,1 ≤ ?≤ dπ,H}constitutes an orthonormal basis for the Hilbert space L2(G/H,μ).

    3.Each ? ∈ L2(G/H,μ)decomposes as the following:

    where the series is converges in L2(G/H,μ).

    Remark 5.1.Let H be a closed normal subgroup of a compact group G.Also,let μ be the normalized G-invariant measure over G/H associated to the Weil’s formula.Then G/H is a compact group and the normalized G-invariant measure μ is a Haar measure of the quotient compact group G/H.By Theorem 4.1,we deduce thatand for eachwe get=I and dπ,H=dπ.Thus we obtain

    which precisely coincides with the decomposition associated to applying the Peter-Weyl Theorem to the compact quotient group G/H.

    [1]G.B.Folland,A course in Abstract Harmonic Analysis,CRC press,1995.

    [2]B.Forrest,Fourier analysis on coset spaces,Rocky Mount.J.Math.,28(1)(1998),173–190.

    [3]H.F ¨uhr,Abstract Harmonic Analysis of Continuous Wavelet Transforms,Springer-Lecture Notes in Math.,1863(2005).

    [4]A. Ghaani Farashahi, Abstract harmonic analysis of wave packet transforms over locally compactabelian groups, Banach J.Math.Anal., (2016), http://dx.doi.org/10.1215/17358787-3721281.

    [5]A.Ghaani Farashahi,Abstract harmonic analysis of relative convolutions over canonical homogeneous spaces of semidirect product groups,J.Aust.Math.Soc.,(2016),1–17, doi:10.1017/S1446788715000798.

    [6]A.Ghaani Farashahi,Abstract relative Fourier transforms over canonical homogeneous spaces of semi-direct product groups with Abelian normal factor,J.Korean Math.Soc., (2016),doi:10.4134/JKMS.j150610.

    [7]A.Ghaani Farashahi,A unif i ed group theoretical method for the partial Fourier analysis on semi-direct product of locally compact groups,Results Math.,67(1-2)(2015),235–251.

    [8]A.Ghaani Farashahi,Convolution and involution on function spaces of homogeneous spaces,Bull.Malays.Math.Sci.Soc.,36(2013),1109–1122.

    [9]A.Ghaani Farashahi,Abstract Non-Commutative Harmonic Analysis of Coherent State Transforms,Ph.D.thesis,Ferdowsi University of Mashhad(FUM),Mashhad 2012.

    [10]E.Hewitt and K.A.Ross,Absrtact Harmonic Analysis,Vol.1,Springer,Berlin,1963.

    [11]E.Hewitt and K.A.Ross,Absrtact Harmonic Analysis,Vol.2,Springer,Berlin,1970.

    [12]V.Kisil,Calculus of operators:covariant transform and relative convolutions,Banach J. Math.Anal.,8(2)(2014),156–184.

    [13]V.Kisil,Geometry of M ¨obius Transformations,Elliptic,Parabolic and Hyperbolic Actions of SL2(R),Imperial College Press,London,2012.

    [14]V.Kisil,Relative convolutions,I.properties and applications,Adv.Math.,147(1999),35–73.

    [15]R.L.Lipsman,The Plancherel formula for homogeneous spaces with exponential spectrum, J.Reine Angew.Math.,500(1998),49–63.

    [16]R.L.Lipsman,A unif i ed approach to concrete Plancherel theory of homogeneous spaces, Manuscripta Math.,94(1997),133–149.

    [17]R.L.Lipsman,The Penney-Fujiwara Plancherel formula for Gelfand pairs,Rocky Mountain J.Math.,26(1996),655–677.

    [18]R.L.Lipsman,The Plancherel formula for homogeneous spaces with polynomial spectrum, Pacif i c J.Math.,159(1993),351–377.

    [19]R.Lipsman,Non-Abelian Fourier analysis,Bull.Sc.Math.,2eseries,98(1974),209–233.

    [20]G.J.Murphy,C*-Algebras and Operator Theory,Academic Press,INC,1990.

    [21]F.Peter and H.Weyl,Die Vollst¨andigkeit der primitiven Darstellungen einer geschlossenen kontinuierlichen Gruppe,Math.Ann.,97(1927),737–755,

    [22]H.Reiter and J.D.Stegeman,Classical Harmonic Analysis,2nd Ed,OxfordUniversity Press, New York,2000.

