• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Multifractal Formalism for Measures,Review and Extension to Mixed Cases

    2016-04-18 06:26:30MohamedMenceurAnouarBenMabroukandKamelBetina
    Analysis in Theory and Applications 2016年4期

    MohamedMenceur,AnouarBenMabroukandKamelBetina

    1Algerba and Number Theory Laboratory,Faculty of Mathematics,University of Sciences and Technology Houari Boumediene,BP 32 EL Alia 16111 Bab Ezzouar Algiers Algeria.

    2Computational Mathematics Laboratory,Department of Mathematics,Faculty of Sciences,5019 Monastir,Tunisia.

    3Department of Mathematics,HIgher Institute of Applied Mathematics and Informatics,Street of Assad Ibn Alfourat,Kairouan University,3100 Kairouan Tunisia.

    The Multifractal Formalism for Measures,Review and Extension to Mixed Cases

    MohamedMenceur1,AnouarBenMabrouk2,3,?andKamelBetina1

    1Algerba and Number Theory Laboratory,Faculty of Mathematics,University of Sciences and Technology Houari Boumediene,BP 32 EL Alia 16111 Bab Ezzouar Algiers Algeria.

    2Computational Mathematics Laboratory,Department of Mathematics,Faculty of Sciences,5019 Monastir,Tunisia.

    3Department of Mathematics,HIgher Institute of Applied Mathematics and Informatics,Street of Assad Ibn Alfourat,Kairouan University,3100 Kairouan Tunisia.

    .The multifractal formalism for single measure is reviewed.Next,a mixed generalized multifractal formalism is introduced which extends the multifractal formalism of a single measure based on generalizations of the Hausdorff and packing measures to a vector of simultaneously many measures.Borel-Cantelli and Large deviations Theorems are extended to higher orders and thus applied for the validity of the new variant of the multifractal formalism for some special cases of multi-doubling type measures.

    Hausdorff measures,packing measures,Hausdorff dimension,packing dimension, renyi dimension,multifractal formalism,vector valued measures,mixed cases,Holderian measures,doubling measures,Borel-Cantelli,large deviations.

    AMS SubjectClassif i cations:28A78,28A80

    1 Introduction

    In the present work,we are concerned with the whole topic of multifractal analysis of measures and the validity of multifractal formalisms.We aim to consider some cases of simultaneous behaviors of measures instead of a single measure as in the classic or original multifractal analysis of measures.We call such a study mixed multifractal analysis.Such a mixed analysis has been generating a great attention recently and thusproved to be powerful in describing the local behavior of measures especially fractal ones(see[1,2,9–14]).

    In this paper,multi purposes will be done.Firstly we review the classical multifractal analysis of measures and recall all basics about fractal measures as well as fractal dimensions.We review Hausdorff measures,Packing measures,Hausdorff dimensions,Packing dimensions as well as Renyi dimensions and we recall the eventual relations linking these notions.A second aim is to develop a type of multifractal analysis,multifractal spectra,multifractal formalism which permit to study simultaneously a higher number of measures.As it is noticed from the literature on multifractal analysis of measures, this latter always considered a single measure and studies its scaling behavior as well as the multifractal formalism associated.Recently,many works have been focused on the study of simultaneous behaviors of f i nitely many measures.In[9],a mixed multifractal analysis is developed dealing with a generalization of R ′enyi dimensions for f i nitely many self similar measures.This was one of the motivations leading to our present paper.Secondly,we intend to combine the generalized Hausdorff and packing measures and dimensions recalled after with Olsen’s results in[14]to def i ne and develop a more general multifractal analysis for f i nitely many measures by studying their simultaneous regularity,spectrum and to def i ne a mixed multifractal formalism which may describe better the geometry of the singularities’s sets of these measures.We apply the techniques of L.Olsen especially in[9]and[14]with the necessary modif i cations to give a detailed study of computing general mixed multifractal dimensions of simultaneously many f inite number of measures and try to project our results for the case of a single measure to show the generecity of our’s.

    The f i rst point to check in multifractal analysis of a measure is its singularity on its spectrum.Given a measure μ eventually Borel and f i nite,for x ∈ supp(μ),the singularity of μ is estimated via μ(B(x,r))as r → 0.If μ(B(x,r)) ~ rα,the measure μ is said to be α-H ¨older at x.The local lower dimension and the local upper dimension of μ at the point x are respectively def i ned by

    Whenthesequantitiesare equal wecall theircommonvalue thelocal dimension,denoted by αμ(x)of μ at x.Next,the α-singularity set is X(α)={x ∈ supp(μ); αμ(x)= α}and fi nally,the spectrum of singularities is the mapping de fi ned by d(α)=dimX(α)where dim stands for the Hausdorff dimension.

    The computation of such a spectrum is the delicate point and the most principal aim in the whole multifractal study of the measure.Its computation needs more efforts and special techniques based on the characteristics of the measure,such that self similarity, scalings.In multifractal analysis,it is related to multifractal dimensions and in some cases it is computed by means of the Legendre transform of such dimensions.This fact constitutes the so-called multifractal formalism for measures.

    The present work will be organized as follows.The next section concerns a review of Hausdorff and packing measures and dimensions.Section 3 is concerned to Multifractal generalizations of Hausdorff and packing measures as well as the associated dimensions. In Section 4,the mixed multifractal generalizations of Hausdorff and packing measures and dimensions are introduced.Section 5 is devoted to the mixed multifractal generalization of Bouligand-Minkowsky or R ′enyi dimension inspired from Olsen in[14].In Section 6,a mixed multifractal formalism associated to the mixed multifractal generalizations of Hausdorff and packing measures and dimensions is proved in some case based on a generalization of the well known large deviation formalism.

    2 Hausdorff and packing measures and dimensions

    Given a subset E ? R,and ∈ > 0,we call an ∈-covering of E,any countable set(Ui)iof non-empty subsets Ui? R satisfying

    where for any subset U ? R,|U|=diam(U)is the diameter def i ned by

    Remark here that for ∈1< ∈2,any ∈1-covering of E is obviously an ∈2-covering of E.This implies that the quantity

    is a non increasing function in ∈.Its limit

    def i nes the so-called s-dimensional Hausdorff measure of E.It holds that for any set E ? R there exists a critical value sEin the sense that

    or otherwise,

    Such a value is called the Hausdorff dimension of the set E and is usually denoted by dimHE or simply dimE.When Ui=B(xi,ri)is a ball centered at xi∈ E and with diameter ri<∈,thecovering(B(xi,ri))iis called an ∈-centered covering of E.However,surprisingly,the quantity Hsrestricted only on centered coverings does not def i ne a measure.To obtain a good measure with centered coverings one should do more.Denote

    and similarly as above,

    As stated previously,this is not a good measure.So,to obtain a good candidate,we set for E ? R,

