• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GLOBAL FINITE ENERGY WEAK SOLUTION TO THE VISCOUS QUANTUM NAVIERSTOKES-LANDAU-LIFSHITZ-MAXWELL MODEL IN 2-DIMENSION?

    2016-11-29 01:18:21BolingGuoInstituteofAppliedPhysicsandComputationalMathChinaAcademyofEngineeringPhysicsBeijing100088PRChinaGuangwuWangGraduateSchoolofChinaAcademyofEngineeringPhysicsBeijing100088PRChina
    Annals of Applied Mathematics 2016年1期

    Boling Guo(Institute of Applied Physics and Computational Math.,China Academy of Engineering Physics,Beijing 100088,PR China)Guangwu Wang(Graduate School of China Academy of Engineering Physics,Beijing 100088,PR China)

    GLOBAL FINITE ENERGY WEAK SOLUTION TO THE VISCOUS QUANTUM NAVIERSTOKES-LANDAU-LIFSHITZ-MAXWELL MODEL IN 2-DIMENSION?

    Boling Guo
    (Institute of Applied Physics and Computational Math.,China Academy of Engineering Physics,Beijing 100088,PR China)
    Guangwu Wang?
    (Graduate School of China Academy of Engineering Physics,Beijing 100088,PR China)

    In this paper,we prove the global existence of the weak solution to the viscous quantum Navier-Stokes-Landau-Lifshitz-Maxwell equations in two-dimension for large data.The main techniques are the Faedo-Galerkin approximation and weak compactness theory.

    global finite energy weak solution;viscous quantum Navier-Stokes-Landau-Lifshitz-Maxwell system;Faedo-Galerkin method

    2000 Mathematics Subject Classification35A01;35D30;35M31; 35Q40;35Q61

    1 Introduction

    In studying the dispersive theory of magnetization of ferromagnets,we also consider the viscous quantum of a fluid on motion under the Maxwell electric-magnetic field,that is,the macroscopic motion of a fluid and the quantum effects and the interactions between electrons in microscopic will be considered similarly.

    In this paper we study the viscous quantum Navier-Stokes-Landau-Lifshitz-Maxwell system (QNSLLM) in (0,T) ×?:

    Roughly speaking,system (1.1) - (1.6) is a coupling between the viscous isentropic quantum Navier-Stokes equations and Landau-Lifshitz-Maxwell equations.This model can be used to describe the dispersive theory of magnetization of ferromagnets with the electromagnetic field.

    For system (1.1) - (1.6) ,we impose the following initial conditions

    which satisfy that

    Furthermore,we always assume thatare 2D-periodic.

    Firstly setting E=B=0,d is a constant vector,and using a effective velocity transformation[18]system (1.1) - (1.6) becomes the isentropic compressible quantum Navier-Stokes equation (IQCNS) .Setμ=0,we get the isentropic compressibleNavier-Stokes equation (ICNS) .For the Navier-Stokes equations with constant viscosity,the existence of global weak solution to ICNS with large initial data in Rnwas first obtained by P.L.Lions[22],whereFeireisl et al.[6,7]extended Lions’s work to the caseFor solutions with spherical symmetry,Jiang and Zhang[15]relaxed the restriction on γ in[22]to the case γ>1,and got the global existence of the weak solutions for N=2 or 3.Luo, Xin and Yang[24]proved the existence and regularity of weak solutions with density connecting to vacuum continuously in 1D.

    If ν=E=B=0,d is a constant vector,system (1.1) - (1.6) is called quantum hydrodynamic model (QHD) .In[24]J¨ungel and Li proved the existence of local-intime solutions and global-in-time solutions to (1.1) - (1.6) for the one-dimensional case with Dirichlet and Neumann boundary conditions for the particle density ρ.In[16], the authors gave the local-in-time existence of the solutions to equations (1.1) - (1.6) in the multi-dimensional torus for the irrotational velocity,and they also proved that local-in-time solutions exit globally in time and exponentially converge toward the corresponding steady-state under a“subsonic”type stability condition.In[14], the authors proved the local-in-time and global-in-time existence of the solutions to equations (1.1) - (1.6) in Rnfor rotational fluid.