    [23]I.E.Segal,An extension of Plancherel’s formula to separable unimodular groups,Ann. Math.,52(1950),272–292.

    Received 23 September 2014;Accepted(in revised version)28 July 2016

    ?Corresponding author.Email addresses:arash.ghaani.farashahi@univie.ac.at,ghaanifarashahi@ hotmail.com(A.Ghaani Farashahi)

    国产欧美日韩一区二区三区在线| 日韩成人av中文字幕在线观看| 美女扒开内裤让男人捅视频| 一级片'在线观看视频| 久久久精品94久久精品| 一级毛片电影观看| av天堂久久9| 亚洲国产精品一区三区| 最近中文字幕高清免费大全6| 毛片一级片免费看久久久久| 丝袜美足系列| 亚洲精品日本国产第一区| 久久久久久免费高清国产稀缺| 久久久久久久国产电影| 日韩熟女老妇一区二区性免费视频| 成人手机av| 日韩av免费高清视频| 精品国产国语对白av| 欧美日韩亚洲高清精品| 十八禁网站网址无遮挡| 国产欧美日韩综合在线一区二区| 黄色怎么调成土黄色| 国产日韩欧美视频二区| 秋霞伦理黄片| 交换朋友夫妻互换小说| 国产精品一区二区在线不卡| 韩国高清视频一区二区三区| 欧美黄色片欧美黄色片| 亚洲色图 男人天堂 中文字幕| 男女国产视频网站| 97人妻天天添夜夜摸| 国产日韩欧美在线精品| 天天操日日干夜夜撸| 日韩大片免费观看网站| 亚洲精品日本国产第一区| 韩国精品一区二区三区| 高清在线视频一区二区三区| 国产成人欧美| 欧美日韩av久久| 不卡av一区二区三区| 亚洲自偷自拍图片 自拍| 黄色视频在线播放观看不卡| 一区二区三区激情视频| 国产深夜福利视频在线观看| 在线观看免费视频网站a站| 精品人妻熟女毛片av久久网站| 99国产综合亚洲精品| 久久久亚洲精品成人影院| 日韩伦理黄色片| 国产精品女同一区二区软件| 老司机靠b影院| 欧美黄色片欧美黄色片| 日韩精品有码人妻一区| 丰满少妇做爰视频| 国产xxxxx性猛交| 免费女性裸体啪啪无遮挡网站| 午夜日本视频在线| 亚洲欧美成人综合另类久久久| 一区二区三区精品91| 亚洲美女视频黄频| 中文字幕色久视频| 黄片无遮挡物在线观看| 又大又黄又爽视频免费| 国产精品国产三级专区第一集| 欧美日韩成人在线一区二区| 亚洲国产av新网站| 男女高潮啪啪啪动态图| 欧美日韩国产mv在线观看视频| 精品少妇一区二区三区视频日本电影 | 一个人免费看片子| h视频一区二区三区| 久久精品熟女亚洲av麻豆精品| 亚洲成av片中文字幕在线观看| 国产有黄有色有爽视频| 国产熟女午夜一区二区三区| 又粗又硬又长又爽又黄的视频| 欧美国产精品一级二级三级| 激情五月婷婷亚洲| 亚洲国产欧美网| av电影中文网址| 天堂俺去俺来也www色官网| av在线app专区| 国产xxxxx性猛交| 日本黄色日本黄色录像| 国产熟女欧美一区二区| 在线观看国产h片| 黄色毛片三级朝国网站| 曰老女人黄片| 韩国av在线不卡| 亚洲国产精品国产精品| 亚洲国产看品久久| 国产探花极品一区二区| 欧美在线一区亚洲| 制服诱惑二区| 精品午夜福利在线看| 亚洲欧洲精品一区二区精品久久久 | 欧美国产精品一级二级三级| 午夜日韩欧美国产| 97精品久久久久久久久久精品| 国产乱人偷精品视频| a级片在线免费高清观看视频| 90打野战视频偷拍视频| 麻豆av在线久日| 