• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CYCLES EMBEDDING ON FOLDED HYPERCUBES WITH FAULTY NODES??

    2016-04-18 08:32:20DanYuanHongmeiLiuMaozhengTang
    Annals of Applied Mathematics 2016年1期

    Dan Yuan,Hongmei Liu,Maozheng Tang

    (College of Science,Three Gorges University,Hubei 443002,PR China)

    CYCLES EMBEDDING ON FOLDED HYPERCUBES WITH FAULTY NODES??

    Dan Yuan?,Hongmei Liu,Maozheng Tang

    (College of Science,Three Gorges University,Hubei 443002,PR China)

    LetFFvbe the set of faulty nodes in ann-dimensional folded hypercubeFQnwith|FFv|≤n-1 and all faulty vertices are not adjacent to the same vertex.In this paper,we show that ifn≥4,then every edge ofFQn-FFvlies on a fault-free cycle of every even length from 6 to 2n-2|FFv|.

    folded hypercube;interconnection network;fault-tolerant; path

    2000 Mathematics Subject Classification

    1 Introduction

    Then-dimensional hypercubeQn(orn-cube)is one of the most important topology of networks due to its excellent properties such as regularity,recursive structure, small diameter,vertex and edge transitive and relatively short mean distance[1]. In order to improve the performance of hypercube,the folded hypercubeFQnhas been proposed[2].

    Since a large-scale hypercube network,fails in any component,it’s desirable that the rest of the network continue to operate in spite of the failure.This leads to the graph-embedding problem with faulty edges and/or vertices.This problem has received much attention(see[3-10]).

    The problem of embedding paths in ann-dimensional hypercube and folded hypercube has been well studied.Tsai[3]showed that for any subsetFvofV(Qn) with|Fv|≤n-2,every edge ofQn-Fvlies on a cycle of every even length from 4 to 2n-2|Fv|inclusive.Tsai[4]also showed that for any subsetFvofV(Qn)with|Fv|≤n-1 and all faulty vertices are not adjacent to the same vertex,every edge ofQn-Fvlies on a cycle of every even length from 6 to 2n-2|Fv|inclusive.Hsiehand Shen[5]proved that every edge ofQn-Fv-Felies on a cycle of every even length from 4 to 2n-2|Fv|even if|Fv|+|Fe|≤n-2,wheren≥3.

    LetFFvandFFedenote the set of faulty nodes and faulty edges ofFQnrespectively.Hsieh,Kuo and Huang[6]proved that if the folded hypercubeFQnhas just only one fault node,thenFQncontains cycles of every even length from 4 to 2n-2 ifn≥3,and cycles of every odd length fromn+1 to 2n-1 whennis even,n≥2.Ma, Xu and Du[7]further demonstrated thatFQn-FFe(n≥3)with|FFe|≤2n-3 contains a fault-free cycle passing through all nodes if each vertex is incident with at least two fault-free edges.Kuo and Hsieh[8]improved the conclusion of[7]and proved thatFQn-FFewith|FFe|=2n-3 contains a fault-free cycle of every even length from 4 to 2n.Xu,Ma and Du[9]further showed that every fault-free edge ofFQn-FFelies on a fault-free cycle of every even length from 4 to 2nand every odd length fromn+1 to 2n-1 ifnis even,where|FFe|≤n-1.Then Cheng,Hao and Feng[10]proved that every fault-free edge ofFQn-FFvlies on a fault-free cycle of every even length from 4 to 2n-2|FFv|and every odd length fromn+1 to 2n-2|FFv|-1 ifnis even,where|FFv|≤n-2.

    In this paper,under the conditional|FFv|≤n-1 and all faulty vertices are not adjacent to the same vertex,we show that ifn≥4,then every edge ofFQn-FFvlies on a fault-free cycle of every even length from 6 to 2n-2|FFv|.

    2 Preliminaries

    Please see[1]for graph-theoretical terminology and notation is not def i ned here. A network is usually modeled by a simple connected graphG=(V,E),whereV=V(G)(orE=E(G))is the set of vertices(or edges)ofG.We def i ne the vertexxto be a neighbor ofyifxy∈E(G).A graphGis bipartite ifX,Yare two disjoint subsets ofV(G)such thatE(G)={xy|x∈X,y∈Y}.A graphP=(u1,u2,···,uk) is called a path if the verticesu1,u2,···,ukare distinct and any two consecutive verticesuiandui+1are adjacent.u1andukare called the end-vertices ofP.Ifu1=uk,the pathP(u1,uk)is called a cycle(denoted byC).The length of a pathP(a cycleC),denoted byl(P)(orl(C)),is the number of edges inP(orC).In general,the distance of two verticesx,yis the length of the shortest(x,y)-path.

    Then-dimensional hypercubeQn(or,n-cube)can be represented as an undirected graph with 2nvertices.Every vertexx∈Qnis labeled as a binary stringx1x2···xnof lengthnfrom 00···0 to 11···1.Two verticesuandvare adjacent if their binary strings dif f er in exactly one bit.For convenience,we calle∈Ean edge of dimensioniif its end-vertices strings dif f er inith-bit.In the rest of this paper,we denote,where=1-xi,xi=0,1.The Hammingdistance of two verticesx=x1x2···xnandy=y1y2···ynisH(x,y)the number of dif f erent bits between them.LetdH(x,y)be the shortest distance ofxandy.Note thatQnis a bipartite graph,and for any two distinct verticesx,yofQn,dH(x,y)=H(x,y).N(x)denotes a set of the nodes which are neighbors ofx.

    As a variant of hypercube,then-dimensional folded hypercubeFQnis obtained by adding more edges between its vertices.