    If E=B=0,d is a constant vector,then system (1.1) - (1.6) becomes the viscous quantum hydrodynamic model (vQHD) (see[10,17]for the derivation) .In[18], J¨ungel proved the existence of the global finite energy weak solution to the vQHD.

    If u=E=B=0 and ρ is a constant,then system (1.1) - (1.6) is Landau-Lifshitz model (LL) .In 1981,a group headed by Zhou and Guo proved the existence of the global weak solutions to the initial value problems and initial boundary value problems for Landau-Lifshitz equations from one dimension to multi-dimensions[27]. Alouges and Soyeur[1]proved similar results by penalty method in 1992.In 1993, Guo and Hong began the studies on two-dimensional Landau-Lifshitz equations,they established in[12]the relations between two-dimensional Landau-Lifshitz equations and harmonic maps and applied the approaches studying harmonic maps to get the global existence and uniqueness of partially regular weak solution.In this aspect, in 2004,Liu[23]proved that the“stationary”weak solutions to higher dimensional Landau-Lifshitz equations are partially regular.

    If d is a constant vector,system (1.1) - (1.6) is the viscous quantum Navier-Stokes-Maxwell model (QNSM) .Furthermore ifμ=ν=0,it becomes the Navier-Stokes-Maxwell model (NSM) .In[13],Hong et al.got the existence and uniqueness of global spherically symmetric classical solution to the initial boundary value problem to the system of NSM.Germain,Ibrahim and Masmoudi[9]proved the local and global well-posedness of incompressible NSM.

    If u=0 and ρ is constant,it obtains the Landau-Lifshitz-Maxwell model (LLM) . In[5],Ding,Guo,Li and Zeng obtained the existence of the global weak solution for the LLM for 3-dimensional case.The global existence of the unique smooth solution to the LLM of the ferromagnetic spin chain without disspation in one or two dimensions were established in[26].Ding and Guo[4]proved the existence of partial regular weak solution to LLM.

    In this paper,we are interested in the global existence of finite energy solutions to the initial problem of (1.1) - (1.6) in two-dimensional case.Besides difficulties pointed in[18],the main difficulty is the coupling of velocity,electric field,magnetic field and magnetization field.Therefore,the key in our analysis is to deal with convection term,the quantum term,the electric-magnetic term and the last two terms about the magnetization field in the momentum equation.Inspired by[18],we choose the test function of the form ρ? for the momentum equation,the magnetization field equation and the magnetic field equation.

    Next we state our main results.

    Theorem 1.1 (Global existence) Let T>0,P (ρ) =Aργ(γ≥1) . (1.8) holds. And ρ0,u0,d0,E0,B0are 2D-periodic functions.Furthermore E (ρ0,u0,d0,E0,B0) (see (4.2) for the definition of E (ρ,u,d,E,B) ) is finite.There exists a weak solution (ρ,u,d,E,B) to (1.1) - (1.6) with the regularity

    satisfying (1.1) pointwise and for all smooth test functions satisfying ? (·,T) =0,

    The product A:B means summation over both indices of matrices A and B.

    It is easy to see that (1.1) - (1.6) lacks compactness which we need to get the estimate of L2or H1-norm for u.To overcome this difficult,we first add the right hand of (1.2) a viscosity term δ?u+δu:

    Then we want to send the viscosity constant δ to 0.Finally,we obtain the desired weak solution to the original problem (1.1) - (1.6) .

    This paper is organized as follows.In Section 2,we give some preliminaries which will be used in the following section.We show the local existence of (1.1) - (1.6) in Section 3.In Section 4,we firstly prove the a-priori estimates and the existence of global weak solution to the viscosity system (1.20) - (1.25) ,then show the limit of δ→0.The global-in-time existence weak solutions can be achieved according to the Faedo-Galerkin method and weak compactness techniques.