色婷婷av一区二区三区视频| 丰满迷人的少妇在线观看| 夜夜骑夜夜射夜夜干| 老司机靠b影院| 少妇被粗大的猛进出69影院| 最近中文字幕2019免费版| 哪个播放器可以免费观看大片| 2018国产大陆天天弄谢| 热99国产精品久久久久久7| 在线观看一区二区三区激情| 最新的欧美精品一区二区| 黄片播放在线免费| 亚洲少妇的诱惑av| 亚洲av国产av综合av卡| 美女福利国产在线| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲一区二区三区欧美精品| 午夜福利视频精品| 一区福利在线观看| 少妇被粗大猛烈的视频| 国产精品嫩草影院av在线观看| 日韩电影二区| 亚洲精品久久久久久婷婷小说| 综合色丁香网| 狠狠精品人妻久久久久久综合| 波野结衣二区三区在线| 欧美日韩亚洲国产一区二区在线观看 | 丁香六月欧美| avwww免费| 汤姆久久久久久久影院中文字幕| av国产久精品久网站免费入址| 亚洲第一av免费看| 成人手机av| 校园人妻丝袜中文字幕| 国产精品麻豆人妻色哟哟久久| 国产女主播在线喷水免费视频网站| √禁漫天堂资源中文www| 亚洲三区欧美一区| 国产男女超爽视频在线观看| 熟女少妇亚洲综合色aaa.| 侵犯人妻中文字幕一二三四区| 国产成人一区二区在线| 国产精品亚洲av一区麻豆 | 免费观看a级毛片全部| 丝袜美足系列| 国产成人午夜福利电影在线观看| 亚洲欧洲国产日韩| 国产片特级美女逼逼视频| 久久毛片免费看一区二区三区| 91aial.com中文字幕在线观看| 好男人视频免费观看在线| 精品国产一区二区三区四区第35| 别揉我奶头~嗯~啊~动态视频 | 国精品久久久久久国模美| 亚洲美女搞黄在线观看| 一级,二级,三级黄色视频| 精品一区二区三区av网在线观看 | 伊人亚洲综合成人网| 欧美久久黑人一区二区| 男女午夜视频在线观看| 久久性视频一级片| 老司机亚洲免费影院| 国产一卡二卡三卡精品 | 青春草国产在线视频| 看免费成人av毛片| 国产精品 欧美亚洲| 晚上一个人看的免费电影| 美女脱内裤让男人舔精品视频| 免费久久久久久久精品成人欧美视频| 自线自在国产av| 亚洲精品aⅴ在线观看| 国产亚洲午夜精品一区二区久久| 亚洲精品国产av蜜桃| 男女之事视频高清在线观看 | 毛片一级片免费看久久久久| kizo精华| 亚洲av福利一区| 在线观看www视频免费| 国产淫语在线视频| 91aial.com中文字幕在线观看| 久久青草综合色| 麻豆乱淫一区二区| 黑丝袜美女国产一区| 国产精品 欧美亚洲| 久久久久久久国产电影| 欧美亚洲 丝袜 人妻 在线| 国产成人a∨麻豆精品| 国产xxxxx性猛交| 国产 一区精品| 国语对白做爰xxxⅹ性视频网站| 国产av一区二区精品久久| 69精品国产乱码久久久| 久热爱精品视频在线9| 黄色视频不卡| 国产高清国产精品国产三级| 自线自在国产av| 天天躁夜夜躁狠狠久久av| 丁香六月欧美| 国产毛片在线视频| 亚洲综合色网址| 另类精品久久| 男女之事视频高清在线观看 | 亚洲欧美清纯卡通| 熟女av电影| 99久久精品国产亚洲精品| 秋霞在线观看毛片| 男女下面插进去视频免费观看| 综合色丁香网| 少妇被粗大的猛进出69影院| 精品久久蜜臀av无| 亚洲国产精品国产精品| 婷婷色麻豆天堂久久| 在线观看免费高清a一片| 精品亚洲成国产av| 18在线观看网站| 王馨瑶露胸无遮挡在线观看| 亚洲成人国产一区在线观看 | 色播在线永久视频| 99re6热这里在线精品视频| 最近最新中文字幕免费大全7| 国产乱来视频区| 人人妻人人澡人人爽人人夜夜| 国产精品欧美亚洲77777| 国产深夜福利视频在线观看| 