--A Non-Blossoming Approach"/>
  • <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Algorithms and Identities for (q,h)-Bernstein Polynomials and (q,h)-Bezier Curves
    --A Non-Blossoming Approach

    2016-04-18 06:26:41IlijaJegdiJungsookLarsonandPlamenSimeonov
    Analysis in Theory and Applications 2016年4期

    Ilija Jegdi′c,Jungsook Larsonand Plamen Simeonov

    1DepartmentofMathematics,TexasSouthernUniversity,Houston,TX77004,USA.

    2Department of Mathematics and Statistics,University of Houston–Downtown, Houston,TX 77002,USA.

    Algorithms and Identities for (q,h)-Bernstein Polynomials and (q,h)-Bezier Curves
    --A Non-Blossoming Approach

    Ilija Jegdi′c1,?,Jungsook Larson2and Plamen Simeonov2

    1DepartmentofMathematics,TexasSouthernUniversity,Houston,TX77004,USA.

    2Department of Mathematics and Statistics,University of Houston–Downtown, Houston,TX 77002,USA.

    .We establish several fundamental identities,including recurrence relations, degree elevation formulas,partition of unity and Marsden identity,for quantum Bernstein bases and quantum B ′ezier curves.We also develop two term recurrencerelations for quantum Bernstein bases and recursive evaluation algorithms for quantum B′ezier curves.Our proofs use standard mathematical induction and other elementary techniques.

    Bernstein polynomials,B′ezier curves,Marsden’s identity,recursive evaluation.

    AMS SubjectClassif i cations:11C08,65DXX,65D15,65D17

    1 Introduction and def i nitions

    Bernstein bases are polynomial bases used as blending functions for the construction of B ′ezier curves and surfaces.These bases have been used extensively over the last half century in geometric modeling,computer aided geometric design(CAGD),and approximation theory.The main application of B ′ezier curves and surfaces is in mathematical modeling of curves and surfaces that are used in various real life problems.One essential property of a B ′ezier curve or a B ′ezier surface is that it can be computed very eff i ciently using aff i ne recursive evaluation algorithms.This is due to certain structural properties of the Bernstein basis functions that other polynomial bases do not possess.

    The classical Bernstein polynomials were introduced by Bernstein in 1912 and have foundmany applications inapplied andcomputational mathematics since then.Theclassical B ′ezier curves and surfaces were introduced in 1962 by the French engineer PierreB ′ezier who worked for the French car manufacturer Renault.He used B ′ezier curves and surfaces to design and model aerodynamic car bodies[1].The q-Bernstein polynomials were introduced and studied only recently by G.Phillips and his collaborators[7]. The theory of quantum q-and h-B ′ezier curves in the context of the quantum q-and hblossoming was developed very recently by Goldman,Simeonov,and Zaf i ris[4,9,10].

    In this paper,our main goal is to state and prove several of the most important properties of the(q,h)-Bernstein polynomials and(q,h)-B ′ezier curves such as recurrence relations,degree elevation algorithms,the partition of unity property,linear independence(polynomial basis),recursive evaluation algorithms,and a(q,h)-Marsden identity. This work extends and generalizes some analogous results of Goldman,Simeonov,and Zaf i ris[2,4,9,10]for q-and h-Bernstein polynomials and q-and h-B ′ezier curves.Most of our proofs will use the method of mathematical induction(with respect to the polynomial degree),instead of the blossoming techniques used by Goldman,Simeonov,and Zaf i ris[2,4,9,10],since we lack the machinery of the(q,h)-blossoming theory.The advantage of our approach is that we can establish all these important properties almost from scratch using only the very popular and well-understood induction argument,instead of the much less familiar theory of quantum blossoming.

    We begin with some notation and terminology.Let g(t)=qt+h be a linear function, q/=0,?1.The j-th composition of the function g is def i ned by

    We set g[0](t)=t.For example

    Notice that

    The(q,h)-Bernstein polynomials of degree n on the interval[a,b]are def i ned by[3]

    and(a;q)ndenotes the q-shifted factorial def i ned by[8]

    Therefore,we have the following limiting relation

    where

    are the classical Bernstein polynomials of degree n on the interval[a,b],[2].