    2 Preliminaries

    In this section we first give some notation.In this paper we denote C the constant dependent of N and δ.Lp([0,T];Lq(?) ) (p,q≥1) is a space whose element is the p-integrable respect to time variable and q-integrable respect to space variable function.Wk,pand Hsare the Sobolev spaces. (Hs)?is the dual space of Hs.

    Lemma 2.1 (Gagliardo-Nirenberg inequality) Let ??Rd(d≥1) be a bounded open set with??∈C0,1,m ∈N,1≤p,q,r≤∞.Then there exists a constant C>0 such that for all u∈Wm,p(?) ∩Lq(?) ,

    Next we give a weak compactness lemma which will be used in the following section.

    Lemma 2.2 (Aubin-Lions Lemma) Assume X?Y?Z are Banach spaces andThen the following immbedding are compact:

    3 Local Existence of Solutions

    In this section we will show the local existence of solutions to the viscosity system (1.20) - (1.25) by Faedo-Galerkin method.Let T>0,and {ωj} be an orthonormal basis of L2(?) which is also an orthogonal basis of H1(?) .Introduce the finite-dimensional space XN=span {ω1,···,ωN} ,n∈N.Denote the approximate solutions to problem (1.21) - (1.25) byin the following form

    where βj(t) ,γj(t) ,δj(t) ,ηj(t) ,ζj(t) (j=1,···,N,N=1,2,···) are 2-dimensional vector-valued functions.For some functions λi(t) ,and the norm of v in C0([0,T];XN) can be formulated as

    As a consequence,v can be bounded in C0([0,T];Ck(?) ) for any k∈N,and there exists a constant C>0 depending on k such that

    The approximate system is defined as follows.Let ρ∈C1([0,T];C3(?) ) be the classical solution to

    The maximum principle provides the lower and upper bounds ([15],Chapter 7.3)

    Next we wish to solve (1.20) - (1.25) on the space XN.To this end,for given,we are looking for functionssuch that

    To solve (3.4) - (3.7) ,we follow ([15],Chapter 7.3.3) and introduce the following family of operators,given a function

    These operators are symmetric and positive definite with the smallest eigenvalue

    Hence,since XNis finite-dimensional,the operators are invertible with

    for all ?1,?2∈L1(?) such that

    Now the integral equation (3.4) can be rephrased as an ordinary differential equation on the finite-dimensional space XN,

    when ρ=S1(u)

    Integrating (3.9) over (0,t) yields the following nonlinear equation:Since the operators S1and M are Lipschitz type, (3.10) can be solved by evoking the fixed point theorem of Banach on a short time interval[0,T′],where T′≤T, in the space C0([0,T];XN) .In fact,we have evenThen we can solve system (3.5) - (3.7) .Thus,there exists a unique local-in-time solution

    4 A Priori Estimates and Global Existence

    In this section,we will give some a-priori estimates.Using these estimates, we can show that the local-in-time solutionwhich are proved in Section 2 can be extended globally.In the case of not confusing,we omit the subscript N and superscript δ in this section.

    Theorem 4.1 Set the conditions in Theorem 1.1 to be hold.Then we have the following energy inequality:

    Then multiplying (1.21) by u,and integrating both sides of it by parts respectively in ?,we have

    Indeed we have the following fact:

    Multiplying (1.22) by?d+B,and integrating both sides of it by parts respectively in ?,we get

    here we use the following computation:

    We can easily have

    Combining (4.3) - (4.7) ,we can get

    The proof is completed.

    From Theorem 4.1,by Gronwall inequality,we can easily get the following estimates:

    Corollary 4.1 Set Theorem 4.1 to hold,then we have

    The energy inequality (4.1) and Corollary 4.1 allow us to conclude some estimates.