久久精品亚洲av国产电影网| 国产在视频线精品| 亚洲男人天堂网一区| 久久久久国产一级毛片高清牌| 丰满饥渴人妻一区二区三| 国产欧美亚洲国产| 亚洲国产欧美在线一区| 欧美成人精品欧美一级黄| 国产免费现黄频在线看| 久久这里只有精品19| 男女边吃奶边做爰视频| 国产在线一区二区三区精| 欧美日韩成人在线一区二区| 欧美国产精品va在线观看不卡| 赤兔流量卡办理| 日本午夜av视频| 毛片一级片免费看久久久久| 十八禁网站网址无遮挡| 成人国语在线视频| 亚洲美女搞黄在线观看| 精品国产一区二区三区久久久樱花| 丰满迷人的少妇在线观看| 午夜精品国产一区二区电影| a级毛片在线看网站| 最近中文字幕高清免费大全6| 无限看片的www在线观看| 欧美97在线视频| 免费高清在线观看视频在线观看| 老司机亚洲免费影院| 18禁国产床啪视频网站| 国产精品三级大全| 人人妻,人人澡人人爽秒播 | 国产成人精品久久二区二区91 | 亚洲av在线观看美女高潮| 香蕉丝袜av| 国产片内射在线| 欧美 日韩 精品 国产| 欧美日韩一区二区视频在线观看视频在线| 中国国产av一级| 男人舔女人的私密视频| 日韩av在线免费看完整版不卡| 天堂8中文在线网| 秋霞伦理黄片| 欧美日韩福利视频一区二区| 国产亚洲av高清不卡| 美女高潮到喷水免费观看| 中国国产av一级| www.自偷自拍.com| 日本午夜av视频| av不卡在线播放| 19禁男女啪啪无遮挡网站| 色吧在线观看| 18禁观看日本| 电影成人av| 一本大道久久a久久精品| 久久久欧美国产精品| 精品午夜福利在线看| 激情视频va一区二区三区| 亚洲av欧美aⅴ国产| xxxhd国产人妻xxx| 国产不卡av网站在线观看| 别揉我奶头~嗯~啊~动态视频 | 18禁裸乳无遮挡动漫免费视频| 丝袜脚勾引网站| 国产av码专区亚洲av| 欧美少妇被猛烈插入视频| 少妇精品久久久久久久| 欧美日韩视频精品一区| 日韩中文字幕欧美一区二区 | 亚洲一卡2卡3卡4卡5卡精品中文| a级毛片黄视频| 色网站视频免费| 亚洲欧洲日产国产| 美女午夜性视频免费| 日本av免费视频播放| 97精品久久久久久久久久精品| 久久鲁丝午夜福利片| 亚洲av电影在线观看一区二区三区| 免费黄网站久久成人精品| 国产黄频视频在线观看| av不卡在线播放| 天天添夜夜摸| 久久久久久久久免费视频了| 亚洲精品一二三| av片东京热男人的天堂| 日日啪夜夜爽| av福利片在线| 亚洲国产欧美日韩在线播放| 纵有疾风起免费观看全集完整版| 超碰成人久久| 日韩熟女老妇一区二区性免费视频| 色视频在线一区二区三区| av在线老鸭窝| 亚洲精品自拍成人| av电影中文网址| 亚洲精品一二三| 久久久精品94久久精品| 一级黄片播放器| 亚洲精品aⅴ在线观看| 校园人妻丝袜中文字幕| 亚洲精品美女久久av网站| 亚洲综合色网址| 少妇精品久久久久久久| 国产极品粉嫩免费观看在线| 韩国精品一区二区三区| 国产精品偷伦视频观看了| 国产精品99久久99久久久不卡 | 美女福利国产在线| 国产精品久久久人人做人人爽| 色综合欧美亚洲国产小说| 999精品在线视频| 国产精品国产三级专区第一集| 午夜日韩欧美国产| 大陆偷拍与自拍| 黑人猛操日本美女一级片| 青春草视频在线免费观看| 男女下面插进去视频免费观看| 2021少妇久久久久久久久久久| 国产精品av久久久久免费| 久久影院123| 两个人免费观看高清视频| 久久这里只有精品19| 免费黄网站久久成人精品| 婷婷色麻豆天堂久久| 亚洲欧美精品综合一区二区三区| 99精国产麻豆久久婷婷| 我要看黄色一级片免费的| 国产精品二区激情视频| 啦啦啦中文免费视频观看日本| 