• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    EVANS FUNCTIONS AND INSTABILITY OF A STANDING PULSE SOLUTION OF A NONLINEAR SYSTEM OF REACTION DIFFUSION EQUATIONS??

    2016-04-18 08:32:23LinghaiZhang
    Annals of Applied Mathematics 2016年1期
    關(guān)鍵詞:易腐裝運收集器

    Linghai Zhang

    (Dept.of Math.,Lehigh University,14 East Packer Avenue, Bethlehem,Pennsylvania 18015 USA)

    EVANS FUNCTIONS AND INSTABILITY OF A STANDING PULSE SOLUTION OF A NONLINEAR SYSTEM OF REACTION DIFFUSION EQUATIONS??

    Linghai Zhang?

    (Dept.of Math.,Lehigh University,14 East Packer Avenue, Bethlehem,Pennsylvania 18015 USA)

    In this paper,we consider a nonlinear system of reaction dif f usion equations arising from mathematical neuroscience and a system of nonlinear scalar reaction dif f usion equations under some assumptions on their coefficients.

    nonlinear system of reaction dif f usion equations;standing pulse solutions;existence;instability;linearized stability criterion;Evans functions

    2000 Mathematics Subject Classification 35Q20

    1 Introduction

    1.1 Mathematical Model Equations

    Consider the following nonlinear system of reaction dif f usion equations arising from mathematical neuroscience

    Also consider the following nonlinear scalar reaction dif f usion equations

    and

    wherew0=α(β-2θ)>0 is a positive constant.In these model equations,u=u(x,t)represents the membrane potential of a neuron at positionxand timet,w=w(x,t)represents the leaking current,a slow process that controls the excitation of neuron membrane.The positive constantsα>0,β>0,γ>0,ε>0 andθ>0 represent neurobiological mechanisms.The positive constantθ>0 represents the threshold for excitation.The functionH=H(u-θ)represents the Heaviside step function,which is def i ned byH(u-θ)=0 for allu<θ,H(0)=1/2 andH(u-θ)=1 for allu>θ.When an action potential is generated across a neuron membrane,Na+ion activation is considerably faster than K+ion activation.The positive constantεrepresents the ratio of the activation of Na+ion channels over the activation of K+ion channels.The two nonlinear scalar reaction dif f usion equations may be obtained by settingε=0,w=0 andε=0,w=w0,respectively,in system(1.1)-(1.2).See Feroe[5-7],McKean[8-10],McKean and Moll[11],Rinzel and Keller[12],Rinzel and Terman[13],Terman[14],Wang[15]and[16]for more neurobiological backgrounds of the model system.

    1.2 Main Difficulty,Main Purposes and Main Strategy

    Note that there exists neither maximum principle nor conservation laws to the nonlinear system of reaction dif f usion equations.The existence and instability of standing pulse solutions of the system are very important and interesting topics in applied mathematics,but they have been open for a long time,except for some numerical simulations and some claimed results without rigorous mathematical analysis.The strategy to overcome the main difficulty:coupling together linearized stability criterion and Evans functions seem to be the best way to approach the instability of the standing pulse solutions.

    The main purpose of this paper is to accomplish the existence and instability of standing pulse solutions of the nonlinear system of reaction dif f usion equations(1.1)-(1.2)and the nonlinear scalar reaction dif f usion equation(1.3).The existence of the standing pulse solutions of both(1.1)-(1.2)and(1.3)follows from standard ideas, methods and techniques in dynamical systems.The instability of the standing pulse solutions will be accomplished by coupling together linearized stability criterion and Evans functions.The interesting and difficult points are that the eigenvalueproblems obtained by using linearization technique and the method of separation of variables involve the Dirac delta impulse functions.This makes it very difficult to establish the equivalence of the nonlinear stability,the linear stability and the spectral stability of the standing pulse solutions.Another very interesting point is that the parameterεplays no role in the existence of the standing pulse solutions, but it plays a very important role in the instability of the standing pulse solutions.

    The construction and application of Evans functions to stability analysis of standing pulse solutions of the nonlinear system of reaction dif f usion equations(1.1)-(1.2)have been open for a long time.This paper aims to provide positive solutions to the open problems.The introduction of the Evans function and the study of the instability of the standing pulse solutions have strong impacts on stability of fast multiple traveling pulse solutions.Mathematically and biologically,these are very important/interesting problems.We believe that the same ideas also work for the existence and stability of fast multiple traveling pulse solutions and the existence and instability of slow multiple traveling pulse solutions of system(1.1)-(1.2).

    1.3 Main Results

    Theorem 1 (I)Suppose that the positive constants α>0,β>0,γ>0, ε>0and θ>0satisfy the conditions0<2(1+αγ)θ<αβγ.Then there exists a unique standing pulse solution(U,W)∈C1(R)∩C2(R-{0})to the nonlinear system of reaction dif f usion equations(1.1)-(1.2).The standing pulse solution is given explicitly by

    (II)The standing pulse solution is unstable.

    (III)Suppose that the positive constants α>0,β>0and θ>0satisfy the conditions0<2θ<β.Then there exists a unique unstable standing pulse solution U∈C1(R)∩C2(R-{0})to the nonlinear scalar reaction dif f usion equation(1.3). The standing pulse solution is given explicitly by

    1.4 Previous Related Results

    In early papers,the existence and instability of the standing pulse solutions had been announced to be true.For the existence and instability of the standing pulse solutions,the previous analysis missed a few key points.One must make reasonable assumptions on the constants in the model equations to establish the existence. This was missing in the old papers.One must establish the existence of f i nitely many points where the pulse crosses the threshold and find the intervals where the pulse lies above or below the threshold.One also has to prove that the pulse is continuously dif f erentiable everywhere on R,particularly at the points where the pulse crosses the threshold.However,they did not do these things.That is why the previous existence analysis is not rigorously correct.The existence of the standing pulse solutions may be proved by applying standard ideas,methods and techniques in dynamical systems to guarantee that all of the above requirements are valid.For the instability,there have been no rigorous mathematical analysis on the essential spectrum or the eigenvalues of some associated linear dif f erential operator obtained from the linearization of the nonlinear system of reaction dif f usion equations about the standing pulse solution.