    It is called the centered Hausdorff s-dimensional measure of E.But,although a fascinating relation to the Hausdorff measure exists.It holds that

    Indeed,let F ? E be subsets of Rd.It follows from the def i nition of Hsandthat Hs(F) ≤(F).Next,from the fact that Hsis an outer metric measure on Rd,and the def i nition of Cs,il results that Hs(E)≤ Cs(E).Next,let{Uj}jbe an ∈-covering of F and rj=diam(Uj).For each i f i xed,consider a point xi∈ Ui∩ F.This results in a centered∈-covering{B(xi,ri)}iof F.Consequently,

    Hence,

    Next,as ∈↓ 0,we obtain

    which guaranties that

    It holds that these measures give rise to some critical values in the sense that,for any set E ? R there exists a critical value hEand cEfor which

    and similarly

    But using Eq.(2.2)above,it proved that hE=cEand otherwise,

    Such a value is called the Hausdorff dimension of the set E and is usually denoted by dimHE or simply dimE.

    Similarly,we call a centered ∈-packing of E ? Rd,any countable set(B(xi,ri))iof disjoint balls centered at points xi∈ E and with diameters ri< ∈.The packing measure and dimension are def i ned as follows

    It holds as for the Hausdorff measure that there exists critical values ?Eand pEsatisfying respectively

    and respectively

    The critical value ?(E)is called the logarithmic index of E and pEis called the packing dimension of E denote by DimP(E)or simply Dim(E).These quantities may be shown as

    and respectively

    Usually,we have the inequality

    Def i nition 2.1.A set E ?Rdis said to be fractal in the senseof Tayloriff dim(E)=Dim(E).

    3 Multifractal generalizations of Hausdorff and packing measures

    Letμ beaBorelprobability measureonRd,anonemptyset E?Rdand ∈>0.Letalso q,t be real numbers.We will recall hereafterthe stepsleading to the multifractal generalizations of the Hausdorff and packing measures due to L.Olsen in[9].Denote

    where the inf is taken over the set of all centered ∈-coverings of E,and for the empty set,=0.As for the preceding cases of Hausdorff and packing measures,it consists of a non increasing quantity as a function of ε.We then consider its limit

    and f i nally,the multifractal generalization of the s-dimensional Huasdorrf measure

    Similarly,we def i ne the multifractal generalization of the packing measure as follows

    where the sup is taken over the set of all centered ∈-packings of E.For the empty set,we set as usual=0.Next,

    and f i nally,

    In[9],it has been proved that the measuresand the pre-measureassign in a usual way a dimension to every set E ? Rdas resumed in the following proposition.

    Proposition 3.1(see[9]).Given a subset E ? Rd,

    1.There exists a unique number(E)∈ [? ∞ ,+ ∞ ]such that

    2.There exists a unique number(E)∈ [? ∞ ,+ ∞ ]such that

    3.There exists a unique number(E) ∈ [?∞,+∞]such that

    The characteristics of these functions have been studied completely by L.Olsen.He proved among author results thatandare monotones and σ-stables.Furthermore,if E=supp(μ)is the support of the measure μ,one obtains

    4 Mixed multifractal generalizations of Hausdorff and packing measures and dimensions

    The purpose of this section is to present our ideas about mixed multifractal generalizations of Hausdorff and packing measures and dimensions.Let μ =(μ1,μ2,···,μk)a vector valued measure composed of probability measures on Rd.We aim to study the simultaneous scaling behavior of μ,which we denote

    Let E ? Rdbe a nonempty set and ∈> 0.Let also q=(q1,q2,···,qk) ∈ Rkand t∈ R.The mixed generalized multifractal Hausdorff measure is def i ned as follows.Denote

    and the product

    Denote next,

    where the inf is taken over the set of all centered ∈-coverings of E,and for the empty set,=0.As for the single case,of Hausdorff measure,it consists of a non increasing function of the variable ε.So that,its limit as ∈↓ 0 exists.Let

    Let f i nally

    Lemma 4.1.is an outer metric measure on Rd.

    The proof of this lemma is technic and follows carefully analogous steps as the single case.

    Def i nition 4.1.The restriction ofon Borel sets is called the mixed generalized Hausdorff measure on Rd.

    Now,we def i ne the mixed generalized multifractal packing measure.We use already the same notations as previously.Let

    where the sup is taken over the set of all centered ∈-packings of E.For the empty set,we set as usual=0.Next,we consider the limit as ∈ ↓ 0,

    and f i nally,

    Lemma 4.2.is an outer metric measure on Rd.

    Theproofofthislemma ismore specif i cthanLemma4.1and usesthefollowing result.

    Indeed,let

    and(B(xi,ri))ibe a centered ∈-packing of the union A∪B.It can be divided into two parts I and J,

    where

    Therefore,(B(xi,ri))i∈Iis a centered ∈-packing of A and(B(xi,ri))i∈Jis a centered ∈-packing of the union B.Hence,

    Consequently,

    and thus the limit for ∈ ↓ 0 gives

    The converse is more easier and it states thatand nextare sub-additive.Letbe a centered ∈-packing of A andbe a centered ∈-packing of B.The union???is a centered ∈-packing of A ∪ B.So that

    Taking the sup on(B(xi,ri))ias a centered ∈-packing of A and next the sup on(B(yi,ri))ias a centered ∈-packing of B,we obtain

    and thus the limit for ∈ ↓ 0 gives

    Def i nition4.2.TherestrictionofonBorelsetsis called themixed generalizedpacking measure on Rd.

    It holds as for the case of the multifractal analysis of a single measure that the measures Hq,tμ,Pq,tμand the pre-measureassign a dimension to every set E ? Rd.

    Proposition 4.1.Given a subset E ? Rd,

    1.There exists a unique number(E) ∈ [? ∞ ,+ ∞ ]such that

    2.There exists a unique number Dimqμ(E)∈ [? ∞ ,+ ∞ ]such that

    3.There exists a unique number ?qμ(E) ∈ [?∞,+∞]such that

    Def i nition 4.3.The quantities(E),anddef i ne the so-called mixed multifractal generalizations of the Hausdorff dimension,the packing dimension and the logarithmic index of the set E.

    Remark that if we denote Qi=(0,0,···,qi,0,···,0)the vector with zero coordinates except the ith one which equals qi,we obtain the multifractal generalizations of the Hausdorff dimension,the packing dimension and the logarithmic index of the set E for the single measure μi,

    Similarly,for the null vector of Rk,we obtain

    Proof of Proposition 4.1.We will sketch only the proof of the f i rst point.The rest is analogous.