    The paper is organized as follows.In Section 2 we establish recurrence relations for the(q,h)-Bernstein polynomials.The degree elevation formula for the(q,h)-Bernstein polynomials is established in Section 3.The partition of unity property is given and proved in Section 4.We show that the(q,h)-Bernstein polynomials form a basis for the space of degree n polynomials in Section 5.Using the recurrence relations from Section 2,we derive two recursive evaluation algorithms for(q,h)-B ′ezier curves in Section 6. Degree elevation for(q,h)-B ′ezier surfaces is discussed in Section 7,and the proof of the (q,h)-Marsden identity is given in Section 8.We conclude the paper by discussing future work in Section 9.

    2 Recurrence relations for the(q,h)-Bernstein polynomials

    In this section we derive two recurrence relations for the(q,h)-Bernstein polynomials using the two recurrence relations for the q-binomial coeff i cients[6]:

    Similarly,substituting(2.1b)into(1.2),we derive

    3 Degree elevation formula for the(q,h)-Bernstein polynomials

    First we need to f i nd coeff i cients c(n,k)and d(n,k)such that

    Suppose we have found these coeff i cients.Then we can write

    From the last equation and(1.2)it follows that

    k=0,···,n.Eq.(3.2)expresses a(q,h)-Bernstein polynomial of degree n as a linear combination of two(q,h)-Bernstein polynomials of degree n+1.Now,we return to f i ndingthe coeff i cients c(n,k)and d(n,k).Comparing the like terms in(3.1),we obtain the linear system

    since

    From(3.3a)and(3.4)it follows that

    From(3.2),(3.4),and(3.6)we obtain the degree elevation formula

    4 Partition of unity

    Proposition 4.1.The(q,h)-Bernstein polynomials satisfy the partition of unity property

    Proof.To prove(4.1),we use induction with respect to n ≥ 0.

    by the induction hypothesis.Therefore(4.1)is true for every n.

    5 Polynomial basis

    Proposition 5.1.The(q,h)-Bernstein polynomials of degree n form a basis for the space of polynomials of degree at most n.

    Proof.It suff i ces to show that for every n ≥ 0 there exist coeff i cientssuch that

    We use induction with respect to n.When n=0 we have(t;[a,b];q,h)=1.Assume that (5.1)is true for some degree n ≥ 0.We now prove(5.1)for degree n+1.

    First,let 0 ≤ m ≤ n.By the induction hypothesis and the degree elevation equation (3.2)we have

    where

    k=0,···,n+1,and c(n,k)and d(n,k)are given by(3.6)and(3.4). Now consider the monomial tn+1.By the induction hypothesis

    where by(1.2)the coeff i cientsandmust satisfy the equation

    Equating the coeff i cients of t on the both sides of(5.3),we obtain

    Equating the constant coeff i cients on both sides of(5.3)we obtain

    Multiplying(5.4)by g[k](a)and adding to(5.5)yields

    Solving the last equation for ?d(n,k)and applying(3.5),we get

    Then from(5.5)and(5.6)it follows that

    6 Recursive evaluation algorithms for(q,h)-B′ezier curves

    A(q,h)-B ′ezier curve of degree n on the interval[a,b]is a polynomial curve of the form

    Given a degree n polynomial P(t),the coef fi cientsin Eq.(6.1)are unique,because by Proposition 5.1 the(q,h)-Bernstein polynomials form a basis.These coef fi cients are called the control points of the(q,h)-B e′zier curve P(t).

    Using recurrence relations(2.2)and(2.3),we can derive two recursive evaluation algorithms for(q,h)-B e′zier curves.Below we describe these two algorithms.

    where the control points at level r+1 are

    k=0,···,n?r?1.

    At the last level n of this algorithm we get a single pointwhich gives the value of the B ′ezier curve at t,that is=P(t).

    Similarly,substituting recurrence relation(2.3)into Eq.(6.2),we derive the second recursive evaluation algorithm for(q,h)-B ′ezier curves:

    k=0,···,n ? r?1,r=0,···,n ? 1.Again,at the last level n we get=P(t).

    7 Degree elevation for(q,h)-B ′ezier curves

    Let

    be a(q,h)-B ′ezier curve of degree n on the interval[a,b].We want to write P(t)as a(q,h)-B ′ezier curve of degree n+1,that is,

    Substituting the degree-elevation formula(3.2)into(7.1),we get

    where c(n,?1)=d(n,n+1)=0 and the coef fi cients c(n,k)and d(n,k)are given by(3.6) and(3.4).Therefore,the degree elevated control pointsin(7.2)are given by

    k=0,···,n+1,where P?1=0 and Pn+1=0.