    Lemma 4.1 The following uniform estimate holds for some constant C>0,

    Proof The lemma follows form the energy estimate in Theorem 4.1.The inequality

    with κ2,was shown in[18],and the inequality

    was proved in[18],the proof is completed.

    We able to deduce more regularity from the H2bound for

    Lemma 4.2 (space regularity for ρ and ρu) The following uniform estimates hold for some constant C>0 not depending on N and δ:

    where p<2.

    Proof Since the space H2(?) embeds continuously into L∞(?) ,showing thatis bounded in L2([0,T];L∞(?) ) .Thus,in view of (4.11) , (4.12) ,is uniformly bounded in L2([0,T];L2(?) ) .By (4.9) and (4.18) ,is bounded inis bounded in L∞([0,T];L6(?) ) .This,together with (4.9) , implies that

    is uniformly bounded in L2([0,T];L3/2(?) ) ,which proves the first claim.

    For the second claim,we observe first that,by the Gagliardo-Nirenberg inequality in Lemma 2.1,with p=2γ/ (γ+1) and θ=1/2,

    is bounded in L2([0,T];Lp(?) ) which proves the second claim.

    Finally,the Gagliardo-Nirenberg inequality,with θ=3/ (4γ+3) and q=2 (4γ+ 3) /3

    shows that ρ is bounded in Lq/2([0,T];Lq/2(?) ) .This finishes the proof.

    From (4.16) we can get the estimate about

    Lemma 4.4 (Time regularity for ρ and ρu) The following uniform estimates hold for s>2,

    Proof By (4.20) , (4.21) ,we find that?tρ=?div (ρu) ?ν?ρ is uniformly bounded in L2([0,T];L3/2(?) ) ,which proves the first claim.

    The sequence ρu?u is bounded in L∞([0,T];L1(?) ) ;hence,div (ρu?u) is bounded in L∞([0,T]; (W1,∞(?) )?) ,because of the continuous embedding of Hs(?) into W1,∞(?) for s>2,and also in L∞([0,T]; (Hs(?) )?) .The estimate

    for all ?∈L4([0,T];W1,3(?) ) proves thatis uniformly bounded inIn view of (4.22) ,ργis bounded inFurthermore,by (4.20) ,? (ρu) is uniformly bounded in L2([0,T]; (W1,3(?) )?) ,and by (4.17) ,δ?u is bounded in L2([0,T]; (H1(?) )?) .Therefore,using Corollary 4.1 and Lemma 4.3,we get that

    is uniformly bounded in L4/3([0,T]; (Hs(?) )?) .The proof is completed.

    The L4([0,T];W1,4(?) ) bound (4.18) onprovides a uniform estimate for

    Lemma 4.5 (Time regularity forThe following estimate holds:

    Proof Dividing the mass equation (1.1) bygives

    The first term on the right-hand side is bounded in L2([0,T]; (H1(?) )?) by (4.11) and (4.12) .The remaining terms are uniformly bounded in L2([0,T];L2(?) ) ;see (4.11) , (4.12) , (4.17) .The proof is completed.

    Lemma 4.6 There is

    Proof Multiplying (1.3) by dt,and integrating by parts respect to x in ?,we have

    Here C1,C2,C3,C4are constants independent of N.Then integrating by parts respect to t in[0,T],using the Corollary 4.1 and Lemma 4.3 we get (4.27) .Thus we complete the proof of this lemma.

    Next we will show the limit of the Fadeo-Galerkin approximated solution.We perform first the limit N→∞,with δ>0 being fixed.The limit δ→0 is carriedout in the last part of this section.We consider both limits separately since the weak formulation (1.16) - (1.19) for the viscous quantum NSLLM equations is different from its approximation (3.1) and (3.4) - (3.7) .

    We conclude from the Aubin-Lions lemma,taking into account the regularity (4.21) and (4.24) for ρN,the regularity (4.18) and (4.26) forand the regularity (4.20) and (4.25) for ρNuN,that there exist subsequences of ρN,and ρNuN, which are not related,such that,for some function ρ and J,as N→∞,

    Here we have used that the embeddingare compact.The estimate (4.17) on uNprovides further the existence of a subsequence (not relabeled) such that,as N→∞,

    Then,since ρnuNconverges weakly to ρu in L1([0,T];L6(?) ) ,we infer that J=ρu.