    Def i nition 1 Then-dimensional folded hypercubeFQnis a graph withV(Qn)=V(FQn).Two verticesx=x1x2···xnandyare connected by an edge if and only if

    Therefore,the hypercubeQnis a spanning subgraph of the folded hypercubeFQnobtained by removing the second type of edges(x∈V(FQn)),called complementary edges ofFQnand denoted by

    In general,the f i rst type of edges are def i ned to be the hypercube edges,and denoted byEi={xxi},i=1,2,···,n.

    Lemma 1An i-partition on FQn,where1≤i≤n,is a partition of FQnalong dimension i into two n-1-cubes,denoted byand.

    ()can also be denoted by0x(respectively,1x)for brevity,where satisfying0x=x1x2···xi···xn∈satisfying xi=0 (respectively,1x=x1x2···xi···xn∈satisfying xi=1).

    Lemma 2[4]Let fe=0,fv=n-1,and every fault-free vertex is adjacent to at least two fault-free vertices in Qnfor n≥4.Then,every fault-free edge of Qnlies on a fault-free cycle of every even length from 6 to2n-2fvinclusive.

    Lemma 3[3]Assume Fvis any subset of V(Qn).Every edge in Qn-Fvlies on a fault-free cycle of every even length from4to2n-2fvinclusive even if|Fv|≤n-2, where n≥3.

    Lemma 4[12]Let n≥2be an integer.For any two dif f erent fault-free vertices u and v in Qnwith fe+fv≤n-2,there exists a fault-free uv-path of length l for each l satisfying dH(u,v)+2≤l≤2n-2fv-1and2|(l-dH(u,v)).Moreover, there must exist a fault-free uv-path of length dH(u,v)if dH(u,v)≥n-1.

    Lemma 5[10]Assume that FQnis partitioned along dimension i(1≤i≤n)into two n-1-cubes,denoted byand,0u and0v(respectively,1u and1v)().If dH(0u,0v)=n-2(respectively,dH(1u,1v)=n-2),then dH(,1v)=1and dH(1u,)=1 (respectively,dH(,0v)=1and dH(0u,)=1);if dH(0u,0v)=1(respectively, dH(1u,1v)=1),then dH(,1v)=n-2and dH(1u,)=n-2(respectively,dH(,0v)=n-2and dH(0u,)=n-2).

    Lemma 6[5]There exists a path of every odd length from 3 to2n-2|Fv|-1joining any two adjacent fault-free nodes in Qn-Fveven if|Fe|=0and|Fv|≤n-2, where n≥3.

    Lemma 7[10]Assume n is even and FFvis any subset of V(FQn).Every edge of FQn-FFvlies on a fault-free cycle of every odd length from n+1to2n-2|FFv|-1inclusive even if|FFv|≤n-2,where n≥2.

    Lemma 8Assume that FQnis partitioned along dimension i(1≤i≤n)into two n-1-cubes,denoted byand,0u and0v(respectively,1u and1v)().If dH(0u,0v)=n-3(respectively,dH(1u,1v)=n-3),then dH(,1v)=2and dH(1u,)=2(respectively,dH(,0v)= 2and dH(0u,)=2);if dH(0u,0v)=2(respectively,dH(1u,1v)=2),then dH(,1v)=n-3and dH(1u,)=n-3(respectively,dH(,0v)=n-3and dH(0u,)=n-3).

    Proof IfdH(0u,0v)=n-3,thendH(u,v)=n-3,which impliesdH=2 anddH()=2,thusdH(,1v)=2 anddH(1u,)=2.By the similar discussion, ifdH(1u,1v)=n-3,thendH(,0v)=2 anddH(0u,)=2.

    IfdH(0u,0v)=2,thendH(u,v)=2,which impliesdH()=n-3 anddH()=n-3,thusdH(,1v)=n-3 anddH(1u,)=n-3.By the similar discussion,ifdH(1u,1v)=2,thendH(,0v)=n-3 anddH(0u,)=n-3.The proof is completed.

    Lemma 9[2]For any two vertices u,v∈Qn,if d(u,v)=k,then there are n internal disjoint paths from u and v such that there are k paths of length k and n-k paths of length k+2.

    Lemma 10[10]Assume FFvis any subset of V(FQn).Every edge in FQn-FFvlies on a fault-free cycle of every even length from 4 to2n-2|FFv|inclusive even if |FFv|≤n-2,where n≥3.

    Lemma 11[9]There is an automorphism σ of FQnsuch that σ(Ei)=Ejfor any i,j∈{1,2,···,n,c}.

    3 Main Results

    Before the proof,I give some symbols.FFvis the set of faulty vertices inFQnandis the set of faulty vertices in,i={0,1}.

    Lemma 12Assume FFvis any subset of V(FQ4).Every edge in FQ4-FFvlies on a fault-free cycle of every even length from 6 to24-2|FFv|inclusive even if |FFv|≤3and all faulty vertices are not adjacent to the same vertex.

    Proof If|FFv|=fv≤2,by Lemma 10,the lemma holds.Therefore,we only need to consider the situation offv=3,every edge inFQ4-FFvlies on a fault-free cycle of every even length from 6 to 10 inclusive.By Lemma 1,FQ4can be partitioned along dimensioniinto two 3-cubes,denoted byand.There must exist anisuch that(u),and(v),(We can simply divide one of the faulty vertex and the other faulty vertices into di ff erent partsor)along ani-dimension.The proof is the condition that all faulty vertices are not adjacent to the same vertex.We can consider extreme situation.Ifn-2 faulty vertices are adjacent to the same vertexx,we can choose one ofn-2 faulty vertices, denoted byy,thenxandyhave one bit dif f erently.So we can partition along this dimension.Thereforeyis in a part,other faulty vertices is in another part and all faulty vertices are not adjacent to the same vertex in this part).