    First,we claim that ?t∈ R such that(E)< ∞ it holds that(E)=0 for anyIndeed,let ∈> 0,F ? E and(B(xi,ri))ibe a centered ∈-covering of F.We have

    Consequently,

    Hence,

    One can proceed otherwise by claiming that ?t∈ R such that(E) > 0 it holds that(E)=+∞ for anyIndeed,proceeding as previously,we obtain for ∈> 0,

    Hence,

    Next,we aim to study the characteristics of the mixed multifractal generalizations of dimensions.To do this we will adapt the following notations.For q=(q1,···,qk)∈ Rk,

    When E=supp(μ)is the support of the measure μ,we will omit the indexation with E and denote simply

    Thus,we complete the proof.

    The following propositions resume the characteristics of these functions and extends the results of L.Olsen[9]for our case.

    Proposition 4.2.(a)andare non decreasing with respect to the inclusion property in Rd.

    Proof.(a)Let E ? F be subsets of Rd.We have

    (b)Let(An)nbe a countable set of subsets An? Rdand denote A=It holds from the monotony ofthat

    Hence,

    Consequently,from the sub-additivity property ofit holds that

    Which means that

    Hence,

    Similar arguments permit to prove the properties of Bμ,A(q).

    Next,we continue to study the characteristics of the mixed generalized multifractal dimensions.The following result is obtained.

    Proposition 4.3.(a)The functionsBμ(q)and qΛμ(q)are convex.

    (b)For i=1,2,···,k,the functionsbμ(q),Bμ(q)andΛμ(q),(= (q1,···,qi?1,qi+1,···,qk)f i xed),are non increasing.

    Proof.(a)We start by proving that Λμ,Eis convex.Let p,q ∈ Rk,α ∈ [0,1],s > Λμ,E(p)and t> Λμ,E(q).Consider next a centered ∈-packing(Bi=B(xi,ri))iof E.Applying H ¨older’s inequality,it holds that

    Hence,

    The limit on ∈↓ 0 gives

    Consequently,

    It results that

    We now prove the convexity of Bμ,E.We set in this case t=Bμ,E(q)and s=Bμ,E(p).We have

    Therefore,there exists(Hi)iand(Ki)icoverings of the set E for which

    Consequently,

    Hence,

    Hence,

    When ∈ ↓0,we obtain

    Therefore,

    This induces the fact that

    Consequently

    Hence,

    The remaining part to prove the monotony Λμ,Eand Bμ,Eis analogous.

    Proposition 4.4.(a)0 ≤ bμ(q)≤ Bμ(q)≤ Λμ(q),whenever qi< 1 for all i=1,2,···,k.

    (b)bμ(?i)=Bμ(?i)= Λμ(?i)=0,where ?i=(0,0,···,1,0,···,0).

    (c)bμ(q)≤ Bμ(q)≤ Λμ(q)≤ 0 whenever qi> 1 for all i=1,2,···,k.

    The proof of this results reposes on the following intermediate ones.

    Lemma 4.3.There exists a constant ξ∈ [0,+∞]satisfying for any E ? Rd,

    More precisely,ξ is the number related to the Besicovitch covering theorem.

    Theorem 4.1(Besicovitch Covering Theorem).There exists a constant ξ∈ N satisfying:For any E ∈ Rdand(rx)x∈Ea bounded set of positive real numbers,there exists ξ sets B1,B2,···,Bξ, that are f i nite or countable composed of balls B(x,rx),x ∈ E such that

    ? each Biis composed of disjoint balls.

    Proof of Lemma 4.3.It suf fi ces to prove the fi rst inequality.Th?e seco?nd is always true for all ξ> 0.Let F ? Rd,∈ > 0 and V={B(x,∈/2);x ∈ F}.Let next(Bij)j1≤i≤ξbe the ξ sets of V obtained by the Besicovitch covering theorem.So that,(Bij)i,jis a centered ∈-covering of the set F and for each i,(Bij)jis a centered ∈-packing of F.Therefore,

    Hence,

    So as Lemma 4.3.

    Proof of Proposition 4.4.It follows from Propositions 4.2,4.3 and Lemma 4.3.

    5 Mixed multifractal generalization of Bouligand-Minkowski’s dimension

    In this section,we propose to develop mixed multifractal generalization of Bouligand-Minkowski’s dimension.Such a dimension is sometimes called the box-dimension or the Renyi dimension.Some mixed generalizations are already introduced in[15].We will see hereafter that the mixed generalizations to be provided resemble to those in[15].We will prove that in the mixed case,these dimensions remain strongly related to the mixed multifractal generalizations of the Hausdorff and packing dimensions.In the case of a single measure μ,the Bouligand-Minkowski dimensions are introduced as follows.For E ? supp(μ),δ> 0 and q ∈ R,let

    where the inf is over the set of all centered δ-coveringsof the set E.The Bouligand-Minkowski dimensions are

    for the upper one and

    for the lower.In the case of equality,the common value is denoted(E)and is called the Bouligand-Minkowski dimension of the set E.We can equivalently def i ne these dimensions via the δ-packings as follows.For δ> 0 and q ∈ R,we set

    where the sup is taken over all the centered δ-packingsof the set E.The upper dimension is

    and the lower is

    and similarly,when these are equal,the common value will be denotedand it def i nes the dimension of E.We now introduce the mixed multifractal generalization of the Bouligand-Minkowski dimensions.As we have noticed,our idea here is quite thesame as the one in[15].Let μ =(μ1,μ2,···,μk)be a vector valued measure composed of probability measures on Rd.Denote as previously

    and for q=(q1,q2,···,qk)∈ Rk,

    Next,for a nonempty subset E ? Rdand δ> 0,we will use the same notations forandbut without forgetting that we use the new product for the measure μ. Similarly for(E),(E)and(E).

    Def i nition 5.1.For E ? supp(μ)and q=(q1,q2,···,qk)∈ Rk,we will call

    Remark 5.1.We stress the fact that each quantity def i nes in fact a mixed generalization that can be different from the other.That is,we did not mean thatandare the same(equal)and similarly for the lower ones.We will prove in the contrary that as for the single case,they can be different.

    Theorem 5.1.For

    1).For all q ∈ Rk,we have

    Proof.1).Using Besicovitch covering theorem we get

    with some constant C f i xed.So as 1)is proved.

    2).We f i rstly prove that

    Which means that

    Using the assertion 1),we obtain the equalities

    This means that for each n ∈ N,there exists a centered δn-coveringof E such that fore,

    There balls may be considered to be intersecting the set F.Next,for each i,choose an element yi∈ B(xni,δn)∩ F.This results on a centered 2δn-covering??of F.There-

    Hence,

    So that,

    Consequently,

    The remaining part can be proved by following similar techniques.