    2 Mathematical Analysis and Proofs of the Main Results

    The main purpose of this section is to accomplish the existence and instability of the standing pulse solutions.We will couple together linearized stability criterion and Evans functions(complex analytic functions)to accomplish the nonlinear instability of the standing pulse solutions.

    1.The Existence.First of all,let us establish the existence of the standing pulse solution to the nonlinear system of reaction dif f usion equations(1.1)-(1.2). A standing pulse solution to system(1.1)-(1.2)satisf i es the following dif f erential equations

    That is

    Suppose that there exists a positive constantZ>0,such that

    Then the above dif f erential equation reduces to

    subject to the boundary conditionsU(0)=θandU(Z)=θ.Solving these dif f erential equations and using the boundary conditions lead to the solution representation

    whereC1,C2andZare real unknown constants.Now let us find the constants. First of all,U(0)=θandU(Z)=θ,that is

    Second,the standing pulse solution is continuously dif f erentiable everywhere,particularly,atx=0 andx=Z.Hence

    That is

    Coupling all of these equations together yields

    This completes the proof of the existence and uniqueness of the single standing pulse solution to system(1.1)-(1.2).A standing pulse solution to the nonlinear scalar reaction dif f usion equation(1.3)satisf i es the following dif f erential equation

    The existence and uniqueness of the standing pulse solution to the nonlinear scalar reaction dif f usion equation(1.3)may be established very similarly.

    Next let us study the instability of the standing pulse solution to the nonlinear system of reaction dif f usion equations(1.1)-(1.2).

    2.The eigenvalue problems.Let(P(x,t),Q(x,t))=(u(x,t),w(x,t)).Then (1.1)-(1.2)becomes

    The standing pulse solution(U,W)=(U(x),W(x))is a stationary solution to this system.Linearizing the nonlinear system about the standing pulse solution to get

    Suppose that(p(x,t),q(x,t))=exp(λt)(ψ1(x),ψ2(x))is a complex solution to this linear system of dif f erential equations,whereλis a complex number,ψ1andψ2are complex,bounded,continuous functions def i ned on R.This leads to the following eigenvalue problem

    Def i ne a linear dif f erential operatorLby

    To see thatλ0=0 is an eigenvalue and(ψ1(x),ψ2(x))=(U′(x),W′(x))is an eigenfunction of the eigenvalue problem,let us dif f erentiate the standing pulse equations

    with respect toxto get

    Def i nition 2(I)The standing pulse solution to the nonlinear system of reaction dif f usion equations(1.1)-(1.2)is stable,if max{Reλ:λ∈σ(L)0}≤-C0andλ0=0 is an algebraically simple eigenvalue,whereσ(L)represents the spectrum of the linear dif f erential operatorLandC0>0 is a positive constant.

    (II)The standing pulse solution to the nonlinear system of reaction dif f usion equations(1.1)-(1.2)is unstable,if there exists an eigenvalueλ0with positive real part or if the neutral eigenvalueλ0=0 is not simple.

    Following John Evans’idea in[2],the essential spectrum of the linear dif f erential operatorLis easy to find and it is given by

    where

    It is easy to find that the essential spectrum ofLcauses no problem to the stability of the standing pulse solution to the nonlinear system of reaction dif f usion equations (1.1)-(1.2).

    Let us find a simpler equation which is equivalent to the eigenvalue problemλψ1=1-ψ2+αβδ(U-θ)ψ1,λψ2=ε(ψ1-γψ2),so that we can solve it to find a solution to the eigenvalue problem.Recall that the standing pulse solution satisf i es the conditions:U(0)=θ,U′(0)>0,U(Z0)=θ,U′(Z0)<0,U>θon (0,Z0)andU<θon(-∞,0)∪(Z0,∞).Thus

    everywhere on R.Dif f erentiating this equation with respect toxyields

    That is

    for allxsuch thatU′(x)0.Moreover,we have

    for all complex valued functionsψdef i ned on R,in the sense of tempered distributions.Therefore,if we writeψ1=ψand use the relationship,then the eigenvalue problemλψ1=1-ψ2+αβδ(U(x)-θ)ψ1,λψ2=ε(ψ1-γψ2) becomes

    3.The solutions of the eigenvalue problems.Def i ne ?={λ∈C:Reλ>-γε}.The eigenvalue problem may be written as a nonhomogeneous,f i rst order, linear system of dif f erential equations

    For all complex numbersλwith Reλ>-γε,the solution of the homogeneous system

    廚房食物垃圾中含有大量易腐物質(zhì),現(xiàn)有的垃圾收集器和運輸車輛對其并不適宜,因餐廚垃圾含水量比較高,用密封瓶裝搬運很費勁、稍有不慎會導(dǎo)致廢液體從瓶里溢出來;用密封罐車裝運,上卸很麻煩,在運輸工程中假如道路不平整會產(chǎn)生顛簸,廢液有時從縫隙處滲漏出來;集中堆放點處理不當(dāng),廢液會滲透到附近土壤里去,污染周邊的水源和地下水,從而帶來新的二次污染。

    is given by

    whereC1andC2are constants.