    Let=,i=0,1,.Without loss of generality, letFFv={w1,w2,w3},={w1,w2,={w3.=2,=1.eis a fault-free edge.=2,(u),,sodH(w1,w2)=1 ordH(w1,w2)=3.

    (1).

    Then,e∈C4,that is there exists a cycleC0of every even lengthl0containingein,wherel0=4.Let(x,y)/ebe a fault-free edge in cycleC0such that (xi,yi)(or)is fault-free in.LetC0=〈x,P0,y,x〉,then=l(P0)=3. Since=1,by Lemma 4,there exists a pathP1of every odd lengthl1joiningxiandyi(orand)in,where 3≤l1≤5.(xi,yi)(or)is fault-free,there exists a pathof every odd length joiningxiandyi(orand)in,where 15.LetC=〈x,P0,y,yi,xi,x〉orC=〈x,P0with even length.Since=3 and 15,6≤l≤10.

    Through observation,e∈C6.Let(x,y)be a fault-free edge in cycleC0such that(xi,yi)(or)is fault-free in.LetC0=〈x,P0,y,x〉,then=l(P0),=5.Since=1,by Lemma 4,there exists a pathP1of every odd lengthl1joiningxiandyi(orand)in,where 3≤l1≤5.(xi,yi)(or)is fault-free,there exists a pathof every odd length joiningxiandyi(orand) in,where.LetC=〈x,P0,y,yi,xi,x〉orC=〈x,P0with even length.Sinceand,8≤l≤12.We can obtain the desired even cycle of length 6 inC0,wherel0=6.So 6≤l≤12.

    (2)

    Since=1,by Lemma 3,there exists a cycleC1of every even lengthl1containingein,where 4≤l1≤6.Let(x,y)be a fault-free edge in cycleC1such that(xi,yi)(or)is fault-free in.Hence,there exists a pathP1ofevery odd lengthjoiningxandyin,where.We can choose(xi,yi). SincedH(w1,w2)=1,(xi,yi)∈C4.(xi,yi)∈C4,(xi,yi)is fault-free,then there exists a pathP0of every odd lengthl0joiningxiandyi,where 1≤l0≤3.LetC=〈x,P1,y,yi,P0,xi,x〉with even length.Since 1≤l0≤3 and 35,6≤l≤10.

    Since=1,by Lemma 3,there exists a cycleC1of every even lengthl1containingein,where 4≤l1≤6.Let(x,y)be a fault-free edge in cycleC1such that(xi,yi)(or)is fault-free in.Hence,there exists a pathP1of every odd lengthjoiningxandyin,where 35.dH(w1,w2)=3, through observation,(xi,yi)∈C6(or∈C6).We can choose(xi,yi),then, there exists a pathP0of every odd lengthl0joiningxiandyiin,wherel0=5. LetC=〈x,P1,y,yi,P0,xi,x〉with even length.Sincel0=5 and,10≤l≤12.LetC=〈x,P1,y,yi,xi,x〉with even length, where.Then 6≤l≤8.So 6≤l≤12.

    (3)e∈Ei.

    Let(x,y)be a fault-free edge in such that(xi,yi)is fault-free in

    (x,y)∈C4,(x,y)is a fault-free edge,there exists a pathP0of every odd lengthl0joiningxandyin,where 1≤l0≤3.Since,by Lemma 4,there exists a pathP1of every odd lengthl1joiningxiandyiin,where 3≤l1≤5.LetC=〈x,P0,y,yi,P1,xi,x〉with even lengthl=l0+l1+2.Since 1≤l0≤3 and 3≤l1≤5,6≤l≤10.

    Let(x,y)be a fault-free edge in such that(xi,yi)is fault-free in.Through observation,(x,y)∈C6,there exists a pathP0of every odd lengthl0joiningxandyin,wherel0=5.Since,by Lemma 4,there exists a pathP1of every odd lengthl1joiningxiandyiin,where 3≤l1≤5.LetC=〈x,P0,y,yi,P1,xi,x〉with even lengthl=l0+l1+2.Sincel0=5 and 3≤l1≤5,10≤l≤12.LetC=〈x,y,yi,P1,xi,x〉with even lengthl=1+l1+2.Since 3≤l1≤5,6≤l≤8. Therefore,6≤l≤12.

    (4)e∈Ec.Lete=,

    Letreplace{xi,yi},the following proof is similar to(3)e∈Ei.The proof is completed.

    Theorem 1Assume FFvis any subset of V(FQn).Every edge in FQn-FFvlies on a fault-free cycle of every even length from 6 to2n-2|FFv|inclusive even if|FFv|≤n-1and all faulty vertices are not adjacent to the same vertex,where n≥4.

    Proof If|FFv|=fv≤n-2,by Lemma 10,the theorem holds.Whenn=4, Lemma 12 holds.Therefore,we only need to consider the situation of|FFv|=fv=n-1,wheren≥5.By Lemma 1,FQncan be partitioned along dimensioniinto twon-1-cubes,denoted byand.There must exist anisuch that,and(v),(We can simply divide one of the faulty vertex and the other faulty vertices into dif f erent parts(or)along ani-dimension.The proof is the condition that all faulty vertices are not adjacent to the same vertex.We can consider extreme situation.Ifn-2 faulty vertices are adjacent to the same vertexx,we can choose one ofn-2 faulty vertices, denoted byy,thenxandyhave one bit dif f erently.So we can partition along this dimension.Thereforeyis in a part,other faulty vertices is in another part and all faulty vertices are not adjacent to the same vertex in this part).

    Let,i=0,1,=n-1.eis a fault-free edge.

    Case 1.1.