    Next we need to introduce the following quantities which will be useful later.Let μ =(μ1,μ2,···,μk)be a vector valued measure composed of probability measures on Rd. For j=1,2,···,k,a > 1 and E ? supp(μ),denote

    Theorem 5.2.For

    1).For μ ∈ P0(Rd)and q∈,there holds that

    2).For μ ∈ P1(Rd)and q ∈there holds that

    Proof.1).The vector valued measure μ ∈ P0(Rd)yields that

    where

    Therefore,there exists a centered δn-covering(B(xni,δn))iof F satisfying

    Let next yni∈ B(xni,δn).Then,(B(xni,2δn))iis a centered 2δn-covering of F.Hence,

    where|q|=q1+q2+···+qk.Thus,

    Which means that

    Consequently,

    Using the σ-stability of bμ,·(q)(see Proposition 4.2),it results that

    Assertion 2 is left to the reader.

    Wenowre-introducethemixedmultifractal generalizationofthe Lq-dimensionscalled also Renyi dimensions based on integral representations.See[15]for more details and other results.For q ∈,μ =(μ1,μ2,···,μk)and δ> 0,we set

    where,in this case,

    and

    The mixed multifractal generalizations of the Renyi dimensions are

    Proposition 5.1.The following results hold:

    Proof.We only prove a).The remaining proofs of points b),c)and d)follow the same ideas.

    For δ> 0,let(B(xi,δ))ibe a centered δ-covering of supp(μ)and let next(B(xij,δ))j, 1 ≤ i≤ ξ the ξ sets def i ned in Besicovitch covering theorem.It holds that

    As a results,

    Which implies that

    Thus,we complete the proof.

    6 A mixed multifractal formalism for vector valued measures

    Let μ =(μ1,μ2,···,μk)be a vector valued probability measure on Rd.For x ∈ Rdand j=1,2,···,k,we denote

    respectively the local lower dimension and the local upper dimension of μjat the point x and as usually the local dimension αμj(x)of μjat x will be the common value when these are equal.Next for α =(α1,α2,···,αk) ∈let

    and

    The mixed multifractal spectrum of the vector valued measure μ is def i ned by

    where dim stands for the Hausdorff dimension.

    In this section,we propose to compute such a spectrum for some cases of measures that resemble to the situation raised by Olsen in[9]but in the mixed case.This will permittodescribebetterthesimultaneousbehavioroff i nitelymany measures.Weintend preciselyto computethemixedspectrumbased onthemixed multifractal generalizations of the Haudorff and packing dimensions bμ,Bμand Λμ.We start with the following technic results.

    Lemma 6.1.For

    Proof.1).For i),We prove the f i rst part.For m ∈ N?,consider the set

    Let next 0 < η < 1/m and(B(xi,ri))ia centered η -covering ofIt holds that

    Consequently,

    Hence,?η > 0,there holds that

    Which means that

    Consequently,?η > 0,

    Let next,(Ei)ibe a covering ofThus,

    Hence,?m,

    Consequently,

    2).i).and ii).follow similar arguments and techniques as previously.

    Proposition 6.1.Let α ∈and q ∈ Rk.The following assertions hold:

    a).Whenever 〈α,q〉+bμ(q)≥ 0,we have

    b).Whenever 〈α,q〉+Bμ(q)≥ 0,we have

    Proof.a).i).It follows from Lemma 6.1,assertion 1)i),

    Consequently,

    Hence,

    a).ii).It follows from Lemma 6.1,assertion 2)i),as previously,that

    Hence,

    and f i nally,

    b).i).Observing Lemma 6.1,assertion 1)ii),we obtain

    Consequently,

    Hence,

    b).ii).observing Lemma 6.1,assertion 2)ii),we obtain

    Hence,

    and f i nally,

    Thus,we complete the proof.

    Lemma 6.2.?q ∈ Rksuch that

    we have

    Proof.It is based on

    Hence,

    Choosing t= 〈(εI?α),q〉,this induces that({x})> 2tand consequently,

    Letting ε↓ 0,it results that bμ(q) ≥ ?〈α,q〉which is impossible.So as the f i rst part of 1.

    The remaining part as well as 2 can be checked by similar techniques.

    Theorem 6.1.Let μ =(μ1,μ2,···,μk)be a vector-valued Borel probability measure on Rdand q ∈ Rkf i xed.Let further tq∈ R,rq> 0,> 0, νqa Borel probability measure supported by supp(μ), ?q:R+→ R be such that ?q(r)=o(logr),as r → 0.Let f i nally(rq,n)n? [0,1]↓ 0 and satisfying

    Assume next the following assumptions:

    A1). ?x ∈supp(μ)andr∈ [0,rq],

    A2).Cq(p)=exists and fi nite for all p ∈ R ,where

    Then,the following assertions hold.

    i).

    ii).Whenever Cqis differentiable at 0,we have

    Theorem 6.2.Assume that the hypotheses of Theorem 6.1 are satisf i ed for all q ∈ Rk.Then,the following assertions hold:

    i). αμ= ? Bμ,νq,a.s.,whenever Bμis differentiable at q.

    ii).Dom(B)? αμ(supp(μ))and fμ=on Dom(B).

    The proof of this result is based on the application of a large deviation formalism. This will permit to obtain a measure ν supported byTo do this,we re-formulate a mixed large deviation formalism to be adapted to the mixed multifractal formalism raised in our work.

    Theorem 6.3(The Mixed Large Deviation Formalism).Consider a sequence of vector-valued random variables(Wn=(Wn,1,Wn,2,···,Wn,k))non a probability space(?,A,P)and(an)n?[0,+∞]with limn→+∞an=+∞.Let next the function

    Assume that

    A1).Cn(t)is f i nite for all n and t.

    A2).C(t)=limn→+∞Cn(t)exists and is f i nite for all t.

    There holds that

    i).The function C is convex.

    ii).If ??C(t)≤ ?+C(t)< α,for some t∈ Rk,then

    iii).If∑ne?εan< ∞ for all ε> 0,then

    iv).If α < ??C(t)≤ ?+C(t),for some t∈ Rk,then

    v).If∑ne?εanis f i nite for all ε> 0,then

    Proof.i).It follows from Holder’s inequality.

    ii).Let h ∈ R?,k+be such that C(t)+ 〈α,h〉? C(t+h)> 0.We have

    Next,by taking the limsup as n ?→ +∞,the result follows immediately. iii).Denote for n,m ∈ N,

    By choosing t=0 and α=?+C(0)+1/m in item ii),and observing that C(0)=0,we obtain

    which means that limsupnlogP(Tn,m) < 0.Consequently,for some ε> 0 and n large enough,there holds that limsupnlogP(Tn,m)< ?ε.Thus,P(Tn,m)< e?εanwhich implies the convergence of the series ∑nP(Tn,m).Hence,using Borel-Cantelli theorem,we obtain

    for all m.Therefore,

    and f i nally,

    Thus,we complete the proof.