    Let us diagonalize the coefficient matrix.Def i ne

    Then the inverse matrix exists and it is given by

    Therefore

    Clearly

    are two fundamental matrices of the homogeneous system.

    Let us use the method of variation of parameters and the two fundamental matrices to find a bounded particular solution.The particular solution to the nonhomogeneous system is given by

    Therefore,the general solution to the eigenvalue problem is given by

    whereC1(λ,ε)andC2(λ,ε)are independent ofx,but depend on the parametersλandε.The general solution to the eigenvalue problem is bounded on R if and only if

    The f i rst component of the general solution to the eigenvalue problem is given by

    These equations may be written in another way

    4.The Evans function and its representation.Def i ne the Evans function for the standing pulse solution to the nonlinear system of reaction dif f usion equations

    Def i ne the following auxiliary functions

    Then

    Recall that

    First of all,we have

    Then we have the derivatives

    and

    There is a critical numberObviously,λc<0 ifγ2ε>1 andλc>0 if 0<γ2ε<1.

    Let us study the zeros of the Evans function.It is easy to find that

    if and only ifF(λ,ε)=1 orG(λ,ε)=1,that isλ=0 orλ=λ0(ε),whereλ0(ε)is the unique solution of the equation

    Note that

    The existence and uniqueness of such a real solutionλ0(ε)may be proved by using intermediate value theorem and mean value theorem.Letγ2ε>1.Then-γε<λ0(ε)<0.Let 0<γ2ε<1.Thenλ0(ε)>0.

    5.The stability/instability of the standing pulse solutions.The linearized stability criterion:The nonlinear stability of the standing pulse solution to the nonlinear system of reaction dif f usion equations(1.1)-(1.2)is equivalent to its linear stability,which is equivalent to the spectral stability.

    By using the def i nitions of the stability and instability of the standing pulse solution to the nonlinear system of reaction dif f usion equations(1.1)-(1.2)and by using the linearized stability criterion,we find that the standing pulse solution is unstable.

    6. The instability of the standing pulse solution to the nonlinear scalar reaction dif f usion equation(1.3).For the standing pulse solution to the nonlinear scalar reaction dif f usion equation

    the eigenvalue problem is

    The linear dif f erential operatorL0is def i ned by

    The essential spectrum of the operatorL0is

    The eigenvalue problem may be rewritten as

    The general solution is given by

    The f i rst component of the general solution is given by

    The Evans function is def i ned by

    There exists a positive eigenvalueλ0>0.The instability of the standing pulse solution to the nonlinear scalar reaction dif f usion equation(1.3)is established.The proof of Theorem 1 is f i nished.

    3 Conclusion and Remarks

    3.1 Summary

    Consider the following nonlinear system of reaction dif f usion equations arising from mathematical neuroscience

    and the nonlinear scalar reaction dif f usion equations

    and

    The main purpose is to couple together the linearized stability criterion(the equivalence of the nonlinear stability,the linear stability and the spectral stability of the standing pulse solutions)and Evans functions to accomplish the nonlinear instability of the standing pulse solutions.We constructe Evans functions(complex analytic functions)to accomplish the instability of the standing pulse solutions.We study the eigenvalues and eigenfunctions of some eigenvalue problems.It turns out that a complex numberλ0is an eigenvalue of the eigenvalue problem if and only ifλ0is a zero of the Evans function.The introduction and application of the Evans functions to standing pulse solutions to the model equations will have great impacts on how to construct and apply Evans functions for stability of fast multiple traveling pulse solutions.

    The scalar equations may be obtained by settingε=0 andw=0,ε=0 andw0=α(β-2θ),respectively,in the system.

    Summary of the eigenvalue problem

    and the Evans function

    for the nonlinear system of reaction dif f usion equations

    (I)The Evans functionE=Epulse(λ,ε)is a complex analytic function ofλandε,it is real-valued ifλis real.

    (II)The complex numberλ0is an eigenvalue of the eigenvalue problem if and only ifλ0is a zero of the Evans function,that is,Epulse(λ0,ε)=0.In particular,Epulse(0,ε)=0.

    (III)The imaginary part of the Evans functionEpulse(λ,ε)is equal to zero if and only if the imaginary part ofλis equal to zero.In another word,all eigenvalues to the eigenvalue problem are real.

    (IV)The algebraic multiplicity of any eigenvalueλ0of the eigenvalue problem is equal to the order of the zeroλ0of the Evans functionE=E(λ,ε).

    (V)The Evans function enjoys the following limit

    in the right half plane{λ∈C:Reλ>-γε}.

    3.2 Future Directions and Open Problems

    Consider the following nonlinear singularly perturbed system of reaction dif f usion equations(1.1)-(1.2),that is

    In the future,we would like to accomplish the existence and stability of fast multiple traveling pulse solutions

    with fast moving coordinatesz=x+νfast(ε)tand fast wave speedsνfast(ε),and to accomplish the existence and instability of slow multiple traveling pulse solutions

    with slow moving coordinatesz=x+νslow(ε)tand slow wave speedsνslow(ε).These problems are very interesting and important in applied mathematics but they have been open for a long time.We will introduce Evans functions and establish a global strong maximum principle for Evans functions,couple together linearized stability criterion,Hopf lemma and many other important ideas,methods and techniques in dynamical systems to accomplish the existence and stability of the fast multiple traveling pulse solutions.