    Since=n-2,by Lemma 2,there exists a cycleC0of every even lengthl0containingein,where.Let(x,y)be a fault-free edge in cycleC0such that(xi,yi)(or)is fault-free in(Since=1).LetC0=〈x,P0,y,x〉,then=l(P0),.Since,by Lemma 3,there exists a cycleC1of even lengthl1containing edge(xi,yi)(or)inwhere.Hence,there exists a pathP1of odd lengthjoiningxiandyi(orand),where.LetC=〈x,P0,y,yi,P1,xi,x〉orC=〈x,P01with even length.Sinceand,10≤l≤2n-2().We can obtain the desired even cycle of length from 6 to 8 inC0,where 6≤l0≤2n-1-.So 6≤l≤2n-2().

    Case 1.2

    Since,by Lemma 3,there exists a cycleC1of even lengthl1containing edgeein,where.LetCkbe a fault-freek-cycle covering the edgeein,where.Obviously,there aremutually disjoint edges excludingeinCk.2()is easy to be hold,where.Thus,there exists an(x,y)which is a fault-free edge in cycleC1such that(xi,yi)(or)is fault-free in.LetC1=〈x,P1,y,x〉, then=l(P1),32n-1--1.Since=n-2,and(xi,yi)(or)is fault-free edge,by Lemma 2,there exists a cycleC0of even lengthl0containing edge (xi,yi)(or)in,where 6≤l0≤2n-1-.Hence,there exists a pathP0of odd lengthjoiningxiandyi(orand),where 52n-1--1.LetC=〈x,P1,y,yi,P0,xi,x〉orC=〈x,P10with even lengthSinceand,10≤l≤2n-2(). We can obtain the desired even cycle of length from 6 to 8 inC1,where 4≤l1≤2n-1-.So 6≤l≤2n-2().

    Case 1.3e∈Ei.

    Lete=(x,xi).

    Since=n-2=1,(u),,xhas at least 2 fault-free neighborsy1,y2in,one of themust be fault-free in. Therefore,there must exist an edge(x,y)insuch that(xi,yi)is fault-free in.Since=n-2,by Lemma 2,there exists a cycleC0of every even lengthl0containing(x,y)in,where 6≤l0≤2n-1-.LetC0=〈x,P0,y,x〉,then=l(P0),52n-1--1.Since=1,by Lemma 6,there exists a cycleP1of odd lengthl1joiningxiandyi,where 3≤l1≤2n-1--1.Since (xi,yi)is fault-free,there exists a cycleof odd lengthjoiningxiandyi,where.LetC=with even lengthSinceand,8≤l≤2n-2. LetC=〈x,y,yi,P1,xi,x〉withl=1+l(P1)+2,l(P1)=3,we can obtain the desired even cycle of length 6.So 6≤l≤2n-2().

    Case 1.4e∈Ec.

    The following proof is similar to Case 1.3.

    Case 2.1.

    Since3,by Lemma 3,there exists a cycleC0of every even lengthl0containing edgeein,where 4≤l0≤2n-1-.LetCkbe a fault-freek-cycle covering the edgeein,wherek=2n-1-.Obviously,there are 2n-2mutually disjoint edges excludingeinCk.2(2n-2)is easy to be hold, where3.Thus,there exists an(x,y)which is a fault-free edge in cycleCksuch that(xi,yi)(or)is fault-free in.Then,there exists a pathP0of every odd lengthjoiningxandyin,where. Since,by Lemma 3,there exists a cycleC1of every even lengthl1containing edge(xi,yi)(or)in,where 4≤l1≤2n-1-.(xi,yi)(oris fault-free edge,so there exists a pathP1of odd lengthjoiningxiandyi(orand),where.LetC=〈x,P0,y,yi,P1,xi,x〉orC=〈x,P01with even length.Since 3and,6≤l≤2n-.

    Case 2.2.

    The following proof is similar to Case 2.1.

    Case 2.3e∈Ei.

    By Lemma 11,the proof is completed.

    Case 2.4e∈Ec.

    By Lemma 11,the proof is completed.

    The proof of Theorem 1 is f i nished.

    4 Conclusion

    The folded hypercubeFQnis an important network topology for parallel processing computer systems.According to[4],we can prove the same conclusion inFQn. Under the condition|FFv|≤n-1 and all faulty vertices are not adjacent to the same vertex,we show that ifn≥4,then every edge ofFQn-FFvlies on a fault-free cycle of every even length from 6 to 2n-2|FFv|.

    [1]J.M.Xu,Graph and Application of Graphs,Dordrecht/Boston/London:Kluwer Academic publishers,2003.

    [2]Y.Saad and M.H.Schultz,Topological properties of hypercubes,IEEE.Trans.on Comput.,37:7(1988),867-872.

    [3]C.-H.Tsai,Cycles embedding in hypercubes with node failures,Information Processing Letters,102(2007),242-246.

    [4]C.-H.Tsai,C.-R.Yu,Embedding various even cycles in a hypercube with node failures,The 24th Workshop on Combinatorial Mathematics and Computation Theory,2007, 237-243.

    [5]S.-Y.Hsieh,T.-H.Shen,Edge-bipancyclicity of a hypercube with faulty vertices and edges,Discrete Applied Mathematics,156(2008),1802-1808.

    [6]S.-Y.Hsieh,C.-N.Kuo,H.-L.Huang,1-vertex-fault-tolerant cycles embedding on folded hypercubes,Discrete Applied Mathematics,15(2009),3094-3098.

    [7]M.J.Ma,J.M.Xu,Z.Z.Du,Edge-fault-tolerant hamiltonicity of folded hypercube,Journal of University of Science and Technology of China,36:3(2006),244-248.