    Proof of Theorem 6.1.For simplicity we denote t=tq,K=Kq, ? = ?q,ν = νqand rn=rq,n.Next,for x ∈ supp(μ),let

    i).Using the hypothesis A1).and Lemma 4.3 we obtain bμ(q)=Bμ(q)= Λμ(q)=t.Next, it is straightforward that the set

    Finally,applying the famous Billingsley’s Theorem[7],we obtain

    ii).Remark that if C is differentiable at 0,item i).states that

    In the other hand,since the set M is not empty,Lemma 6.2 implies that ??C(0)q+t≥ 0. Hence,Proposition 6.1 yields that dimM ≤ ??C(0)q+t for any q ∈ Rk.Thus,taking the inf on q,we obtain

    iii).We f i rstly claim that,there exists β > 0 such that,for all x ∈ supp(μ)and 0 < r? 1,we have

    So let(B(xij,rn))1≤iξ,jthe ξ sets relatively to Besicovitch theorem extracted from the set (B(xi,rn))i.A careful computation yields that

    where

    Theorem 5.1 and Proposition 5.1 guarantee that

    Consequently,Cq(p)= Λμ(p+q)? Λμ(p).So,if Λμis differentiable at q,Cqwill be too at 0 and ?Cq(0)= ?Λμ(q).Thus,using the mixed large deviation formalism,we obtain

    hence,f i nally,αμ(x)= ??Λμ(q).

    iv).Let q be such that ?Λμ(q)exists.Then ?Cq(0)exists too.So,item ii).states that

    Which completes the proof.

    Proof of Theorem 6.2.i).Using the same notations as previously,we obtain Cqdifferentiable at 0,Bμdifferentiable at q,and ?Cq(0)= ?Bμ(q).In the other hand,we obtain also

    ii).Follows immediately from i).and Theorem 6.1.

    [1]A.Ben Mabrouk,A note on Hausdorff and packing measures,Int.J.Math.Sci.,8(3-4)(2009), 135–142.

    [2]A.Ben Mabrouk,A higher order multifractal formalism,Stat.Prob.Lett.,78(2008),1412–1421.

    [3]F.Ben Nasr,Analyse multifractale de mesures,C.R.Acad.Sci.Paris,319(I)(1994),807–810.

    [4]F.Ben Nasr et I.Bhouri,Spectre multifractal de mesures bor′eli`ennes sur Rd,C.R.Acad.Sci. Paris,325(I)(1997),253–256.

    [5]F.Ben Nasr,I.Bhouri and Y.Heurteaux,The validity of the multifractal formalism:results and examples,Adv.Math.,165(2002),264–284.

    [6]I.Bhouri,On the projections of generalized upper Lq-spectrum,Chaos Solitons Fractals,42 (2009),1451–1462.

    [7]P.Billingsley,Ergodic Theory and Information,J.Wiley&Sons Inc.,New York,1965.

    [8]G.Brown,G.Michon and J.Peyriere,On the multifractal analysis of measures,J.Stat.Phys., 66(3/4)(1992),775–790.

    [9]L.Olsen,A multifractal formalism,Adv.Math.,116(1995),82–196.

    [10]L.Olsen,Self-aff i ne multifractal Sierpinski sponges in Rd,Pacif i c J.Math.,183(1)(1998), 143–199.

    [11]L.Olsen,Dimension inequalities of multifractal Hausdorff measures and multifractal packing measures,Math.Scand.,86(2000),109–129.

    [12]L.Olsen,Integral,Probability,and Fractal Measures,by G.Edgar,Springer,New York,1998, Bull.Amer.Math.Soc.,37(2000),481–498.

    [13]L.Olsen,Divergence points of deformed empirical measures,Math.Resear.Lett.,9(2002), 701–713.

    [14]L.Olsen,Mixed divergencepoints of self-similar measures,Indiana Univ.Math.J.,52(2003), 1343–1372.

    [15]L.Olsen,Mixed generalized dimensions of self-similar measures,J.Math.Anal.Appl.,306 (2005),516–539.

    [16]J.Peyriere,Multifractal Measures,in Probabilistic and Stochastic Methods in Analysis,Proceedings of the NATO ASI,II Ciocco 1991,J.Bymes Bd.,Keuwer Academic Publisher,1992.

    [17]Y.-L.Ye,Self-similar vector-valued measures,Adv.Appl.Math.,38(2007),71–96.

    [18]M.Dai and Z.Liu,The quantization dimension and other dimensions of probability measures,Int.J.Nonlinear Sci.,5(2008),267–274.

    [19]Y.Shi and M.Dai,Typical Lower Lq-dimensions of Measures for q ≤ 1,Int.J.Nonlinear Sci., 7(2009),231–236.

    [20]Q.Guo,H.Jiang and L.Xi,Hausdorff dimension of generalized sierpinski carpet,Int.J. Nonlinear Sci.,6(2006),153–158.

    [21]X.Wang and M.Dai,Mixed quantization dimension function and temperature function for conformal measures,Int.J.Nonlinear Sci.,10(1)(2010),24–31.

    [22]Y.Pesin,Dimension Theory in Dynamical Systems,University of Chicago Press,1997.

    [23]S.J.Taylor,The fractal analysis of Borel measures in Rd,J.Fourier.Anal.and Appl.,Kahane Special Issue,(1995),553–568.

    [24]R.Vojack and J.L ′evy V ′ehel,Higher order multifractal analysis,INRIA,Rapport de Recherches,2796,1996,34 pages.

    Received 2 December 2013;Accepted(in revised version)15 September 2015

    ?Corresponding author.Email addresses:m.m m@live.fr(M.Menceur),anouar.benmabrouk@issatso.rnu. tn(A.Mabrouk),kamelbetina@gmail.com(K.Betina)