    We are now in the position to let N→∞in the approximate system (3.1) and (3.4) - (3.7) with ρ=ρN,u=uN,d=dN,E=ENand B=BN.Clearly,the limit N→∞shows immediately that n solves

    Next we consider the weak formulation (3.4) term by term.The strong convergence of ρNuNin L2([0,T];L2(?) ) and the weak convergence of ρNin L2([0,T];L6(?) ) leads to

    Furthermore,in view of (4.21) (up to a subsequence) ,

    equals,for sufficiently smooth test functions,

    Similarly,using the a-priori estimates we can show that as N →∞,the limit of (dN,EN,BN) satisfies

    Finally,we will show the limit asbe a solution to (3.2) , (3.4) - (3.7) with the regularity proved in the previous.By employing the test function ρδ? in (3.4) (which is possible as long as the integrals are well defined) ,we obtain,according to

    The Aubin-Lions lemma and the regularity results from the previous allow us to extract subsequences (not relabeled) such that as δ→0,for some functions ρ and j,

    Estimate (4.11) , (4.12) and Fatou lemma yield

    This implies that J=0 in ρ=0.Then,when we define the limit velocity u:=J/ρBy (4.11) , (4.12) ,there exists a subsequence (not relabeled) such that

    for some function g.Hence,sinceconverges strongly towe infer thatconverges weakly to

    Now we are able to pass to the limit δ→0 in the weak formulation (4.32) term by term.The strong convergences (4.33) and (4.34) imply that

    The strong convergence of ρδuδimmediately gives

    Furthermore,we have

    It holds that r<6 since we have p>3.This implies that

    The almost everywhere convergence of ρδand thebound on ρδ(see (4.22) ) ,together with the fact that 4γ/3+1>γ+1,proves that

    Using the estimate (4.17) forwe obtain further,for smooth test functions,

    It remains to show the convergence of (ρδ)2div (uδ) uδ.To this end,we proceed similarly as in[11]and introduce the functionssatisfyingThen we estimate the low-density part of (ρδ)2div (uδδ) uδby

    where C>0 is independent of δ and α.We write

    As δ→0,the first term on the right-hand side converges strongly to div (Gα(ρ) ρu) in L1([0,T]; (H1(?) )?) since Gα(ρδ) converges strongly to Gα(ρ) in Lp([0,T];Lp(?) ) for any p<∞and ρδuδconverges strongly to ρu in L2([0,T];Lq(?) ) for any q<3. In view of (4.35) and (4.36) ,we infer the weak?convergenceThus,because of (4.33) ,

    Moreover,in view of the strong convergence of ρδuδto ρu in L2([0,T];Lq(?) ) for all q<3,we infer that

    For fixed α>0,the first integral converges to zero as δ→0.Furthermore,the last integral can be estimated byuniformly in δ ( (4.37) ) .For the second integral,we recall thatFurthermore, by the Gagliardo-Nirenberg inequality,the bounds of ρu in L2([0,T];W1,3/2(?) ) andThus,since

    As a consequence,the second integral converges to 0 as δ→0.Thus,in the limit δ→0, (4.39) can be made arbitrarily small,and hence,

    Here we will omit the rest term convergence about d,E,B,you can refer to[11].

    We have proved that (ρ,u,d,E,B) solves (1.20) - (1.25) for smooth initial data.Let (ρ0,u0,d0,E0,B0) be some finite-energy initial data,that is ρ0≥0 andbe smooth approximations satisfyingstrongly in H1(?) andstrongly in L3/2(?) .By the above proof,there exists a weak solutionwith initial datasatisfying all the above bounds.In particular,converges strongly in some spaces toand there exist uniform bounds forand forThus,up to subsequences,as δ→0,

    Note that a priori estimates in Section 4 are independent of D.By using the diagonal method and letting D→∞,we can obtain the global existence of weak solution to the Cauchy problem of system (1.1) - (1.6) and (1.7) .For simplicity,we do not state the theorem here.