    Consider the nonlinear scalar reaction dif f usion equation

    There exists a unique stable traveling wave frontu(x,t)=Ufront(x+ν0t),such thatU∈C1(R)∩C2(R-{0});U<θon(-∞,0),U(0)=θ,U′(0)>0 andU>θon (0,∞).The wave speedν0is given by

    Letz=x+ν0t.The traveling wave front is given explicitly by

    The traveling wave front enjoys the following boundary conditions

    Consider the nonlinear scalar reaction dif f usion equation

    There exists a unique stable traveling wave backu(x,t)=Uback(x+ν0t),such thatU∈C1(R)∩C2(R-{0});U>θon(-∞,0),U(0)=θ,U′(0)<0 andU<θon (0,∞).Letz=x+ν0t.The traveling wave back is given explicitly by

    The traveling wave back enjoys the following boundary conditions

    Under the same assumptionsα>0 and 0<2θ<β,the nonlinear scalar reaction dif f usion equation(1.3)supports both a traveling wave front and a standing pulse solution.When the parameterεis perturbed fromε=0 toε>0,the traveling wave front becomes part of the fast traveling pulse solution and the standing pulse solution becomes part of the slow traveling pulse solutions.

    3.3 Remarks

    The fast single traveling pulse solution may be viewed as the perturbation of the traveling wave front and the traveling wave back.The fast multiple traveling pulse solution may be viewed asmcopies of the fast single traveling pulse solution appropriately placed together.Therefore,the Evans function for the fast single traveling pulse solution is equal to the product of the Evans function for the traveling wave front and the Evans function for the traveling wave back plus a small function due to perturbation.The Evans function for the fast multiple traveling pulse solution is equal to the product ofmEvans functions for the fast single traveling pulse solution plus a small function due to perturbation.More precisely

    for allλ∈? andε>0,where ?={λ∈C:Reλ>-γε}is a right half complex plane.

    Very similarly,for slow single traveling pulse solution and slow multiple traveling pulse solutions,there hold the following representations for the Evans functions

    for allλ∈C with Reλ>-γεand for allε>0,where

    To see if the neutral eigenvalue is algebraically simple,let us dif f erentiate the representations with respect toλ.We have

    Letλ=0,then we have

    Overall,the neutral eigenvalueλ=0 is simple.

    3.4 A Technical Lemma

    LemmaLet A be an(2m)×(2m)complex constant matrix.Suppose that Aηk=μkηk,that is,μ1,μ2,···,μ2mare the eigenvalues and η1,η2,···,η2mare the corresponding linearly independent eigenvectors of A.The real parts of the eigenvalues satisfy Reμk>0,for all k=1,2,···,p andReμk<0,for all k=p+1,···,2m,for some positive integer p≥1.Let δ represent the Dirac delta impulse function.Let x1,x2,x3,···,x2mbe real constants and ξ1,ξ2,ξ3,···, ξ2mbe complex constant vectors.Consider the following linear system of dif f erential equations

    There exists a bounded explicit particular solution to the system

    where T=(η1,η2,···,η2m)is the matrix consisting of the linearly independent eigenvectors,and

    for all k=1,2,···,p and

    for all k=p+1,···,2m,where H=H(x-xk)is a Heaviside step function,def i nedby H(x-xk)=0on(-∞,xk),H(0)=,H(x-xk)=1on(xk,∞).

    Proof Note that

    is a fundamental matrix of the homogeneous linear systemψ′=Aψ,for allk= 1,2,3,···,2m.By using the method of variation of parameters and the fundamental matrices,the proof is very easy and it is omitted.

    [1]John W.Evans,Nerve axon equations,I Linear approximations,Indiana University Mathematics Journal,21(1971),877-885.

    [2]John W.Evans,Nerve axon equations,II Stability at rest,Indiana University Mathematics Journal,22(1972),75-90.

    [3]John W.Evans,Nerve axon equations,III Stability of the nerve impulse,Indiana University Mathematics Journal,22(1972),577-593.

    [4]John W.Evans,Nerve axon equations,IV The stable and the unstable impulse,Indiana University Mathematics Journal,24(1975),1169-1190.

    [5]John A.Feroe,Traveling waves of inf i nitely many pulses in nerve equations,Mathematical Biosciences,55(1981),189-203.

    [6]John A.Feroe,Existence and stability of multiple impulse solutions of a nerve equation,SIAM Journal on Applied Mathematics,42(1982),235-246.

    [7]John A.Feroe,Existence of traveling wave trains in nerve axon equations,SIAM Journal on Applied Mathematics,46(1986),1079-1097.

    [8]Henry P.McKean,Nagumo’s equation,Advances in Mathematics,4(1970),209-223.

    [9]Henry P.McKean,Stabilization of solutions of a caricature of the Fitzhugh-Nagumo equation,Communications in Pure and Applied Mathematics,36(1983),291-324.

    [10]Henry P.McKean,Stabilization of solutions of a caricature of the Fitzhugh-Nagumo equation.II,Communications in Pure and Applied Mathematics,37(1984),299-301.

    [11]Henry P.McKean and Victor Moll,Stabilization to the standing wave in a simple caricature of the nerve equation,Communications in Pure and Applied Mathematics, 39(1986),485-529.

    [12]John Rinzel and Joseph B.Keller,Traveling wave solutions of a nerve conduction equation,Biophysical Journal,13(1973),1313-1337.

    [13]John Rinzel and David Terman,Propagation phenomena in a bistable reaction-dif f usion system,SIAM Journal on Applied Mathematics,42(1982),1111-1137.

    [14]David Terman,Threshold phenomena for a reaction-dif f usion system,Journal of Differential Equations,47(1983),406-443.

    [15]Wei-Ping Wang,Multiple impulse solutions to McKean’s caricature of the nerve equation.I.Existence,Communications on Pure and Applied Mathematics,41(1988),71-103.