    [8]C.N.Kuo,S.Y.Hsieh,Pancyclicity and bipancyclicity of conditional faulty folded hypercubes,Information Sciences,180(2010),2904-2914.

    [9]J.M.Xu,M.J.Ma,Z.Z.Du,Edge-fault-tolerant properties of hypercubes and folded hypercubes,Australasian Journal of Combinatorics,35(2006),7-16.

    [10]D.Q.Cheng,R.X.Hao,Y.Q.Feng,Cycles embedding on folded hypercubes with faulty nodes,Discrete Applied Mathematics,161(2013),2894-2900.

    [11]S.-Y.Hsieh,C.-N.Kuo,Hamiltonian-connectivity and strongly Hamiltonian-laceability of folded hypercubes,Computers and Mathematics with Applications,53(2007),1040-1044.

    [12]M.Ma,G.Liu,X.Pan,Path embedding in faulty hypercubes,Applied Mathematics and Computation,192(2007),233-238.

    [13]D.Q.Cheng,R.X.Hao,Y.Q.Feng,Embedding even cycles on folded hypercubes with conditional faulty edges,Information Processing Letters,115(2015),945-949.

    [14]Weiping Han,S.Y.Wang,The g-Extra Conditional Diagnosability of Folded Hypercubes,Applied Mathematical Sciences,146:9(2015),7247-7254.

    [15]D.Q.Cheng,R.X.Hao,Y.Q.Feng,Odd cycles embedding on folded hypercubes with conditional faulty edges,Information Sciences,282(2014),180-189.

    (edited by Liangwei Huang)

    ?This project was supported by NSFC(11371162)and NSFC(11171129)and HuBei (T201103).