    久久国产精品影院| 国产xxxxx性猛交| 色综合婷婷激情| 国产99久久九九免费精品| 精品一区二区三区四区五区乱码| 国产91精品成人一区二区三区| 999精品在线视频| 午夜日韩欧美国产| 一进一出抽搐动态| 99热国产这里只有精品6| 美女午夜性视频免费| 亚洲一区二区三区不卡视频| 欧美国产精品一级二级三级| 久9热在线精品视频| 人人妻,人人澡人人爽秒播| 亚洲免费av在线视频| 女性生殖器流出的白浆| 国产xxxxx性猛交| 免费在线观看影片大全网站| 少妇猛男粗大的猛烈进出视频| 国产精品美女特级片免费视频播放器 | 视频区欧美日本亚洲| 一边摸一边抽搐一进一出视频| 99久久精品国产亚洲精品| 亚洲国产精品一区二区三区在线| 午夜免费观看网址| 老熟妇仑乱视频hdxx| 精品国产国语对白av| 亚洲一区高清亚洲精品| 99香蕉大伊视频| 天天添夜夜摸| 亚洲少妇的诱惑av| 水蜜桃什么品种好| 精品午夜福利视频在线观看一区| 18在线观看网站| videosex国产| 另类亚洲欧美激情| 国产在线观看jvid| 亚洲美女黄片视频| 免费少妇av软件| 久久久国产欧美日韩av| 久久久久久人人人人人| 18禁观看日本| 看黄色毛片网站| 精品熟女少妇八av免费久了| 啪啪无遮挡十八禁网站| 亚洲精品国产精品久久久不卡| 日韩精品免费视频一区二区三区| 成人av一区二区三区在线看| 色老头精品视频在线观看| 丁香六月欧美| 国产aⅴ精品一区二区三区波| 亚洲五月婷婷丁香| 中文字幕另类日韩欧美亚洲嫩草| 久久精品国产清高在天天线| 18禁观看日本| 九色亚洲精品在线播放| 9191精品国产免费久久| 黄片播放在线免费| 亚洲成国产人片在线观看| 久久午夜亚洲精品久久| 国产成人精品无人区| 亚洲中文av在线| 欧美激情 高清一区二区三区| 亚洲成人免费av在线播放| 亚洲欧美精品综合一区二区三区| 一级毛片精品| 最新美女视频免费是黄的| 大码成人一级视频| 久久久精品国产亚洲av高清涩受| 亚洲精华国产精华精| 大陆偷拍与自拍| 欧美黄色片欧美黄色片| 国产精品久久久久久精品古装| 亚洲va日本ⅴa欧美va伊人久久| 国产1区2区3区精品| 老司机午夜福利在线观看视频| 大型av网站在线播放| 国内毛片毛片毛片毛片毛片| 国产不卡av网站在线观看| 亚洲成人免费av在线播放| 国产亚洲一区二区精品| 国产精品久久久久成人av| 亚洲欧美日韩高清在线视频| 不卡av一区二区三区| 老汉色∧v一级毛片| 国产精品国产高清国产av | 国产在视频线精品| 日日夜夜操网爽| 最新美女视频免费是黄的| 欧美日韩亚洲国产一区二区在线观看 | 亚洲,欧美精品.| 国产一区在线观看成人免费| 日韩欧美国产一区二区入口| 亚洲国产欧美日韩在线播放| 亚洲精品成人av观看孕妇| 在线观看免费高清a一片| 久久久久久久久免费视频了| 久久人人爽av亚洲精品天堂| 18禁裸乳无遮挡免费网站照片 | 9191精品国产免费久久| 在线播放国产精品三级| 成年女人毛片免费观看观看9 | 精品午夜福利视频在线观看一区| 亚洲成a人片在线一区二区| 青草久久国产| 免费女性裸体啪啪无遮挡网站| 日韩视频一区二区在线观看| 国产精品九九99| 成人免费观看视频高清| 亚洲熟妇熟女久久| 美女高潮喷水抽搐中文字幕| 午夜福利,免费看| 日韩三级视频一区二区三区| 日本精品一区二区三区蜜桃| 国产不卡av网站在线观看| 日韩制服丝袜自拍偷拍| 麻豆成人av在线观看| 国产免费男女视频| www日本在线高清视频| www日本在线高清视频| xxxhd国产人妻xxx| 在线播放国产精品三级| 老司机午夜福利在线观看视频| 成人国语在线视频| 精品国产一区二区久久| 麻豆av在线久日| 欧美日韩成人在线一区二区| 后天国语完整版免费观看| 国产亚洲欧美98| 亚洲成a人片在线一区二区| 视频区图区小说| 成人手机av| 日韩大码丰满熟妇| 超色免费av| 成年人黄色毛片网站| 国产精华一区二区三区| 视频在线观看一区二区三区| 狠狠狠狠99中文字幕| 免费高清在线观看日韩| 欧美日韩乱码在线| 叶爱在线成人免费视频播放| 亚洲精品国产精品久久久不卡| av视频免费观看在线观看| 另类亚洲欧美激情| 午夜福利,免费看| 18禁国产床啪视频网站| 亚洲精品一二三| 一个人免费在线观看的高清视频| 久久久久精品人妻al黑| 国产欧美日韩精品亚洲av| 亚洲熟妇熟女久久| 91麻豆精品激情在线观看国产 | 777久久人妻少妇嫩草av网站| 一二三四在线观看免费中文在| 亚洲欧美精品综合一区二区三区| 中文亚洲av片在线观看爽 | 99国产综合亚洲精品| 成在线人永久免费视频| 大型av网站在线播放| 久久人妻福利社区极品人妻图片| 欧美精品人与动牲交sv欧美| 极品人妻少妇av视频| 久久久久久久久免费视频了| 老司机深夜福利视频在线观看| 看黄色毛片网站| 国产成人av激情在线播放| 欧美久久黑人一区二区| 欧美国产精品一级二级三级| 国产aⅴ精品一区二区三区波| 久久影院123| 91老司机精品| 亚洲色图综合在线观看| 美女福利国产在线| 黄色 视频免费看| 啦啦啦视频在线资源免费观看| 少妇猛男粗大的猛烈进出视频| 一级毛片高清免费大全| 中文字幕高清在线视频| 99久久99久久久精品蜜桃| 欧美乱色亚洲激情| 欧美不卡视频在线免费观看 | 久久狼人影院| 国产高清激情床上av| 美女高潮喷水抽搐中文字幕| 中文字幕人妻丝袜一区二区| 久久香蕉国产精品| 啦啦啦 在线观看视频| 免费高清在线观看日韩| 亚洲一码二码三码区别大吗| 大香蕉久久成人网| 免费人成视频x8x8入口观看| 免费观看人在逋| 亚洲一码二码三码区别大吗| 一级,二级,三级黄色视频| 欧美乱妇无乱码| 无人区码免费观看不卡| 十分钟在线观看高清视频www| 欧美中文综合在线视频| 久久久久久久久免费视频了| 精品卡一卡二卡四卡免费| 侵犯人妻中文字幕一二三四区| 建设人人有责人人尽责人人享有的| 国产野战对白在线观看| 丰满的人妻完整版| 五月开心婷婷网| 久久99一区二区三区| 99riav亚洲国产免费| 久99久视频精品免费| 中文字幕色久视频| 我的亚洲天堂| 国产99久久九九免费精品| 女人爽到高潮嗷嗷叫在线视频| 国产精品免费视频内射| 国产99白浆流出| 一级a爱片免费观看的视频| 亚洲第一青青草原| 久久香蕉国产精品| 免费女性裸体啪啪无遮挡网站| 嫁个100分男人电影在线观看| 99香蕉大伊视频| 大片电影免费在线观看免费| 亚洲精品国产色婷婷电影| 亚洲国产欧美网| 水蜜桃什么品种好| 天天躁夜夜躁狠狠躁躁| 亚洲国产毛片av蜜桃av| 国产91精品成人一区二区三区| 19禁男女啪啪无遮挡网站| 亚洲av日韩在线播放| 别揉我奶头~嗯~啊~动态视频| www.