    8 The(q,h)-Marsden identity

    Theorem 8.1((q,h)-Marsden Identity).The(q,h)-Bernstein polynomials on the interval[a,b] satisfy

    where g(t)=qt+h and n ≥ 1.

    Proof.To prove(8.1)we use induction with respect to n. First consider the case n=1.By(1.2)and(1.1)we have

    In this case the left-hand side of(8.1)is(x ? t),while the right-hand side of(8.1)is

    Therefore,(8.1)is true when n=1.

    Next assume that(8.1)holds for some n ≥ 1.Set

    Then(8.1)takes the form

    Now we prove(8.4)for n+1.The left-hand side of(8.4)for n+1 is

    with Pn,n+1=0 and Pn,?1=0,provided that we can f i nd en,k=en,k(x)and fn,k=fn,k(x)such that

    To simplify the notation we omit some of the variables and parameters in(8.6)and in the equations that follow.From(1.2)and(8.6)we get

    where

    Equating the constant terms and the t-terms in(8.7),we obtain the system

    whereweused(1.1).Addingthesecondequationin(8.9)times g[k](a)tothef i rstequation in(8.9)yields

    Therefore

    where we used(3.5).Then the second equation in(8.9)and(1.1)yield

    From(8.8),(8.10),and(8.11)it follows that

    and

    Next,by(8.12)and(8.13),we get

    We now simplify the last expression in(8.15).We can write

    For the coeff i cients A,B,and C in(8.16)using(1.1)we derive

    and

    From(8.16),(8.17a),(8.17b),and(8.18)we get

    Then,from(8.15)and(8.19)it follows that

    From(8.14),(8.20),and(8.3)we get

    Finally,combining(8.5)and(8.21)we obtain the right-hand side of equation(8.4)for the case n+1.We have shown that(8.4)is true for the case n+1.This completes the proof of the(q,h)-Marsden identity.

    9 Future work

    Wehaveestablishedseveralimportantproperties,identities,and algorithmsforthe(q,h)-Bernstein polynomials and the(q,h)-B ′ezier curves using only standard mathematical induction.Many of these and other properties have been derived in the recent works[3,4, 8–10].

    The most natural next stage of this work is to program and implement the recursive evaluation and degree elevation algorithms for(q,h)-B′ezier curves.Then(q,h)-Bernstein polynomials and(q,h)-B ′ezier surfaces of several variables can be constructed using tensor products of univariate(q,h)-Bernstein polynomials and their analogous properties can be studied.These multivariate(q,h)-Bernstein polynomials can be used as blending functions to def i ne(q,h)-B ′ezier surfaces,and to study their properties and recursive evaluation algorithms.

    This future work is outside of the scope of this paper and will be accomplished in future research projects.

    [1]G.Farin,Curves and Surfaces for CAGD,5th ed.,Morgan Kaufman,2001.

    [2]R.Goldman,Pyramid Algorithms,A Dynamic Programming Approach to Curves and Surfaces for Geometric Modeling,The Morgan Kaufman Series in Computer Graphics and Geometric Modeling,Elsevier Science,2003.

    [3]R.Goldman and P.Simeonov,Quantum Bernstein basesand quantum B′eziercurves,J.Comput.Appl.Math.,288(2015),284–303.

    [4]R.Goldman and P.Simeonov,Formulas andalgorithms forquantum differentiationof quantum Bernstein bases and quantum B′ezier curves based on quantum blossoming,Graphical Models,74(2012),326–334.

    [5]N.Gregorz,Approximationpropertiesfor generalizedBernstein polynomials,J.Math.Anal. Appl.,350(2009),50–55.

    [6]V.Kac and P.Cheung,Quantum Calculus,Universitext Series,vol.IX,Springer-Verlag,2002.

    [7]G.Phillips,Bernstein polynomials based on the q-integers,Annals Numer.Anal.,4(1997), 511–518.

    [8]P.Simeonov and R.Goldman,Quantum B-splines,BIT,53(1)(2013),193–223.

    [9]P.Simeonov,V.Zaf i ris and R.Goldman,h-Blossoming:A new approach to algorithms and identities for h-Bernstein bases and h-B′ezier curves,Computer Aided Geometric Design,28 (2011),549–565.