高清视频免费观看一区二区| 日本猛色少妇xxxxx猛交久久| 精品视频人人做人人爽| 爱豆传媒免费全集在线观看| 男女无遮挡免费网站观看| 男女免费视频国产| 国产精品久久久久久精品电影小说| 美女高潮到喷水免费观看| 91老司机精品| 新久久久久国产一级毛片| 99热网站在线观看| 天天影视国产精品| 亚洲av成人精品一二三区| 亚洲精品国产av蜜桃| 国产黄色免费在线视频| 丰满饥渴人妻一区二区三| 不卡视频在线观看欧美| 国产成人a∨麻豆精品| 色94色欧美一区二区| 国产亚洲最大av| 亚洲男人天堂网一区| 欧美久久黑人一区二区| 久久毛片免费看一区二区三区| 丰满乱子伦码专区| 国产亚洲av片在线观看秒播厂| 成人国语在线视频| 丁香六月天网| 少妇人妻 视频| 自线自在国产av| 日韩制服骚丝袜av| 国产日韩欧美在线精品| 国产亚洲午夜精品一区二区久久| 亚洲成人国产一区在线观看 | 亚洲精品成人av观看孕妇| 这个男人来自地球电影免费观看 | 亚洲美女视频黄频| 一个人免费看片子| 国产亚洲欧美精品永久| 亚洲国产看品久久| 最新在线观看一区二区三区 | 777久久人妻少妇嫩草av网站| 成人亚洲欧美一区二区av| 无限看片的www在线观看| 免费观看av网站的网址| netflix在线观看网站| 一级毛片黄色毛片免费观看视频| 在线观看免费高清a一片| 天天添夜夜摸| 亚洲精品av麻豆狂野| 久久精品人人爽人人爽视色| 精品久久久精品久久久| 国产精品一区二区在线观看99| 王馨瑶露胸无遮挡在线观看| 久久精品国产亚洲av涩爱| 日本爱情动作片www.在线观看| 欧美激情极品国产一区二区三区| 久久人人爽av亚洲精品天堂| 精品酒店卫生间| 天堂8中文在线网| 欧美激情极品国产一区二区三区| 久久久久精品国产欧美久久久 | av片东京热男人的天堂| tube8黄色片| 亚洲国产成人一精品久久久| 久久免费观看电影| 美女国产高潮福利片在线看| 亚洲av国产av综合av卡| 狂野欧美激情性bbbbbb| 国产精品偷伦视频观看了| 免费在线观看视频国产中文字幕亚洲 | 又粗又硬又长又爽又黄的视频| 亚洲少妇的诱惑av| 国产精品免费大片| kizo精华| 成人影院久久| 国产精品二区激情视频| 国产精品一区二区在线不卡| 精品人妻在线不人妻| 精品久久蜜臀av无| 国产乱人偷精品视频| 在线观看免费午夜福利视频| 亚洲精品中文字幕在线视频| 伦理电影大哥的女人| 观看美女的网站| 岛国毛片在线播放| 久久久久久久精品精品| 亚洲成人av在线免费| 中国国产av一级| 日韩电影二区| 色视频在线一区二区三区| a级片在线免费高清观看视频| 一区二区三区四区激情视频| 久久国产精品大桥未久av| 高清不卡的av网站| 精品免费久久久久久久清纯 | 国产亚洲午夜精品一区二区久久| 亚洲av综合色区一区| 午夜日本视频在线| 如何舔出高潮| 欧美日韩一级在线毛片| 一个人免费看片子| av片东京热男人的天堂| 人妻 亚洲 视频| 亚洲欧洲精品一区二区精品久久久 | 嫩草影院入口| 亚洲一码二码三码区别大吗| 国产精品熟女久久久久浪| 视频在线观看一区二区三区| 国产精品久久久久久精品古装| 超色免费av| 久久久久久久国产电影| 欧美日韩视频精品一区| 免费黄频网站在线观看国产| 美女扒开内裤让男人捅视频| 一区福利在线观看| 看免费av毛片| 国产探花极品一区二区| 高清欧美精品videossex| a级毛片在线看网站| 最近2019中文字幕mv第一页| 欧美日韩福利视频一区二区| 成年av动漫网址| 亚洲av福利一区| 亚洲成人国产一区在线观看 | 亚洲,一卡二卡三卡| 国产熟女欧美一区二区| 丝袜美足系列| 51午夜福利影视在线观看| 