    ?Manuscript received

    ?Corresponding author.E-mail:1101358757@qq.com

    观看免费一级毛片| 美女高潮的动态| 岛国在线免费视频观看| 精品一区二区免费观看| 婷婷亚洲欧美| 啦啦啦韩国在线观看视频| 欧美黄色淫秽网站| 一二三四社区在线视频社区8| 国产精品亚洲美女久久久| 精品久久久久久久末码| 久久久久久久久久黄片| 欧美午夜高清在线| 一级毛片久久久久久久久女| 99热这里只有是精品在线观看 | 亚洲一区二区三区色噜噜| 在线观看一区二区三区| 欧美日韩乱码在线| 免费看日本二区| 深夜a级毛片| 国产欧美日韩精品亚洲av| 一边摸一边抽搐一进一小说| 亚洲男人的天堂狠狠| 真人做人爱边吃奶动态| 日本熟妇午夜| 男女下面进入的视频免费午夜| 亚洲av一区综合| 无人区码免费观看不卡| 国产在线男女| 午夜影院日韩av| 色综合亚洲欧美另类图片| 国产主播在线观看一区二区| 日韩精品青青久久久久久| 人妻丰满熟妇av一区二区三区| 高清毛片免费观看视频网站| 欧美性猛交黑人性爽| 国产欧美日韩一区二区三| 久久精品人妻少妇| 亚洲第一区二区三区不卡| 午夜免费男女啪啪视频观看 | 黄色配什么色好看| 日韩国内少妇激情av| 精品人妻1区二区| 久久精品综合一区二区三区| 美女 人体艺术 gogo| 丁香六月欧美| 国产野战对白在线观看| av视频在线观看入口| 国产单亲对白刺激| 少妇高潮的动态图| 亚洲激情在线av| 午夜福利在线观看吧| 国产久久久一区二区三区| 99久久九九国产精品国产免费| 欧美bdsm另类| 中亚洲国语对白在线视频| 成人鲁丝片一二三区免费| 老司机福利观看| aaaaa片日本免费| 精品久久久久久久末码| 久久久精品欧美日韩精品| 91久久精品电影网| 久久久久久久久中文| 亚洲人成电影免费在线| 少妇的逼好多水| 久久精品国产自在天天线| 亚洲精品一区av在线观看| 亚洲国产精品sss在线观看| 极品教师在线免费播放| 亚洲欧美精品综合久久99| 国产免费男女视频| 欧美午夜高清在线| 好男人在线观看高清免费视频| 成人美女网站在线观看视频| 男人舔奶头视频| 俄罗斯特黄特色一大片| 又爽又黄无遮挡网站| 午夜免费男女啪啪视频观看 | 丰满人妻一区二区三区视频av| 久久精品国产亚洲av香蕉五月| 亚洲欧美日韩无卡精品| 少妇高潮的动态图| 美女被艹到高潮喷水动态| 99热这里只有是精品50| 麻豆成人午夜福利视频| 欧美性猛交黑人性爽| 一进一出好大好爽视频| 黄色女人牲交| 黄片小视频在线播放| 男人的好看免费观看在线视频| 老女人水多毛片| 身体一侧抽搐| 少妇的逼好多水| 非洲黑人性xxxx精品又粗又长| 看黄色毛片网站| 日本免费一区二区三区高清不卡| 超碰av人人做人人爽久久| 免费观看的影片在线观看| 国产麻豆成人av免费视频| 一区二区三区免费毛片| 91在线精品国自产拍蜜月| 亚州av有码| 91av网一区二区| 成人av一区二区三区在线看| 天天一区二区日本电影三级| 国产大屁股一区二区在线视频| 麻豆av噜噜一区二区三区| 精品熟女少妇八av免费久了| 又爽又黄无遮挡网站| 久久久久国产精品人妻aⅴ院| 男女下面进入的视频免费午夜| 国产精品久久久久久人妻精品电影| 亚洲男人的天堂狠狠| 国产视频一区二区在线看| 亚州av有码| 能在线免费观看的黄片| 亚洲无线观看免费| 一进一出好大好爽视频| 国产高清有码在线观看视频| 欧美乱妇无乱码| 99国产精品一区二区蜜桃av| 久久久久久大精品| 淫秽高清视频在线观看| 男女视频在线观看网站免费| 国产亚洲av嫩草精品影院| 午夜福利视频1000在线观看| 国产国拍精品亚洲av在线观看| 国产精品一及| 舔av片在线| 99国产精品一区二区蜜桃av| 中国美女看黄片| 国产成人aa在线观看| 中文字幕精品亚洲无线码一区| 国内精品久久久久久久电影| 精品久久久久久久久久免费视频| av专区在线播放| 又黄又爽又免费观看的视频| 欧美最新免费一区二区三区 | 一区二区三区激情视频| 欧美区成人在线视频| 九九在线视频观看精品| 嫩草影视91久久| 丰满的人妻完整版| 国产免费av片在线观看野外av| 一a级毛片在线观看| www日本黄色视频网| 男女做爰动态图高潮gif福利片| 少妇被粗大猛烈的视频| 国产一区二区在线观看日韩| 精华霜和精华液先用哪个| 3wmmmm亚洲av在线观看| 久久99热这里只有精品18| 国产精品一及| 欧美黑人欧美精品刺激| 波多野结衣高清作品| 床上黄色一级片| 亚洲熟妇中文字幕五十中出| 国产一区二区在线av高清观看| 亚洲自偷自拍三级| 中文字幕熟女人妻在线| 国产成人影院久久av| 无人区码免费观看不卡| 九色国产91popny在线| 好看av亚洲va欧美ⅴa在| 国产探花极品一区二区| 国产免费一级a男人的天堂| 午夜福利在线在线| 少妇被粗大猛烈的视频| 欧美黑人欧美精品刺激| 亚洲av一区综合| 在线观看午夜福利视频| 久久久国产成人免费| 欧美日韩亚洲国产一区二区在线观看| 久久国产精品人妻蜜桃| 人人妻人人看人人澡| 久久久久免费精品人妻一区二区| 一级黄色大片毛片| 成人毛片a级毛片在线播放| 欧美在线黄色| 免费电影在线观看免费观看| 有码 亚洲区| 欧美激情在线99| 久9热在线精品视频| 亚洲av不卡在线观看| 又黄又爽又刺激的免费视频.