    [10]P.Simeonov,V.Zaf i ris and R.Goldman,q-Blossoming:A new approach to algorithms and identities for q-Bernstein bases and q-B ′ezier curves,J.Approx.Theory,164(1)(2012),77–104.

    Received 17 March 2015;Accepted(in revised version)23 September 2016

    ?Corresponding author.Email addresses:ilija.jegdic@tsu.edu(I.Jegdi′c),jung sook@yahoo.com (J.Larson),simeonovp@uhd.edu(P.Simeonov)

    亚洲美女黄色视频免费看| 亚洲欧美中文字幕日韩二区| 99热网站在线观看| 黄色一级大片看看| 最近的中文字幕免费完整| 欧美另类一区| 欧美精品人与动牲交sv欧美| tube8黄色片| 一二三四中文在线观看免费高清| 香蕉国产在线看| 欧美老熟妇乱子伦牲交| 我要看黄色一级片免费的| 国产欧美另类精品又又久久亚洲欧美| 免费在线观看完整版高清| 另类精品久久| 免费观看性生交大片5| 婷婷色综合大香蕉| 90打野战视频偷拍视频| 欧美日韩亚洲高清精品| 欧美性感艳星| 亚洲精品日韩在线中文字幕| 国产xxxxx性猛交| 99热全是精品| 色视频在线一区二区三区| 91aial.com中文字幕在线观看| 成年女人在线观看亚洲视频| 曰老女人黄片| 亚洲少妇的诱惑av| 国语对白做爰xxxⅹ性视频网站| 五月玫瑰六月丁香| 日韩人妻精品一区2区三区| 日本91视频免费播放| 老司机亚洲免费影院| 亚洲av成人精品一二三区| 伦理电影大哥的女人| 国产色爽女视频免费观看| 色婷婷久久久亚洲欧美| 中文精品一卡2卡3卡4更新| 中文天堂在线官网| 日韩精品免费视频一区二区三区 | 欧美亚洲 丝袜 人妻 在线| 亚洲国产毛片av蜜桃av| 亚洲综合精品二区| 亚洲精品色激情综合| 国产熟女欧美一区二区| 国产高清三级在线| 人妻人人澡人人爽人人| 黄片无遮挡物在线观看| 另类亚洲欧美激情| 亚洲欧美一区二区三区国产| 日本av手机在线免费观看| 亚洲精品乱久久久久久| 狠狠婷婷综合久久久久久88av| 久久久a久久爽久久v久久| 国产精品久久久久久av不卡| 国产欧美日韩综合在线一区二区| 在线精品无人区一区二区三| 欧美丝袜亚洲另类| 在线观看免费高清a一片| 波野结衣二区三区在线| 精品亚洲成国产av| 五月天丁香电影| 成人18禁高潮啪啪吃奶动态图| 成人毛片60女人毛片免费| 国产不卡av网站在线观看| 久热久热在线精品观看| 男男h啪啪无遮挡| 久久这里只有精品19| 18在线观看网站| 波野结衣二区三区在线| 午夜福利视频在线观看免费| 日韩一区二区三区影片| 成人无遮挡网站| 日本vs欧美在线观看视频| 亚洲第一区二区三区不卡| 久久亚洲国产成人精品v| 女的被弄到高潮叫床怎么办| 大片免费播放器 马上看| 欧美少妇被猛烈插入视频| 日本午夜av视频| 九九在线视频观看精品| 午夜影院在线不卡| 内地一区二区视频在线| 老司机亚洲免费影院| 黑人猛操日本美女一级片| 欧美亚洲 丝袜 人妻 在线| 国产毛片在线视频| 黑人巨大精品欧美一区二区蜜桃 | 18禁在线无遮挡免费观看视频| 亚洲一级一片aⅴ在线观看| 汤姆久久久久久久影院中文字幕| 91精品三级在线观看| 最后的刺客免费高清国语| 久久青草综合色| 久久人人爽人人爽人人片va| 日本色播在线视频| 