    [16]Wei-Ping Wang,Multiple impulse solutions to McKean’s caricature of the nerve equation.II.Stability,Communications on Pure and Applied Mathematics,41(1988),997-1025.

    (edited by Liangwei Huang)

    ?This project was partly supported by a Faculty Research Grant of Lehigh University.

    ?Manuscript received

    ?Corresponding author.E-mail:liz5@lehigh.edu.

    The main purpose is to couple together linearized stability criterion(the equivalence of the nonlinear stability,the linear stability and the spectral stability of the standing pulse solutions)and Evans functions to accomplish the existence and instability of standing pulse solutions of the nonlinear system of reaction dif f usion equations and the nonlinear scalar reaction dif f usion equations.The Evans functions for the standing pulse solutions are constructed explicitly.

    猜你喜歡
    易腐裝運收集器
    新年港口裝運忙
    易腐果蔬動態(tài)保質(zhì)期評估和庫存管理策略探討
    ——基于集成射頻識別技術(shù)
    阿U漫說垃圾分類
    智慧少年(2022年2期)2022-06-23 15:03:57
    一種病房用24小時尿蛋白培養(yǎng)收集器的說明
    易腐垃圾處理技術(shù)及其效果研究進(jìn)展
    一種用于內(nèi)鏡干燥的酒精收集器的設(shè)計與應(yīng)用
    家庭易腐垃圾處理現(xiàn)狀分析與建議
    一重加氫反應(yīng)器裝運——EO反應(yīng)器運輸?shù)跹b裝船方案
    雷電收集器
    土壤重金屬收集器
    嫁个100分男人电影在线观看| 午夜免费男女啪啪视频观看 | av黄色大香蕉| 免费人成在线观看视频色| 99热这里只有是精品50| 中文字幕高清在线视频| 757午夜福利合集在线观看| av福利片在线观看| 此物有八面人人有两片| 搡老岳熟女国产| www.色视频.com| 亚洲国产欧美人成| 欧美黄色片欧美黄色片| 日韩欧美一区二区三区在线观看| 琪琪午夜伦伦电影理论片6080| 99在线人妻在线中文字幕| 舔av片在线| 免费搜索国产男女视频| 精品久久久久久久毛片微露脸| 精品久久久久久久毛片微露脸| 最近视频中文字幕2019在线8| 日韩成人在线观看一区二区三区| 亚洲美女视频黄频| 香蕉av资源在线| 中文字幕人成人乱码亚洲影| 国产精品香港三级国产av潘金莲| 一级a爱片免费观看的视频| 国产欧美日韩一区二区三| 3wmmmm亚洲av在线观看| 欧美在线黄色| 十八禁网站免费在线| 午夜a级毛片| 99久久精品热视频| 丁香欧美五月| 亚洲美女黄片视频| 99久久久亚洲精品蜜臀av| 在线国产一区二区在线| 国产精品久久电影中文字幕| 国产亚洲欧美98| 久久九九热精品免费| 亚洲aⅴ乱码一区二区在线播放| 少妇裸体淫交视频免费看高清| 免费av毛片视频| 国产爱豆传媒在线观看| 亚洲最大成人中文| 精品久久久久久久久久免费视频| 国产亚洲欧美98| 一本一本综合久久| 给我免费播放毛片高清在线观看| 少妇裸体淫交视频免费看高清| 成人无遮挡网站| 无人区码免费观看不卡| 精品久久久久久成人av| 国产精品久久电影中文字幕| 中文资源天堂在线| 老司机深夜福利视频在线观看| 久久精品91蜜桃| 亚洲av成人不卡在线观看播放网| 最新中文字幕久久久久| 国产成年人精品一区二区| 欧美性感艳星| 午夜福利在线观看吧| 亚洲成av人片免费观看| 99热6这里只有精品| 国内精品久久久久久久电影| 蜜桃久久精品国产亚洲av| 国产aⅴ精品一区二区三区波| 高潮久久久久久久久久久不卡| 真人做人爱边吃奶动态| 窝窝影院91人妻| 特级一级黄色大片| 欧美激情久久久久久爽电影| 亚洲专区中文字幕在线| 国产老妇女一区| 欧美+日韩+精品| 好看av亚洲va欧美ⅴa在| 成人亚洲精品av一区二区| aaaaa片日本免费| 久久久久九九精品影院| 国产精品精品国产色婷婷| 丰满的人妻完整版| 亚洲乱码一区二区免费版| 全区人妻精品视频| 9191精品国产免费久久| 成人欧美大片| 成人18禁在线播放| 国产日本99.