    In the following work we will show the partial regularity of these weak solution to NSLLM.We will show that if the solution to (1.1) - (1.6) is smooth except finitely many singular point.

    References

    [1]F.Alouges and A.Soyeur,On global weak solutions for Landau-Lifshitz equations: Existence and nonuniqueness,Nonlinear Anal.TMA,18 (1992) ,1071-1084.

    [2]D.Bresch,B.Desjardins and C.K.Lin,On some compressible fluid models:Korteweg,lubrication and shallow water systems,Comm.Partial Differential Equations, 28 (2003) ,1009-1037.

    [3]S.Brull and F.M′ehats,Derivation of viscous correction terms for the isothermal quantum Euler model,Z.Angew.Math.Mech.,90 (2010) ,219-230.

    [4]S.J.Ding and B.L.Guo,Existence of partial regularity weak solutions to Landau-Lifshitz-Maxwell equations,Journal of Differential Equations,244:10 (2008) ,2448-2472.

    [5]S.J.Ding,B.L.Guo,J.Y.Lin and M.Zeng,Global existence of weak solution for Landau-Lifshitz-Maxwell equtions,Discrete and Continuous Dynamical Systems-Series A,17:4 (2007) ,867-890.

    [6]E.Feireisl,Dynamics of Viscous Compressible Fluids,Oxford University Press,Oxford, 2004.

    [7]E.Feireisl,A.Novotn′y and H.Petzeltov′a,On the existence of globally defined weak solutions to the Navier-Stokes equations,J.Math.Fluid Mech.,3 (2001) ,358-392.

    [8]C.Gardner,Numerical simulation of a steady-state electron shock wave in a submicron semiconductor device,ⅠEEE Trans.El.Dev.,38 (1991) ,392-398.

    [9]P.Germain,S.Ibrahim and N.Masmoudi,Well-posedness of the Navier-Stokes-Maxwell equations,Proceedings of the Royal Society of Edinburgh,144:1 (2014) ,71-86.

    [10]M.P.Gualdani and A.J¨ungel,Analysis of the viscous quantum hydrodynamic equations for semiconductors,Eur.J.Appl.Math.,15 (2004) ,577-595.

    [11]B.L.Guo and S.J.Ding,Landau-Lifshitz Equations,Word Science:Singapore,2008.

    [12]B.L.Guo and M.C.Hong,The Landau-Lifshitz equations of the ferromagnetic spin chain and harmonic maps,Calc.Var.,1 (1993) ,311-334.

    [13]G.Y.Hong,X.F.Hou,H.Y.Peng and C.J.Zhu,Global spherically symmetric classical solution to the Navier-Stokes-Mawell system with large initial data and vacuum, Science China Mathematics,57:12 (2014) ,2463-2484.

    [14]F.M.Huang,H.L.Li,A.Matsumura and S.Odanaka,Well-posedness and stability of multi-dimensional quantum hydrodynamics for semiconductors in R3,Series in Contemporary Applied Mathematics CAM 15,High Education Press,Beijing,2010.

    [15]S.Jiang and P.Zhang,Global sphereically symmetric solutions of the compressible isentropic Navier-Stokes equations,Comm.Math.Phys.,215 (2001) ,559-581.

    [16]H.L.Li and P.Marcati,Existence and asymptotic behavior of multi-dimensional quantum hydrodynamic model for semiconductors,Comm.Math.Phys.,245 (2004) ,215-247.

    [17]A.J¨ungel,A Steady-state quantum Euler-Poisson system for potential flows,Commun. Math.Phys.,194 (1998) ,463-479.