黄色一级大片看看| 亚洲欧美色中文字幕在线| 国产精品一区www在线观看| 亚洲激情五月婷婷啪啪| 亚洲性久久影院| 夜夜骑夜夜射夜夜干| √禁漫天堂资源中文www| 久久这里只有精品19| 日本色播在线视频| 18在线观看网站| 国产免费福利视频在线观看| 女人久久www免费人成看片| 欧美性感艳星| 汤姆久久久久久久影院中文字幕| 久久鲁丝午夜福利片| 纯流量卡能插随身wifi吗| 亚洲精品第二区| 日韩免费高清中文字幕av| 少妇猛男粗大的猛烈进出视频| 国产精品国产三级国产av玫瑰| 久久精品国产自在天天线| 欧美精品一区二区大全| 少妇 在线观看| 亚洲成人手机| 中文欧美无线码| 永久免费av网站大全| 欧美日韩综合久久久久久| 国产成人一区二区在线| 日韩在线高清观看一区二区三区| 亚洲国产看品久久| 91成人精品电影| 久久精品久久久久久久性| 9色porny在线观看| 99久久中文字幕三级久久日本| 精品一区二区免费观看| 国产精品偷伦视频观看了| 久久久亚洲精品成人影院| 看十八女毛片水多多多| 国产一区二区三区综合在线观看 | 天堂俺去俺来也www色官网| 夫妻午夜视频| 如日韩欧美国产精品一区二区三区| 日本黄色日本黄色录像| 久久久久久久国产电影| 欧美成人午夜精品| 最近中文字幕高清免费大全6| 街头女战士在线观看网站| 看免费成人av毛片| 蜜桃在线观看..| 日日啪夜夜爽| 天堂俺去俺来也www色官网| 水蜜桃什么品种好| 最后的刺客免费高清国语| 搡老乐熟女国产| 国产极品粉嫩免费观看在线| 边亲边吃奶的免费视频| 免费高清在线观看日韩| 精品人妻在线不人妻| 久久精品国产a三级三级三级| 青春草国产在线视频| 婷婷色综合www| 午夜免费鲁丝| 最近最新中文字幕免费大全7| 69精品国产乱码久久久| 亚洲av日韩在线播放| 久久精品国产亚洲av涩爱| 深夜精品福利| 亚洲精品久久成人aⅴ小说| 国产精品久久久久久久久免| 韩国av在线不卡| 日韩 亚洲 欧美在线| 卡戴珊不雅视频在线播放| 国产亚洲午夜精品一区二区久久| 草草在线视频免费看| 中文字幕人妻熟女乱码| 成人手机av| 熟女电影av网| 亚洲性久久影院| 国产乱人偷精品视频| www日本在线高清视频| 男女边吃奶边做爰视频| 美女大奶头黄色视频| 国产日韩欧美在线精品| 亚洲五月色婷婷综合| 伦理电影免费视频| 亚洲欧美一区二区三区黑人 | 大话2 男鬼变身卡| 亚洲精品乱久久久久久| 精品亚洲成国产av| 久久精品久久久久久久性| 欧美日韩av久久| 成人18禁高潮啪啪吃奶动态图| 波多野结衣一区麻豆| 国产精品偷伦视频观看了| 少妇高潮的动态图| 欧美老熟妇乱子伦牲交| 蜜桃在线观看..| 成年动漫av网址| 黄色 视频免费看| 2021少妇久久久久久久久久久| 高清欧美精品videossex| 欧美国产精品va在线观看不卡| av电影中文网址| 亚洲国产最新在线播放| 好男人视频免费观看在线| 春色校园在线视频观看| 大片电影免费在线观看免费| 各种免费的搞黄视频| 亚洲美女视频黄频| 国产黄频视频在线观看| 亚洲欧洲国产日韩| 日本av免费视频播放| 黑丝袜美女国产一区| 人人妻人人爽人人添夜夜欢视频| 尾随美女入室| 日韩成人伦理影院| 亚洲欧美成人精品一区二区| 色5月婷婷丁香| 国产精品人妻久久久久久| 赤兔流量卡办理| a级片在线免费高清观看视频| 高清视频免费观看一区二区| 国产探花极品一区二区| 久久毛片免费看一区二区三区| 成年女人在线观看亚洲视频| 乱人伦中国视频| 又黄又爽又刺激的免费视频.