免费观看| 午夜老司机福利剧场| 夜夜爽天天搞| 最近最新中文字幕大全免费视频| 亚洲av日韩精品久久久久久密| 一进一出好大好爽视频| 国产精品三级大全| 色综合亚洲欧美另类图片| 一a级毛片在线观看| av中文乱码字幕在线| 亚洲国产精品999在线| 国内少妇人妻偷人精品xxx网站| 国产亚洲精品久久久久久毛片| 欧美激情久久久久久爽电影| 一本综合久久免费| 日韩欧美在线乱码| 欧美日本视频| 成人一区二区视频在线观看| www日本在线高清视频| 亚洲欧美日韩东京热| 亚洲无线观看免费| 国产亚洲精品综合一区在线观看| 制服人妻中文乱码| 制服人妻中文乱码| 亚洲国产精品久久男人天堂| 亚洲一区高清亚洲精品| 国产v大片淫在线免费观看| 国产97色在线日韩免费| 中文字幕精品亚洲无线码一区| 免费观看的影片在线观看| 十八禁人妻一区二区| 亚洲欧美日韩卡通动漫| 黄色视频,在线免费观看| www.999成人在线观看| 国产精品一及| 日韩欧美三级三区| 黄色女人牲交| 丁香欧美五月| 色在线成人网| 亚洲av成人不卡在线观看播放网| 悠悠久久av| 久久人人精品亚洲av| 国产三级中文精品| 中文字幕av成人在线电影| 国产一区二区三区视频了| 欧美最新免费一区二区三区 | 天美传媒精品一区二区| 天堂影院成人在线观看| 99久久精品国产亚洲精品| 少妇人妻精品综合一区二区 | 亚洲成av人片在线播放无| 国产精品电影一区二区三区| 欧美+日韩+精品| 搡老熟女国产l中国老女人| 国产亚洲精品综合一区在线观看| netflix在线观看网站| a级一级毛片免费在线观看| 两个人看的免费小视频| 最近最新中文字幕大全电影3| svipshipincom国产片| 夜夜躁狠狠躁天天躁| 午夜久久久久精精品| 国内久久婷婷六月综合欲色啪| 99久久成人亚洲精品观看| 欧美中文综合在线视频| 亚洲av电影不卡..在线观看| 美女高潮的动态| 国内精品久久久久久久电影| 国产成人av教育| 别揉我奶头~嗯~啊~动态视频| 国产精品嫩草影院av在线观看 | 在线播放无遮挡| 久久久久久久久中文| 午夜日韩欧美国产| netflix在线观看网站| 中文资源天堂在线| 亚洲国产日韩欧美精品在线观看 | 欧美黄色片欧美黄色片| 日韩欧美三级三区| 亚洲熟妇熟女久久| 天堂√8在线中文| 亚洲精品粉嫩美女一区| 亚洲av电影在线进入| 久久亚洲真实| 嫩草影院入口| 中国美女看黄片| 亚洲五月婷婷丁香| 久久久色成人| 日韩亚洲欧美综合| 在线观看日韩欧美| 久99久视频精品免费| 国产成人aa在线观看| 国产中年淑女户外野战色| 国产视频内射| 国产单亲对白刺激| 国产v大片淫在线免费观看| 老司机福利观看| www国产在线视频色| 国内久久婷婷六月综合欲色啪| 国产高清videossex| 一本精品99久久精品77| 久久人妻av系列| 精品久久久久久久久久免费视频| 久久久精品大字幕| 99热精品在线国产| 亚洲成av人片在线播放无| 免费看光身美女| 亚洲成人免费电影在线观看| 欧美日韩黄片免| 大型黄色视频在线免费观看| 国产真实伦视频高清在线观看 | 国产视频内射| 婷婷丁香在线五月| 国内久久婷婷六月综合欲色啪| av专区在线播放| 国产毛片a区久久久久| 手机成人av网站| 动漫黄色视频在线观看| 欧美一区二区精品小视频在线| 亚洲自拍偷在线| 久久婷婷人人爽人人干人人爱| 美女黄网站色视频| 久久久久久久午夜电影| 久久久精品欧美日韩精品| 色播亚洲综合网| 国产亚洲av嫩草精品影院| 国产成人av教育| 精品午夜福利视频在线观看一区| 高清在线国产一区| 99精品在免费线老司机午夜| 亚洲av中文字字幕乱码综合| 亚洲欧美日韩东京热| 亚洲精品日韩av片在线观看 | 亚洲不卡免费看| 国产精品国产高清国产av| 少妇人妻一区二区三区视频| 我要搜黄色片| 一本一本综合久久| 亚洲avbb在线观看| 中文资源天堂在线| 亚洲自拍偷在线| 国产av不卡久久| 亚洲成av人片免费观看| 成人鲁丝片一二三区免费| 日日干狠狠操夜夜爽| x7x7x7水蜜桃| 人妻丰满熟妇av一区二区三区| 少妇高潮的动态图| 啦啦啦免费观看视频1| АⅤ资源中文在线天堂| 一个人观看的视频www高清免费观看| 少妇人妻精品综合一区二区 | 99视频精品全部免费 在线| 高清日韩中文字幕在线| 国产精品久久久久久人妻精品电影| 一进一出抽搐动态| 日日夜夜操网爽| 国产欧美日韩精品一区二区| 狂野欧美白嫩少妇大欣赏| 午夜日韩欧美国产| 91av网一区二区| 国产亚洲精品久久久com| 国产精品电影一区二区三区| 国产三级中文精品| 听说在线观看完整版免费高清| 亚洲欧美精品综合久久99| 亚洲av五月六月丁香网| 99精品欧美一区二区三区四区| 麻豆成人午夜福利视频| 午夜精品一区二区三区免费看| 精品国产亚洲在线| 国产精品久久久久久精品电影| 啪啪无遮挡十八禁网站| 最新美女视频免费是黄的| 亚洲国产高清在线一区二区三| 国产蜜桃级精品一区二区三区| 禁无遮挡网站| 