精华液| 我的亚洲天堂| 色尼玛亚洲综合影院| 国产高清国产精品国产三级| 亚洲情色 制服丝袜| 少妇猛男粗大的猛烈进出视频| 国产欧美日韩一区二区三区在线| 久久天堂一区二区三区四区| 91av网站免费观看| 1024视频免费在线观看| 波多野结衣一区麻豆| 午夜免费观看网址| 国产欧美日韩一区二区三| 国产精品.久久久| 大型av网站在线播放| 别揉我奶头~嗯~啊~动态视频| 可以免费在线观看a视频的电影网站| 久久人人爽av亚洲精品天堂| 免费在线观看视频国产中文字幕亚洲| 一级黄色大片毛片| 婷婷精品国产亚洲av在线 | 久久精品亚洲av国产电影网| bbb黄色大片| 国产成人啪精品午夜网站| 看片在线看免费视频| 欧美激情久久久久久爽电影 | 大型av网站在线播放| 无人区码免费观看不卡| 亚洲avbb在线观看| 男男h啪啪无遮挡| 亚洲熟女毛片儿| 涩涩av久久男人的天堂| 深夜精品福利| 精品免费久久久久久久清纯 | 高清欧美精品videossex| 757午夜福利合集在线观看| 嫩草影视91久久| 丰满的人妻完整版| 天堂中文最新版在线下载| 别揉我奶头~嗯~啊~动态视频| 黄色丝袜av网址大全| 丝袜美足系列| av免费在线观看网站| 伊人久久大香线蕉亚洲五| 精品人妻在线不人妻| 露出奶头的视频| √禁漫天堂资源中文www| 免费一级毛片在线播放高清视频 | 国产精品九九99| 久久中文字幕人妻熟女| 午夜精品久久久久久毛片777| 国产成人啪精品午夜网站| 国产亚洲精品一区二区www | 亚洲av第一区精品v没综合| 69精品国产乱码久久久| 国产99久久九九免费精品| 大型黄色视频在线免费观看| av欧美777| 天堂中文最新版在线下载| 中文字幕人妻熟女乱码| 伦理电影免费视频| 岛国在线观看网站| 日本五十路高清| 十八禁网站免费在线| 亚洲国产欧美一区二区综合| 法律面前人人平等表现在哪些方面| 国产激情欧美一区二区| 又黄又爽又免费观看的视频| 老汉色∧v一级毛片| 久久天堂一区二区三区四区| 男女免费视频国产| 精品国产一区二区久久| 精品一区二区三区av网在线观看| 亚洲国产精品合色在线| 伊人久久大香线蕉亚洲五| 深夜精品福利| 这个男人来自地球电影免费观看| 国产成人欧美在线观看 | 免费少妇av软件| 国产一区二区激情短视频| 青草久久国产| 男女高潮啪啪啪动态图| 激情在线观看视频在线高清 | 欧美日韩福利视频一区二区| 午夜久久久在线观看| 欧美日韩瑟瑟在线播放| tube8黄色片| 91成年电影在线观看| 久99久视频精品免费| 午夜91福利影院| 12—13女人毛片做爰片一| 男女床上黄色一级片免费看| 一级,二级,三级黄色视频| 成熟少妇高潮喷水视频| 无限看片的www在线观看| 十八禁高潮呻吟视频| 亚洲中文av在线| 成人黄色视频免费在线看| 国产成人啪精品午夜网站| 久久精品亚洲熟妇少妇任你| 99国产极品粉嫩在线观看| 日韩熟女老妇一区二区性免费视频| 香蕉国产在线看| 久久热在线av| 国产99白浆流出| 亚洲熟妇中文字幕五十中出 | 国产三级黄色录像| 精品熟女少妇八av免费久了| 精品国内亚洲2022精品成人 | 新久久久久国产一级毛片| 在线免费观看的www视频| 成人黄色视频免费在线看| 丝袜美足系列| 亚洲第一av免费看| 啪啪无遮挡十八禁网站| 久久久久国产一级毛片高清牌| 国产成+人综合+亚洲专区| www.自偷自拍.com| 国产精品一区二区在线观看99| 亚洲欧美激情综合另类| 日日摸夜夜添夜夜添小说| 人人妻,人人澡人人爽秒播| 欧美日韩乱码在线| 亚洲精品乱久久久久久| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲少妇的诱惑av| 一区二区三区国产精品乱码| 亚洲午夜理论影院| 色在线成人网| 99国产综合亚洲精品| 亚洲第一欧美日韩一区二区三区| 老司机亚洲免费影院| 久久精品熟女亚洲av麻豆精品| 一级,二级,三级黄色视频| 在线播放国产精品三级| 午夜两性在线视频| 国产三级黄色录像| 精品一区二区三区四区五区乱码| 国产1区2区3区精品| 精品亚洲成a人片在线观看| 老司机影院毛片| 国产成人免费观看mmmm| 一本综合久久免费| 国产在线观看jvid| 母亲3免费完整高清在线观看| 久久国产精品人妻蜜桃| 中文亚洲av片在线观看爽 | 国产国语露脸激情在线看| 精品卡一卡二卡四卡免费| 国产xxxxx性猛交| 国产色视频综合| 在线国产一区二区在线| 精品一品国产午夜福利视频| 99热国产这里只有精品6| 色尼玛亚洲综合影院| 看片在线看免费视频| 国产深夜福利视频在线观看| 免费高清在线观看日韩| 亚洲精品乱久久久久久| 手机成人av网站| 热99国产精品久久久久久7| 精品久久久久久,| 亚洲七黄色美女视频| 欧美中文综合在线视频| 久久国产精品影院| 亚洲成人国产一区在线观看| 午夜精品在线福利| 丁香六月欧美| 亚洲美女黄片视频| 99国产精品一区二区蜜桃av | 亚洲专区中文字幕在线| 天天添夜夜摸| 色综合欧美亚洲国产小说| 黄色成人免费大全| 亚洲,欧美精品.