| 国产在视频线在精品| 黄色一级大片看看| 久久国产精品影院| 最好的美女福利视频网| 好男人电影高清在线观看| 亚洲美女视频黄频| 深爱激情五月婷婷| 亚洲欧美清纯卡通| 直男gayav资源| 成人一区二区视频在线观看| 在线观看舔阴道视频| 久久精品91蜜桃| 男女做爰动态图高潮gif福利片| 成人特级av手机在线观看| 欧美xxxx黑人xx丫x性爽| 在线免费观看不下载黄p国产 | 亚洲精品久久国产高清桃花| 色综合欧美亚洲国产小说| 中文字幕av在线有码专区| 欧美三级亚洲精品| 91av网一区二区| 欧美性猛交黑人性爽| 91久久精品国产一区二区成人| 美女 人体艺术 gogo| 在现免费观看毛片| 国产av麻豆久久久久久久| 伦理电影大哥的女人| 国产野战对白在线观看| 床上黄色一级片| 亚洲精品影视一区二区三区av| 亚洲欧美清纯卡通| 成人鲁丝片一二三区免费| 国产成人啪精品午夜网站| 国产探花在线观看一区二区| 在线十欧美十亚洲十日本专区| 亚洲国产高清在线一区二区三| 亚洲中文字幕一区二区三区有码在线看| 久久欧美精品欧美久久欧美| 久久精品国产亚洲av香蕉五月| 亚洲精品粉嫩美女一区| 两个人视频免费观看高清| 给我免费播放毛片高清在线观看| 热99re8久久精品国产| 日本在线视频免费播放| 亚洲中文字幕日韩| 91字幕亚洲| 97超视频在线观看视频| 亚洲最大成人av| 在现免费观看毛片| 午夜福利成人在线免费观看| 怎么达到女性高潮| 成人国产综合亚洲| 免费在线观看影片大全网站| 美女免费视频网站| 少妇的逼好多水| 毛片一级片免费看久久久久 | 搡老岳熟女国产| 丰满人妻一区二区三区视频av| 丰满乱子伦码专区| 久久6这里有精品| 色av中文字幕| 日韩国内少妇激情av| 国产免费一级a男人的天堂| 日韩中字成人| 亚洲内射少妇av| 两个人视频免费观看高清| 最近在线观看免费完整版| 一级av片app| 国产精品不卡视频一区二区 | 午夜亚洲福利在线播放| 亚洲五月婷婷丁香| 国产aⅴ精品一区二区三区波| 变态另类成人亚洲欧美熟女| 一a级毛片在线观看| 亚洲狠狠婷婷综合久久图片| 能在线免费观看的黄片| 精品久久久久久久久久免费视频| 动漫黄色视频在线观看| 国产精品av视频在线免费观看| 黄色视频,在线免费观看| 精品熟女少妇八av免费久了| 午夜久久久久精精品| 婷婷精品国产亚洲av| 亚洲真实伦在线观看| 日本精品一区二区三区蜜桃| 一个人观看的视频www高清免费观看| 午夜激情欧美在线| 赤兔流量卡办理| 一区二区三区高清视频在线| 国产精品一及| 97热精品久久久久久| 蜜桃久久精品国产亚洲av| 国产精品99久久久久久久久| 日本免费一区二区三区高清不卡| 久久人人爽人人爽人人片va | 国产亚洲欧美98| 中文字幕高清在线视频| 网址你懂的国产日韩在线| 久久国产乱子免费精品| 亚洲av电影在线进入| 久99久视频精品免费| 久久国产精品人妻蜜桃| 在线a可以看的网站| 最好的美女福利视频网| 长腿黑丝高跟| 久久午夜福利片| 国产精品伦人一区二区| 成人欧美大片| 人妻夜夜爽99麻豆av| 精品午夜福利在线看| 别揉我奶头~嗯~啊~动态视频| 啦啦啦观看免费观看视频高清| h日本视频在线播放| 99久久精品热视频| 亚洲av熟女| 中文字幕免费在线视频6| 成人永久免费在线观看视频| 日韩人妻高清精品专区| 亚洲自偷自拍三级| 国产中年淑女户外野战色| 脱女人内裤的视频| 免费在线观看影片大全网站| 国产精品,欧美在线| 高清毛片免费观看视频网站| 亚洲第一电影网av| 国产精品国产高清国产av| 男人舔女人下体高潮全视频| 欧美性感艳星| x7x7x7水蜜桃| www.www免费av| 欧美一区二区精品小视频在线| 日本 av在线| 我要搜黄色片| 99精品久久久久人妻精品| 男女那种视频在线观看| av天堂中文字幕网| 一a级毛片在线观看| 亚洲av一区综合| aaaaa片日本免费| 真人做人爱边吃奶动态| 两个人的视频大全免费| 国产免费av片在线观看野外av| 91在线精品国自产拍蜜月| 在线看三级毛片| 午夜免费男女啪啪视频观看 | 午夜福利免费观看在线| 久久久色成人| 国产aⅴ精品一区二区三区波| 一级黄色大片毛片| 99久久精品热视频| 欧美黑人巨大hd| 欧美日韩亚洲国产一区二区在线观看| 欧美绝顶高潮抽搐喷水| 欧美日本亚洲视频在线播放| 欧美日韩中文字幕国产精品一区二区三区| 久久性视频一级片| 国产aⅴ精品一区二区三区波| .国产精品久久| 日韩欧美精品v在线| 国产一区二区在线av高清观看| 成年人黄色毛片网站| 精品一区二区三区av网在线观看| 亚洲人成网站在线播放欧美日韩| 男女做爰动态图高潮gif福利片| 丝袜美腿在线中文| 色av中文字幕| 99久久九九国产精品国产免费| 色噜噜av男人的天堂激情| 搡老妇女老女人老熟妇| 成年免费大片在线观看| 9191精品国产免费久久| 午夜免费成人在线视频| 国产精品自产拍在线观看55亚洲| 免费在线观看亚洲国产| 久久久久久久久中文| 日本免费一区二区三区高清不卡| 久久人人爽人人爽人人片va | 亚洲第一欧美日韩一区二区三区| 亚洲电影在线观看av| 国产一区二区激情短视频| 精品午夜福利视频在线观看一区| 熟妇人妻久久中文字幕3abv| 亚洲乱码一区二区免费版| 免费看美女性在线毛片视频| 亚洲一区高清亚洲精品| 人人妻人人看人人澡| 此物有八面人人有两片| 久久精品综合一区二区三区| 午夜激情欧美在线| 在线播放无遮挡| 最好的美女福利视频网| 免费观看人在逋| 蜜桃亚洲精品一区二区三区| 又黄又爽又免费观看的视频| 国产高清激情床上av| 午夜老司机福利剧场| 亚洲天堂国产精品一区在线| 国产午夜福利久久久久久| 99在线人妻在线中文字幕| 可以在线观看的亚洲视频| 可以在线观看毛片的网站| 久久久久亚洲av毛片大全| 日本免费a在线| 一卡2卡三卡四卡精品乱码亚洲| 成年版毛片免费区| 高清日韩中文字幕在线| 给我免费播放毛片高清在线观看| 免费观看精品视频网站| 精品人妻偷拍中文字幕| 久久久精品欧美日韩精品| 男人狂女人下面高潮的视频| 日本熟妇午夜| 久久精品国产亚洲av香蕉五月| 国产成人影院久久av| 九色国产91popny在线| 1000部很黄的大片| 淫秽高清视频在线观看| 久久久国产成人精品二区| 欧美绝顶高潮抽搐喷水| 国产精品免费一区二区三区在线| 成年人黄色毛片网站| 国产激情偷乱视频一区二区| 日韩欧美国产一区二区入口| 18禁在线播放成人免费| 国产v大片淫在线免费观看| h日本视频在线播放| 亚洲av免费在线观看| 久99久视频精品免费| 看黄色毛片网站| 欧美日本亚洲视频在线播放| 少妇裸体淫交视频免费看高清| 又爽又黄无遮挡网站| 激情在线观看视频在线高清| 黄色女人牲交| 好男人在线观看高清免费视频| 国产精品人妻久久久久久| 亚洲国产精品999在线| 国产精品久久久久久人妻精品电影| 午夜久久久久精精品| 一进一出抽搐gif免费好疼| 亚洲无线在线观看| 国产日本99.