亚洲一区二区三区不卡视频| 美女免费视频网站| 国模一区二区三区四区视频| 亚洲av成人精品一区久久| 国产乱人伦免费视频| 日韩欧美精品v在线| 亚洲欧美日韩卡通动漫| 成人18禁在线播放| 小说图片视频综合网站| 变态另类丝袜制服| 国产亚洲欧美98| 国产伦在线观看视频一区| 亚洲乱码一区二区免费版| 少妇裸体淫交视频免费看高清| 国产97色在线日韩免费| 99国产精品一区二区三区| 欧美黄色片欧美黄色片| bbb黄色大片| 一本综合久久免费| 高清日韩中文字幕在线| 亚洲最大成人手机在线| 成人亚洲精品av一区二区| 国产精品亚洲一级av第二区| 国产精品av视频在线免费观看| 夜夜爽天天搞| svipshipincom国产片| 午夜两性在线视频| 欧美黑人欧美精品刺激| 精品欧美国产一区二区三| 成人欧美大片| 成年女人看的毛片在线观看| 国产欧美日韩精品亚洲av| 成人性生交大片免费视频hd| 麻豆一二三区av精品| 国产三级在线视频| 欧美性猛交╳xxx乱大交人| 久久精品国产99精品国产亚洲性色| 欧美日韩精品网址| 亚洲国产欧洲综合997久久,| 免费在线观看成人毛片| 好男人电影高清在线观看| 俺也久久电影网| 色老头精品视频在线观看| 欧美一区二区亚洲| 在线播放无遮挡| 哪里可以看免费的av片| 看免费av毛片| www.999成人在线观看| 日本三级黄在线观看| 精华霜和精华液先用哪个| 午夜激情福利司机影院| 日韩人妻高清精品专区| 亚洲人与动物交配视频| 亚洲va日本ⅴa欧美va伊人久久| 国产精品免费一区二区三区在线| 国产中年淑女户外野战色| 日本黄色视频三级网站网址| 淫秽高清视频在线观看| 亚洲不卡免费看| 日韩欧美国产一区二区入口| 51午夜福利影视在线观看| 女警被强在线播放| 国产午夜精品论理片| 97人妻精品一区二区三区麻豆| 两个人视频免费观看高清| 亚洲国产中文字幕在线视频| 亚洲人成网站在线播放欧美日韩| 哪里可以看免费的av片| 日本黄色片子视频| 国产伦一二天堂av在线观看| 91av网一区二区| 久久天躁狠狠躁夜夜2o2o| 最近最新中文字幕大全电影3| 日本免费一区二区三区高清不卡| 国产精品爽爽va在线观看网站| 最新在线观看一区二区三区| 小说图片视频综合网站| 亚洲av美国av| 欧美3d第一页| 欧美三级亚洲精品| 亚洲在线自拍视频| 99久久99久久久精品蜜桃| 国产野战对白在线观看| 色播亚洲综合网| 欧美3d第一页| 久久久久国产精品人妻aⅴ院| 国产欧美日韩一区二区三| 国产亚洲精品久久久com| 免费观看精品视频网站| 99国产极品粉嫩在线观看| 精品免费久久久久久久清纯| 中文字幕人妻熟人妻熟丝袜美 | 一二三四社区在线视频社区8| 成年免费大片在线观看| 黄色成人免费大全| 午夜福利在线观看吧| 免费无遮挡裸体视频| 在线观看舔阴道视频| 男女床上黄色一级片免费看| 精品久久久久久久久久免费视频| 天堂动漫精品| 国产成人av激情在线播放| 国产成年人精品一区二区| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产精品,欧美在线| 91麻豆av在线| 婷婷精品国产亚洲av在线| 18美女黄网站色大片免费观看| 日韩欧美在线乱码| 午夜a级毛片| 一本一本综合久久| 午夜免费男女啪啪视频观看 | 国产精品亚洲美女久久久| 亚洲成人中文字幕在线播放| 免费观看的影片在线观看| 一个人看视频在线观看www免费 | 制服人妻中文乱码| 国产极品精品免费视频能看的| 亚洲欧美一区二区三区黑人| 国产探花在线观看一区二区| 亚洲在线自拍视频| 国产男靠女视频免费网站| 啪啪无遮挡十八禁网站| 精品一区二区三区av网在线观看| 国产av在哪里看| 国产精品 国内视频| 中文在线观看免费www的网站| 亚洲 国产 在线| 国产精品久久久久久人妻精品电影| 日韩大尺度精品在线看网址| 国产三级在线视频| 午夜免费激情av| 中文字幕人妻熟人妻熟丝袜美 | 别揉我奶头~嗯~啊~动态视频| 一本综合久久免费| 午夜免费观看网址| 亚洲人与动物交配视频| www日本在线高清视频| 哪里可以看免费的av片| 欧美国产日韩亚洲一区| 久久久久久久久久黄片| 亚洲在线观看片| 长腿黑丝高跟| 成人一区二区视频在线观看| 丰满乱子伦码专区| 国产伦在线观看视频一区| 亚洲av第一区精品v没综合| 日本熟妇午夜| 欧美成人一区二区免费高清观看| 欧美区成人在线视频| 嫁个100分男人电影在线观看| 日本黄色视频三级网站网址| 在线观看日韩欧美| 女人高潮潮喷娇喘18禁视频| 校园春色视频在线观看| 日韩欧美一区二区三区在线观看| 国产在视频线在精品| 黄片小视频在线播放| 国产 一区 欧美 日韩| 十八禁网站免费在线| 美女被艹到高潮喷水动态| 成人特级av手机在线观看| 91在线观看av| av视频在线观看入口| 99久久九九国产精品国产免费| 国产高清有码在线观看视频| 国产激情偷乱视频一区二区| 丰满人妻一区二区三区视频av | 成人国产综合亚洲| 国产精品三级大全| 久久人妻av系列| 一区二区三区激情视频| 亚洲av一区综合| 真实男女啪啪啪动态图| 