| 一级爰片在线观看| 国产一区有黄有色的免费视频| 亚洲av在线观看美女高潮| 亚洲国产精品国产精品| 午夜福利视频在线观看免费| 久久精品熟女亚洲av麻豆精品| 成人综合一区亚洲| 国产成人午夜福利电影在线观看| 国产成人午夜福利电影在线观看| 欧美老熟妇乱子伦牲交| 日韩在线高清观看一区二区三区| 亚洲精华国产精华液的使用体验| 久久这里有精品视频免费| 日韩欧美一区视频在线观看| 精品人妻在线不人妻| 欧美老熟妇乱子伦牲交| 十八禁网站网址无遮挡| 一边亲一边摸免费视频| 亚洲精品视频女| 91国产中文字幕| 看非洲黑人一级黄片| 七月丁香在线播放| 五月玫瑰六月丁香| 免费观看av网站的网址| 午夜福利,免费看| 99热6这里只有精品| 如何舔出高潮| 97在线人人人人妻| 久久精品国产a三级三级三级| 亚洲av在线观看美女高潮| 精品人妻一区二区三区麻豆| 精品亚洲乱码少妇综合久久| 亚洲人与动物交配视频| 日韩一区二区三区影片| 在线观看www视频免费| 如何舔出高潮| 日日啪夜夜爽| 亚洲欧美色中文字幕在线| 国产不卡av网站在线观看| 深夜精品福利| 大香蕉久久网| 人体艺术视频欧美日本| 精品国产露脸久久av麻豆| 久久久久久久久久久免费av| 亚洲精品中文字幕在线视频| 久久久久久伊人网av| 日韩制服骚丝袜av| 日本欧美视频一区| 97精品久久久久久久久久精品| 久久久久国产精品人妻一区二区| 国产免费一区二区三区四区乱码| 黑人欧美特级aaaaaa片| 搡女人真爽免费视频火全软件| 男人操女人黄网站| 国产一区二区在线观看日韩| 午夜精品国产一区二区电影| 久久久a久久爽久久v久久| 免费看不卡的av| 久久久国产精品麻豆| av.在线天堂| 捣出白浆h1v1| 欧美最新免费一区二区三区| 纵有疾风起免费观看全集完整版| 最新的欧美精品一区二区| 免费观看av网站的网址| 汤姆久久久久久久影院中文字幕| 99香蕉大伊视频| 成人午夜精彩视频在线观看| 久久精品久久久久久久性| 亚洲精品日本国产第一区| 最近2019中文字幕mv第一页| 国产精品国产三级国产av玫瑰| 一区二区三区精品91| 99香蕉大伊视频| 亚洲av中文av极速乱| 日韩 亚洲 欧美在线| 丰满饥渴人妻一区二区三| 久久午夜综合久久蜜桃| 全区人妻精品视频| 亚洲精品中文字幕在线视频| 国产亚洲av片在线观看秒播厂| 欧美精品高潮呻吟av久久| 久久这里有精品视频免费| 精品一品国产午夜福利视频| 最近手机中文字幕大全| 亚洲精品国产av成人精品| 欧美成人精品欧美一级黄| 欧美xxxx性猛交bbbb| 搡老乐熟女国产| 91精品国产国语对白视频| 国产综合精华液| 亚洲av男天堂| 九九爱精品视频在线观看| 亚洲四区av| 一二三四在线观看免费中文在 | 国产一区二区三区综合在线观看 | 永久免费av网站大全| 日韩制服丝袜自拍偷拍| av电影中文网址| 丰满乱子伦码专区| 亚洲欧洲国产日韩| 中国国产av一级| 成人18禁高潮啪啪吃奶动态图| 亚洲精品色激情综合| 欧美精品一区二区免费开放| 日韩不卡一区二区三区视频在线| 日韩制服骚丝袜av| 多毛熟女@视频| 满18在线观看网站| 丝袜喷水一区| 欧美变态另类bdsm刘玥| 欧美变态另类bdsm刘玥| 国产一区二区激情短视频 | xxx大片免费视频| 久久影院123| 精品国产国语对白av| 亚洲精品日本国产第一区| 国产片内射在线| 一区二区三区乱码不卡18| 亚洲欧美日韩另类电影网站| 国产成人欧美| 午夜福利视频在线观看免费| 久久久久久久久久成人| 欧美变态另类bdsm刘玥| 国产一区二区三区综合在线观看 | 韩国av在线不卡| 欧美国产精品va在线观看不卡| 2021少妇久久久久久久久久久| 国产欧美日韩一区二区三区在线| 黄色毛片三级朝国网站| 亚洲国产色片| 国产黄色免费在线视频| 