免费观看| 国产亚洲精品av在线| 男女下面进入的视频免费午夜| 最近中文字幕高清免费大全6 | 亚洲 国产 在线| 美女xxoo啪啪120秒动态图 | 日韩欧美在线乱码| 成人毛片a级毛片在线播放| 黄色女人牲交| 亚洲av免费高清在线观看| 日韩欧美在线乱码| 精品久久久久久久久亚洲 | av在线天堂中文字幕| 一卡2卡三卡四卡精品乱码亚洲| 麻豆成人av在线观看| 久久精品影院6| 国产亚洲欧美98| 女生性感内裤真人,穿戴方法视频| 国产真实乱freesex| 欧美激情国产日韩精品一区| 色综合亚洲欧美另类图片| 简卡轻食公司| 日本熟妇午夜| 88av欧美| 一级黄片播放器| 国产黄片美女视频| 九色成人免费人妻av| 女人被狂操c到高潮| 国语自产精品视频在线第100页| 精品乱码久久久久久99久播| 免费在线观看成人毛片| 国产毛片a区久久久久| 亚州av有码| 桃色一区二区三区在线观看| 亚洲精品一卡2卡三卡4卡5卡| 十八禁网站免费在线| 日本黄色片子视频| 国产精品亚洲一级av第二区| 久久精品综合一区二区三区| 亚洲天堂国产精品一区在线| 精品福利观看| 成年女人永久免费观看视频| 老司机福利观看| 免费在线观看影片大全网站| 搡老妇女老女人老熟妇| 亚洲在线观看片| 在线观看一区二区三区| 在现免费观看毛片| 成人永久免费在线观看视频| 亚洲,欧美精品.| 最新在线观看一区二区三区| 国产视频一区二区在线看| 舔av片在线| 午夜久久久久精精品| 免费看a级黄色片| 俺也久久电影网| 亚洲一区二区三区不卡视频| 99热只有精品国产| 桃色一区二区三区在线观看| 国产亚洲精品久久久久久毛片| a级毛片a级免费在线| 日本在线视频免费播放| 国产精品久久久久久亚洲av鲁大| 成年人黄色毛片网站| 国产精品久久久久久久电影| 岛国在线免费视频观看| 国产综合懂色| av福利片在线观看| 日本 av在线| 夜夜爽天天搞| 欧美极品一区二区三区四区| 国产精品亚洲美女久久久| av中文乱码字幕在线| 亚洲狠狠婷婷综合久久图片| 国产精品美女特级片免费视频播放器| 日本一本二区三区精品| 小说图片视频综合网站| 久久久成人免费电影| 69av精品久久久久久| 免费看日本二区| 欧美+日韩+精品| 亚洲乱码一区二区免费版| 舔av片在线| 日本黄色片子视频| 老司机深夜福利视频在线观看| 亚洲精品一区av在线观看| 久久久精品欧美日韩精品| 久久久久性生活片| 中文字幕高清在线视频| 午夜福利在线在线| 国产精品精品国产色婷婷| 99热这里只有是精品在线观看 | 一区二区三区高清视频在线| 美女高潮喷水抽搐中文字幕| 精品欧美国产一区二区三| 高潮久久久久久久久久久不卡| 色哟哟哟哟哟哟| 久久久久久久久久黄片| 国产亚洲精品久久久com| 男女那种视频在线观看| 在线观看一区二区三区| 日本撒尿小便嘘嘘汇集6| 色哟哟哟哟哟哟| 国模一区二区三区四区视频| 久久精品国产亚洲av涩爱 | av欧美777| 99久久精品国产亚洲精品| 欧美三级亚洲精品| 亚洲国产精品成人综合色| 9191精品国产免费久久| 男女床上黄色一级片免费看| 亚洲男人的天堂狠狠| 亚洲精品一区av在线观看| 好男人在线观看高清免费视频| 久久国产精品影院| 国产高清有码在线观看视频| 国产亚洲精品综合一区在线观看| 深夜精品福利| 色尼玛亚洲综合影院| 午夜福利18| 热99re8久久精品国产| 午夜福利在线观看免费完整高清在 | 国产亚洲精品av在线| 亚洲最大成人av| 91在线观看av| 国产精品自产拍在线观看55亚洲| 国产亚洲精品av在线| 国产伦人伦偷精品视频| 好看av亚洲va欧美ⅴa在| 国产一区二区亚洲精品在线观看| 99热精品在线国产| 有码 亚洲区| 美女被艹到高潮喷水动态| 国产一区二区亚洲精品在线观看| 高潮久久久久久久久久久不卡| 一进一出好大好爽视频| 在线播放国产精品三级| 男女下面进入的视频免费午夜| 色视频www国产| 男人舔奶头视频| 精品无人区乱码1区二区| 97碰自拍视频| 日本撒尿小便嘘嘘汇集6| 久久欧美精品欧美久久欧美| 国产真实乱freesex| 熟女电影av网| 午夜免费激情av| 网址你懂的国产日韩在线| 啪啪无遮挡十八禁网站| 黄色配什么色好看| 午夜亚洲福利在线播放| 9191精品国产免费久久| 精品久久国产蜜桃| 成人欧美大片| 麻豆国产97在线/欧美| 欧美最黄视频在线播放免费| 精品午夜福利在线看| 国产色爽女视频免费观看| 一级a爱片免费观看的视频| 老司机午夜十八禁免费视频| 久久久久久九九精品二区国产| 久久久色成人| 午夜福利高清视频| 中文字幕精品亚洲无线码一区| 在线观看av片永久免费下载| 狂野欧美白嫩少妇大欣赏| av中文乱码字幕在线| 最新在线观看一区二区三区| 欧美日本亚洲视频在线播放| 女人被狂操c到高潮| 大型黄色视频在线免费观看| 99热6这里只有精品| 美女大奶头视频| 亚洲avbb在线观看| 日韩欧美一区二区三区在线观看| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 91麻豆精品激情在线观看国产| 直男gayav资源| 亚洲精品色激情综合| 欧美最黄视频在线播放免费| 中文字幕熟女人妻在线| 日本熟妇午夜| 久久久久国内视频| 身体一侧抽搐| 国产成人av教育| 无遮挡黄片免费观看| 成人亚洲精品av一区二区| 色综合亚洲欧美另类图片| 日本一本二区三区精品| 国产高清视频在线观看网站|