亚洲精品一区av在线观看| 亚洲成av人片免费观看| 少妇熟女aⅴ在线视频| 波多野结衣高清作品| 一卡2卡三卡四卡精品乱码亚洲| 一进一出抽搐gif免费好疼| 久久精品综合一区二区三区| 国产久久久一区二区三区| 最好的美女福利视频网| 禁无遮挡网站| 亚洲国产精品合色在线| a级毛片a级免费在线| svipshipincom国产片| 特大巨黑吊av在线直播| 两个人的视频大全免费| 免费在线观看亚洲国产| 成人三级黄色视频| 国产成人啪精品午夜网站| 午夜免费观看网址| 成人欧美大片| 少妇裸体淫交视频免费看高清| 老司机在亚洲福利影院| 久久久色成人| 村上凉子中文字幕在线| 91麻豆av在线| 99精品欧美一区二区三区四区| 成人欧美大片| 观看美女的网站| av福利片在线观看| 成年人黄色毛片网站| 大型黄色视频在线免费观看| 精品日产1卡2卡| 香蕉av资源在线| 免费在线观看日本一区| 欧美日韩乱码在线| 欧美日韩综合久久久久久 | 欧美成人性av电影在线观看| 婷婷精品国产亚洲av| 欧美成狂野欧美在线观看| 成人国产一区最新在线观看| 国产精品久久久久久久久免 | 亚洲av电影在线进入| 免费看光身美女| 成人无遮挡网站| av在线蜜桃| 国产97色在线日韩免费| 国产蜜桃级精品一区二区三区| 亚洲在线观看片| 乱人视频在线观看| 国产精品一区二区三区四区免费观看 | 午夜福利视频1000在线观看| 国产乱人视频| 亚洲精品456在线播放app | 18禁黄网站禁片免费观看直播| 国内久久婷婷六月综合欲色啪| 亚洲熟妇熟女久久| 特级一级黄色大片| 18禁裸乳无遮挡免费网站照片| 日本免费一区二区三区高清不卡| 久久草成人影院| 草草在线视频免费看| 夜夜躁狠狠躁天天躁| 亚洲狠狠婷婷综合久久图片| 亚洲国产精品合色在线| 欧美乱妇无乱码| 日本与韩国留学比较| 内地一区二区视频在线| 亚洲精品色激情综合| 国产熟女xx| 免费搜索国产男女视频| 麻豆久久精品国产亚洲av| 国产视频内射| 日韩欧美一区二区三区在线观看| 精品国内亚洲2022精品成人| а√天堂www在线а√下载| 精品不卡国产一区二区三区| 国内精品久久久久久久电影| 国产又黄又爽又无遮挡在线| 久久久国产精品麻豆| 国产精品乱码一区二三区的特点| 国产黄色小视频在线观看| 国产熟女xx| 精品久久久久久久末码| 此物有八面人人有两片| 亚洲不卡免费看| 久久久久久国产a免费观看| 亚洲最大成人中文| 午夜精品在线福利| 国产成人系列免费观看| 一本精品99久久精品77| 俄罗斯特黄特色一大片| 麻豆成人av在线观看| 一进一出抽搐动态| 九九久久精品国产亚洲av麻豆| 啦啦啦观看免费观看视频高清| 国产黄色小视频在线观看| 亚洲中文字幕日韩| 国产精品亚洲av一区麻豆| 一进一出好大好爽视频| 午夜日韩欧美国产| 性色avwww在线观看| 久久精品人妻少妇| 99久久成人亚洲精品观看| 久久婷婷人人爽人人干人人爱| 国产欧美日韩精品一区二区| 岛国在线免费视频观看| 1000部很黄的大片| 91麻豆av在线| 国产一区二区在线av高清观看| 在线观看舔阴道视频| 国模一区二区三区四区视频| 波多野结衣高清无吗| av黄色大香蕉| 最近视频中文字幕2019在线8| 99视频精品全部免费 在线| 一级黄片播放器| 国产免费av片在线观看野外av| 日韩欧美在线乱码| 少妇裸体淫交视频免费看高清| 老司机在亚洲福利影院| 亚洲五月天丁香| www日本在线高清视频| 久久久久久久精品吃奶| 国产精品1区2区在线观看.| 亚洲精品久久国产高清桃花| 日韩中文字幕欧美一区二区| 在线看三级毛片| 精品国产亚洲在线| a在线观看视频网站| 欧美日韩精品网址| 欧美成人a在线观看| 亚洲精品一卡2卡三卡4卡5卡| 禁无遮挡网站| 久久久久亚洲av毛片大全| 少妇的丰满在线观看| 欧美在线黄色| 成人18禁在线播放| 欧美午夜高清在线| 观看免费一级毛片| 噜噜噜噜噜久久久久久91| 伊人久久精品亚洲午夜| 欧美zozozo另类| 少妇熟女aⅴ在线视频| 免费搜索国产男女视频| av福利片在线观看| 一本久久中文字幕| 身体一侧抽搐| 无人区码免费观看不卡| 91av网一区二区| 欧美极品一区二区三区四区| 国产精品久久久人人做人人爽| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 18+在线观看网站| 观看美女的网站| 成年版毛片免费区| 国产亚洲精品久久久com| ponron亚洲| 99久久精品国产亚洲精品| 丁香欧美五月| 精品人妻一区二区三区麻豆 | 51午夜福利影视在线观看| 变态另类成人亚洲欧美熟女| 国产欧美日韩一区二区精品| 此物有八面人人有两片| 女人被狂操c到高潮| 男女下面进入的视频免费午夜| 91麻豆av在线| 丰满人妻一区二区三区视频av | 久久国产乱子伦精品免费另类| 国产久久久一区二区三区| 深夜精品福利| 一级毛片女人18水好多| 日韩欧美免费精品| 国语自产精品视频在线第100页| 午夜福利在线观看吧| 人妻夜夜爽99麻豆av| 午夜激情福利司机影院| 中文字幕人成人乱码亚洲影|