99久久中文字幕三级久久日本| 国产高清不卡午夜福利| 亚洲少妇的诱惑av| 人人澡人人妻人| 制服人妻中文乱码| 男男h啪啪无遮挡| 黄片播放在线免费| 老司机亚洲免费影院| 老司机亚洲免费影院| 国产精品蜜桃在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲欧洲精品一区二区精品久久久 | 另类亚洲欧美激情| 91成人精品电影| 免费看不卡的av| 亚洲经典国产精华液单| 国产永久视频网站| 91aial.com中文字幕在线观看| 亚洲av男天堂| 午夜激情久久久久久久| 少妇被粗大猛烈的视频| 亚洲欧美成人综合另类久久久| 激情五月婷婷亚洲| 亚洲 欧美一区二区三区| 欧美精品亚洲一区二区| 国产精品蜜桃在线观看| 国产精品久久久av美女十八| 飞空精品影院首页| 亚洲精品美女久久久久99蜜臀 | 精品熟女少妇av免费看| 国产精品无大码| 国产高清国产精品国产三级| 亚洲精品国产av成人精品| 亚洲婷婷狠狠爱综合网| av女优亚洲男人天堂| 国产无遮挡羞羞视频在线观看| 日韩 亚洲 欧美在线| 成年动漫av网址| 在线精品无人区一区二区三| 亚洲国产看品久久| 欧美日韩亚洲高清精品| 精品人妻一区二区三区麻豆| 成年人免费黄色播放视频| 欧美精品一区二区免费开放| 黑丝袜美女国产一区| 中文字幕制服av| 九九爱精品视频在线观看| 久久亚洲国产成人精品v| 精品亚洲成a人片在线观看| 日本黄色日本黄色录像| 亚洲一区二区三区欧美精品| 极品少妇高潮喷水抽搐| 美女中出高潮动态图| 午夜福利乱码中文字幕| 午夜福利网站1000一区二区三区| 亚洲一级一片aⅴ在线观看| 免费观看性生交大片5| 少妇 在线观看| 欧美成人精品欧美一级黄| 日产精品乱码卡一卡2卡三| 亚洲第一av免费看| 亚洲,欧美精品.| 日韩一区二区视频免费看| 99国产综合亚洲精品| 免费在线观看黄色视频的| 亚洲av电影在线观看一区二区三区| 亚洲综合色惰| 国产日韩欧美视频二区| 99九九在线精品视频| 国产麻豆69| av免费观看日本| 大片电影免费在线观看免费| 婷婷色av中文字幕| 久久久久久久久久人人人人人人| 十分钟在线观看高清视频www| 午夜91福利影院| 国产高清三级在线| 亚洲精品久久久久久婷婷小说| 国产av国产精品国产| 亚洲国产精品国产精品| 国产精品 国内视频| 日本爱情动作片www.在线观看| 999精品在线视频| 美女脱内裤让男人舔精品视频| 黑人猛操日本美女一级片| 欧美成人精品欧美一级黄| 免费观看av网站的网址| 国产成人av激情在线播放| 中文字幕制服av| 亚洲精品aⅴ在线观看| 久久人人爽av亚洲精品天堂| 久久久久久久国产电影| 国产白丝娇喘喷水9色精品| 亚洲成国产人片在线观看| 久久99热6这里只有精品| 久久国产精品大桥未久av| 免费久久久久久久精品成人欧美视频 | 婷婷色麻豆天堂久久| 男女高潮啪啪啪动态图| 久热这里只有精品99| 久久综合国产亚洲精品| av播播在线观看一区| 婷婷色综合www| 欧美日韩av久久| 国产老妇伦熟女老妇高清| 日韩av在线免费看完整版不卡| 亚洲人成77777在线视频| 午夜福利乱码中文字幕| 精品少妇黑人巨大在线播放| 十八禁网站网址无遮挡| 街头女战士在线观看网站| 亚洲情色 制服丝袜| 丝瓜视频免费看黄片| 秋霞伦理黄片| 国产日韩欧美在线精品| 国产精品一国产av| 免费观看无遮挡的男女| 欧美日韩av久久| 久久久久国产网址| 少妇被粗大猛烈的视频| 免费观看性生交大片5| 久久精品国产亚洲av天美| 亚洲经典国产精华液单| 亚洲一级一片aⅴ在线观看| 日本av手机在线免费观看| 亚洲五月色婷婷综合| 