最近的中文字幕免费完整| 中文天堂在线官网| 老汉色∧v一级毛片| 亚洲熟女精品中文字幕| 久久久国产欧美日韩av| 国产高清国产精品国产三级| 亚洲人成网站在线观看播放| 亚洲国产精品一区三区| 亚洲人成网站在线观看播放| av卡一久久| 九草在线视频观看| 我要看黄色一级片免费的| 亚洲人成电影观看| 超碰97精品在线观看| 精品一区二区免费观看| 中文字幕制服av| 国产97色在线日韩免费| 免费看不卡的av| 男女国产视频网站| 夫妻性生交免费视频一级片| 亚洲精品av麻豆狂野| 蜜桃在线观看..| 最近最新中文字幕免费大全7| 丁香六月天网| 免费不卡黄色视频| 波多野结衣av一区二区av| 少妇人妻 视频| www.自偷自拍.com| 国产精品亚洲av一区麻豆 | 精品久久久久久电影网| 十八禁高潮呻吟视频| 国产黄色免费在线视频| 伊人久久国产一区二区| 国产高清国产精品国产三级| 十八禁高潮呻吟视频| 免费av中文字幕在线| 大香蕉久久网| 精品国产国语对白av| 午夜日本视频在线| 国产在线一区二区三区精| 亚洲一级一片aⅴ在线观看| 亚洲国产精品999| 在线观看国产h片| 欧美日韩综合久久久久久| 在线免费观看不下载黄p国产| av在线观看视频网站免费| 涩涩av久久男人的天堂| 女人精品久久久久毛片| 欧美 亚洲 国产 日韩一| 又大又爽又粗| 丁香六月天网| 精品一区二区三区av网在线观看 | 一区二区av电影网| 成年av动漫网址| 黑人猛操日本美女一级片| 在线观看免费视频网站a站| 一区二区三区四区激情视频| 天天操日日干夜夜撸| 97人妻天天添夜夜摸| 亚洲av成人精品一二三区| 久久久国产欧美日韩av| 搡老乐熟女国产| 丝袜美腿诱惑在线| 日韩一区二区三区影片| 欧美日韩视频精品一区| av在线老鸭窝| 免费不卡黄色视频| 深夜精品福利| 欧美人与性动交α欧美软件| 欧美激情高清一区二区三区 | 日本wwww免费看| videos熟女内射| 成人18禁高潮啪啪吃奶动态图| 午夜免费男女啪啪视频观看| 亚洲精品国产色婷婷电影| 精品亚洲成a人片在线观看| 精品午夜福利在线看| 自线自在国产av| 最新在线观看一区二区三区 | 欧美成人精品欧美一级黄| 亚洲av成人精品一二三区| 午夜免费男女啪啪视频观看| 一级毛片我不卡| 满18在线观看网站| 欧美精品亚洲一区二区| 如日韩欧美国产精品一区二区三区| 亚洲国产成人一精品久久久| 日日撸夜夜添| 91精品伊人久久大香线蕉| 丝袜美腿诱惑在线| 亚洲国产欧美日韩在线播放| 亚洲欧洲日产国产| 国产av一区二区精品久久| 日日爽夜夜爽网站| 母亲3免费完整高清在线观看| 欧美成人午夜精品| av又黄又爽大尺度在线免费看| 19禁男女啪啪无遮挡网站| 亚洲国产精品一区三区| 肉色欧美久久久久久久蜜桃| 亚洲欧美中文字幕日韩二区| 一区二区av电影网| 国产毛片在线视频| 丝袜美足系列| 黄片无遮挡物在线观看| 久久婷婷青草| 日韩成人av中文字幕在线观看| 久久99一区二区三区| 久久久久久久国产电影| 可以免费在线观看a视频的电影网站 | 亚洲av中文av极速乱| 在线观看人妻少妇| 久久精品久久精品一区二区三区| 在线天堂最新版资源| 青春草国产在线视频| 国产极品粉嫩免费观看在线| a级片在线免费高清观看视频| 色婷婷久久久亚洲欧美| 亚洲精品久久久久久婷婷小说| 巨乳人妻的诱惑在线观看| av卡一久久| 久久精品人人爽人人爽视色| 在线 av 中文字幕| 欧美日韩成人在线一区二区| 天堂俺去俺来也www色官网| 亚洲av欧美aⅴ国产| 只有这里有精品99| 亚洲一区中文字幕在线| 国产在线免费精品| 一级片'在线观看视频| 国产日韩欧美在线精品|