| 成人黄色视频免费在线看| 啦啦啦视频在线资源免费观看| 美女午夜性视频免费| 一区二区三区精品91| 精品高清国产在线一区| tube8黄色片| 18禁裸乳无遮挡免费网站照片 | 精品福利永久在线观看| 丰满迷人的少妇在线观看| 美女视频免费永久观看网站| 久久久久久久午夜电影 | 超色免费av| 脱女人内裤的视频| 婷婷精品国产亚洲av在线 | 男男h啪啪无遮挡| 一级a爱片免费观看的视频| av网站免费在线观看视频| 久久ye,这里只有精品| 欧美日韩亚洲高清精品| 免费女性裸体啪啪无遮挡网站| 欧美久久黑人一区二区| 丁香欧美五月| 国产精品 国内视频| 精品第一国产精品| 久久久国产欧美日韩av| 夜夜爽天天搞| 欧美最黄视频在线播放免费 | 欧美精品av麻豆av| 免费看a级黄色片| 日韩大码丰满熟妇| 亚洲午夜精品一区,二区,三区| 免费高清在线观看日韩| 亚洲欧美日韩高清在线视频| 久久久精品免费免费高清| 国产精品亚洲av一区麻豆| ponron亚洲| 久久久久久久精品吃奶| 亚洲欧美日韩高清在线视频| 色在线成人网| 亚洲人成电影观看| 丝袜美足系列| 国产高清激情床上av| 日本一区二区免费在线视频| 岛国在线观看网站| 99国产精品免费福利视频| 亚洲av电影在线进入| 丝袜人妻中文字幕| 日日爽夜夜爽网站| 国产又爽黄色视频| 国产av又大| 国产免费男女视频| 男女床上黄色一级片免费看| 十分钟在线观看高清视频www| 久久国产精品影院| 90打野战视频偷拍视频| √禁漫天堂资源中文www| 亚洲国产欧美日韩在线播放| 欧美日韩乱码在线| 久久人妻av系列| 男女午夜视频在线观看| 桃红色精品国产亚洲av| 美国免费a级毛片| 午夜免费观看网址| aaaaa片日本免费| 女同久久另类99精品国产91| 中文字幕另类日韩欧美亚洲嫩草| 精品少妇久久久久久888优播| 欧美av亚洲av综合av国产av| 国产精品成人在线| 99国产精品一区二区三区| 精品人妻熟女毛片av久久网站| 久久久久视频综合| 成人av一区二区三区在线看| 一夜夜www| av国产精品久久久久影院| 久久国产精品男人的天堂亚洲| 男人操女人黄网站| 又黄又爽又免费观看的视频| 精品人妻熟女毛片av久久网站| 久久久国产一区二区| 99久久人妻综合| 一区二区三区精品91| 超碰成人久久| 天堂动漫精品| 熟女少妇亚洲综合色aaa.| 伊人久久大香线蕉亚洲五| 中国美女看黄片| 香蕉久久夜色| 人妻一区二区av| 成年女人毛片免费观看观看9 | tube8黄色片| 一级作爱视频免费观看| 亚洲欧美精品综合一区二区三区| 99国产综合亚洲精品| 精品国产乱子伦一区二区三区| 一a级毛片在线观看| av福利片在线| 国产精品免费视频内射| 黄色视频,在线免费观看| 人妻丰满熟妇av一区二区三区 | 国产亚洲欧美在线一区二区| svipshipincom国产片| 午夜影院日韩av| 久9热在线精品视频| 亚洲专区字幕在线| 国产免费现黄频在线看| 国产精品一区二区在线不卡| 免费少妇av软件| 精品无人区乱码1区二区| 亚洲性夜色夜夜综合| 国产1区2区3区精品| 精品人妻在线不人妻| 18禁裸乳无遮挡动漫免费视频| 欧美亚洲日本最大视频资源| 亚洲五月天丁香| 高清欧美精品videossex| 亚洲精品国产精品久久久不卡| 丰满迷人的少妇在线观看| 国产av一区二区精品久久| 国产精品久久电影中文字幕 | 天天添夜夜摸| 久久国产亚洲av麻豆专区| 日韩三级视频一区二区三区| 欧美最黄视频在线播放免费 | 丝瓜视频免费看黄片| 在线观看日韩欧美| 精品电影一区二区在线| 中文欧美无线码| 国产视频一区二区在线看| 在线看a的网站| 亚洲一区二区三区不卡视频| 国产精品.久久久| 黄色a级毛片大全视频| 国产精品国产av在线观看| 91麻豆av在线| 国产亚洲精品第一综合不卡| 久99久视频精品免费| 亚洲精品中文字幕在线视频| 麻豆国产av国片精品| 激情视频va一区二区三区| 大香蕉久久成人网| 一级a爱视频在线免费观看| а√天堂www在线а√下载 | 久久香蕉国产精品| 国产aⅴ精品一区二区三区波| 国产淫语在线视频| 可以免费在线观看a视频的电影网站| 国产精品影院久久| 99热国产这里只有精品6| 欧美亚洲日本最大视频资源| 欧美日韩成人在线一区二区| 麻豆乱淫一区二区| 亚洲av日韩在线播放| 中文字幕精品免费在线观看视频| 亚洲av电影在线进入| 久久 成人 亚洲| 亚洲av成人av| 人妻丰满熟妇av一区二区三区 | 狠狠狠狠99中文字幕| 亚洲专区字幕在线| 黑丝袜美女国产一区| 久久青草综合色| 男女床上黄色一级片免费看| 久久人妻av系列| 国产一卡二卡三卡精品| 亚洲精品乱久久久久久| videos熟女内射| 精品一区二区三区四区五区乱码| 国产欧美日韩一区二区三区在线| 欧美日韩一级在线毛片| 免费在线观看影片大全网站| 青草久久国产| 精品一区二区三区视频在线观看免费 | 久久国产精品人妻蜜桃| 精品人妻在线不人妻| 美女扒开内裤让男人捅视频| 国产xxxxx性猛交| av网站在线播放免费| 免费少妇av软件| 777米奇影视久久| 巨乳人妻的诱惑在线观看| 久久精品国产99精品国产亚洲性色 | 女同久久另类99精品国产91| 午夜福利在线观看吧| 97人妻天天添夜夜摸| 久久久久久久久久久久大奶| 成年版毛片免费区| 久久久久久久久久久久大奶| 午夜激情av网站| 中国美女看黄片| 一级黄色大片毛片| 这个男人来自地球电影免费观看| 久热爱精品视频在线9| 麻豆av在线久日| 麻豆乱淫一区二区| 亚洲五月婷婷丁香| 身体一侧抽搐| 久久香蕉激情| 亚洲 国产 在线| 女警被强在线播放| 亚洲五月色婷婷综合| 91av网站免费观看| 免费在线观看视频国产中文字幕亚洲| 国产精品九九99| 亚洲欧洲精品一区二区精品久久久| 亚洲国产看品久久| 久久久国产一区二区| 亚洲精品久久成人aⅴ小说| av一本久久久久|