国产成人一区二区在线| 亚洲天堂av无毛| 青春草亚洲视频在线观看| 中文字幕精品免费在线观看视频 | 精品视频人人做人人爽| 人人妻人人澡人人爽人人夜夜| 亚洲人成网站在线观看播放| 最新中文字幕久久久久| 男人爽女人下面视频在线观看| 久久久久久久国产电影| 大陆偷拍与自拍| 国产激情久久老熟女| 欧美丝袜亚洲另类| 日韩熟女老妇一区二区性免费视频| 日本wwww免费看| 丝袜脚勾引网站| 一二三四在线观看免费中文在 | 菩萨蛮人人尽说江南好唐韦庄| 国产在线视频一区二区| 大香蕉97超碰在线| 丝袜喷水一区| 日韩欧美精品免费久久| 高清不卡的av网站| 999精品在线视频| 99九九在线精品视频| 久久99热6这里只有精品| 国产欧美亚洲国产| 日韩中字成人| 黑丝袜美女国产一区| 各种免费的搞黄视频| 婷婷色综合www| 在线观看一区二区三区激情| 自线自在国产av| 纵有疾风起免费观看全集完整版| 一本—道久久a久久精品蜜桃钙片| 99久久综合免费| 新久久久久国产一级毛片| 建设人人有责人人尽责人人享有的| 亚洲国产毛片av蜜桃av| 久久 成人 亚洲| 亚洲伊人色综图| 亚洲国产日韩一区二区| 国产黄色免费在线视频| 国国产精品蜜臀av免费| 色婷婷久久久亚洲欧美| 国产高清三级在线| 国产在线视频一区二区| 最黄视频免费看| 嫩草影院入口| 热re99久久国产66热| 综合色丁香网| 又黄又爽又刺激的免费视频.| 观看av在线不卡| 美女国产高潮福利片在线看| 亚洲精品国产av成人精品| 成人无遮挡网站| 精品人妻一区二区三区麻豆| 少妇高潮的动态图| 男的添女的下面高潮视频| 欧美xxⅹ黑人| 亚洲美女视频黄频| 午夜免费鲁丝| 韩国av在线不卡| 免费看光身美女| 99香蕉大伊视频| 亚洲精品国产色婷婷电影| 中文字幕精品免费在线观看视频 | 久久久久网色| 久久毛片免费看一区二区三区| 蜜臀久久99精品久久宅男| 色吧在线观看| a级毛片黄视频| 免费在线观看完整版高清| 亚洲一区二区三区欧美精品| 国产精品成人在线| 99久久综合免费| 精品人妻在线不人妻| 色94色欧美一区二区| 99香蕉大伊视频| 午夜老司机福利剧场| 日韩制服丝袜自拍偷拍| av有码第一页| 伊人亚洲综合成人网| 久久人人爽av亚洲精品天堂| 久热久热在线精品观看| 久久女婷五月综合色啪小说| 99久久中文字幕三级久久日本| 国产av国产精品国产| 国产精品麻豆人妻色哟哟久久| 亚洲经典国产精华液单| 亚洲精品久久久久久婷婷小说| 国国产精品蜜臀av免费| 午夜激情av网站| 亚洲,欧美精品.| 99久久中文字幕三级久久日本| 国内精品宾馆在线| 熟女av电影| 色婷婷av一区二区三区视频| 曰老女人黄片| 宅男免费午夜| 国产麻豆69| 水蜜桃什么品种好| 亚洲在久久综合| 国产麻豆69| 欧美精品亚洲一区二区| 亚洲成av片中文字幕在线观看 | 国产国拍精品亚洲av在线观看| www日本在线高清视频| 18+在线观看网站| 国产国语露脸激情在线看| 一级毛片我不卡| 少妇被粗大的猛进出69影院 | 99久国产av精品国产电影| 一区二区日韩欧美中文字幕 | 亚洲成人手机| 国产精品麻豆人妻色哟哟久久| 中文字幕人妻丝袜制服| 一本—道久久a久久精品蜜桃钙片| 国产成人aa在线观看| 免费看光身美女| 十分钟在线观看高清视频www| 亚洲伊人久久精品综合| 亚洲综合精品二区| 宅男免费午夜| 菩萨蛮人人尽说江南好唐韦庄| 国产国语露脸激情在线看| 日本爱情动作片www.在线观看| 亚洲伊人色综图| 中文字幕另类日韩欧美亚洲嫩草| 一级a做视频免费观看| 性色av一级| 丁香六月天网| 九草在线视频观看| 天堂中文最新版在线下载|