    [18]A.J¨ungel,Global weak solutions to cmpressible Navier-Stokes equations for quantum fluids,SⅠAM J.Appl.Math.,42:3 (2010) ,1025-1045.

    [19]A.J¨ungel,Quasi-hydrodynamic Semiconductor Equations,Birkh¨ause,Basel,2001.

    [20]L.D.Landau and E.M.Lifshitz,On the theory of the dispersion of magnetic permeability in ferromagnetic bodies,Phys.Z.Sovietunion.,8 (1935) ,153-169.

    [21]Z.Lei,D.Li and X.Y.Zhang,Remarks of global wellposedness of liquid crystal flows and heat flow of harmonic maps in two dimensions,Proceedings of American Mathemathical Society,142:11 (2012) ,3801-3810.

    [22]P.L.Lions,Mathematical Topic in Fluid Mechanics,Vol.2 Compressible models,in; Oxford Lectures Series in Mathematics and its Applications,Vol.10,Oxford Science Publications,The Clarendon Press,Oxford University Press,New York,1998.

    [23]X.Liu,Partial regularity for Landau-Lifshitz system of ferromagnetic spin chain,Calc. Var.,20 (2004) ,153-173.

    [24]T.Luo,Z.P.Xin and T.Yang,Interface behavior of compressible Navier-Stokes equtions with vacuum,SⅠAM J.Math.Anal.,31 (2000) ,1175-1191.

    [25]P.M.Markowich,C.Ringhoffer,and C.Schmeiser,Semiconductor Equations,Wien, Springer,1990.

    [26]F.Q.Su and B.L.Guo,The global smooth solution for Landau-Lifshitz-Maxwell equation without dissipaton,Journal of Partial Differential Equations,3 (1998) ,193-208.

    [27]Y.L.Zhou,H.S.Sun,and B.L.Guo,Existence of weak solution for boundary problems of systems of ferromagnetic chain,Science in China A,27 (1981) ,779-811.

    (edited by Liangwei Huang)

    ?Manuscript March 3,2016

    ?.E-mail:yunxianwgw@163.com

    后天国语完整版免费观看| 色老头精品视频在线观看| 日本撒尿小便嘘嘘汇集6| 男插女下体视频免费在线播放| 叶爱在线成人免费视频播放| 国产一区二区在线av高清观看| 亚洲av成人av| 国内精品美女久久久久久| 人妻丰满熟妇av一区二区三区| 欧美成狂野欧美在线观看| 最近最新中文字幕大全免费视频| 综合色av麻豆| www.999成人在线观看| 色吧在线观看| 91字幕亚洲| 日韩欧美精品v在线| 国产男靠女视频免费网站| 1000部很黄的大片| 中文亚洲av片在线观看爽| 在线观看66精品国产| 日韩欧美在线乱码| 日韩大尺度精品在线看网址| 丰满人妻熟妇乱又伦精品不卡| 国产激情久久老熟女| 国产成人欧美在线观看| 午夜激情福利司机影院| 青草久久国产| 午夜亚洲福利在线播放| 国产精品一及| 午夜影院日韩av| 手机成人av网站| 少妇裸体淫交视频免费看高清| 波多野结衣巨乳人妻| 久久这里只有精品19| 国产精品久久视频播放| 亚洲av免费在线观看| 国内少妇人妻偷人精品xxx网站 | 精品久久久久久久久久久久久| 成人无遮挡网站| av天堂中文字幕网| 母亲3免费完整高清在线观看| а√天堂www在线а√下载| АⅤ资源中文在线天堂| 欧美在线黄色| 又紧又爽又黄一区二区| 亚洲精品乱码久久久v下载方式 | 叶爱在线成人免费视频播放| cao死你这个sao货| 啦啦啦观看免费观看视频高清| 99久久99久久久精品蜜桃| 欧美中文日本在线观看视频| 日韩av在线大香蕉| 欧美黄色片欧美黄色片| ponron亚洲| 白带黄色成豆腐渣| 亚洲av中文字字幕乱码综合| 亚洲av电影不卡..在线观看| 精品久久久久久久毛片微露脸| 一级a爱片免费观看的视频| 欧美日韩黄片免| 久久久久久人人人人人| 身体一侧抽搐| 欧美激情久久久久久爽电影| 最近最新中文字幕大全电影3| av女优亚洲男人天堂 | 色噜噜av男人的天堂激情| 亚洲av日韩精品久久久久久密| 这个男人来自地球电影免费观看| 操出白浆在线播放| 狂野欧美激情性xxxx| 亚洲av片天天在线观看| 国语自产精品视频在线第100页| 村上凉子中文字幕在线| 国产一区二区在线av高清观看| 桃红色精品国产亚洲av| www.精华液| tocl精华| 九色成人免费人妻av| www日本黄色视频网| 成年免费大片在线观看| 国产欧美日韩一区二区精品| 又大又爽又粗| 欧美日韩亚洲国产一区二区在线观看| 国产高清videossex| 国产熟女xx| 免费无遮挡裸体视频| 午夜福利在线观看免费完整高清在 | e午夜精品久久久久久久| 久久伊人香网站| 最新美女视频免费是黄的| 看免费av毛片| 99久久99久久久精品蜜桃| 韩国av一区二区三区四区| 午夜日韩欧美国产| 午夜两性在线视频| 伊人久久大香线蕉亚洲五| 免费无遮挡裸体视频| 欧美3d第一页| 国产单亲对白刺激| 成人性生交大片免费视频hd| 岛国在线免费视频观看| 亚洲性夜色夜夜综合| 国产av不卡久久| 91麻豆精品激情在线观看国产| www日本黄色视频网| 欧美日韩黄片免| 黄色成人免费大全| 91在线观看av| 亚洲在线自拍视频| 色视频www国产| tocl精华| 国产单亲对白刺激| 国产伦一二天堂av在线观看| 精品国产超薄肉色丝袜足j| 日韩欧美一区二区三区在线观看| 欧美日韩中文字幕国产精品一区二区三区| 午夜福利视频1000在线观看| 日本一二三区视频观看| 欧美极品一区二区三区四区| 成年女人毛片免费观看观看9| 精品欧美国产一区二区三| 久久久国产成人精品二区| 色综合欧美亚洲国产小说| 国产成人av教育| av片东京热男人的天堂| 国产v大片淫在线免费观看| 在线播放国产精品三级| 国产精品野战在线观看| 黑人巨大精品欧美一区二区mp4| 国产不卡一卡二| 免费大片18禁| 美女 人体艺术 gogo| 国产单亲对白刺激| 国产伦精品一区二区三区四那| 天天一区二区日本电影三级| 久久人人精品亚洲av| 国产高清视频在线观看网站| 欧美日韩乱码在线| 亚洲五月天丁香| 欧美色视频一区免费| 国产精品美女特级片免费视频播放器 | 极品教师在线免费播放| 母亲3免费完整高清在线观看| 1024手机看黄色片| 日本撒尿小便嘘嘘汇集6| 可以在线观看的亚洲视频| 久久久久国内视频| 欧美日韩福利视频一区二区| 亚洲人成伊人成综合网2020| 法律面前人人平等表现在哪些方面| 色尼玛亚洲综合影院| 国产精品一区二区免费欧美| 亚洲国产日韩欧美精品在线观看 | 黑人操中国人逼视频| 亚洲av成人一区二区三| 久久热在线av| 91在线观看av| 亚洲 欧美一区二区三区| 在线观看舔阴道视频| 国内久久婷婷六月综合欲色啪| 国产人伦9x9x在线观看| 国产日本99.免费观看| 桃红色精品国产亚洲av| 老司机午夜十八禁免费视频| 国模一区二区三区四区视频 | 国产熟女xx| 韩国av一区二区三区四区| 欧美日韩综合久久久久久 | 欧美3d第一页| 国产高清videossex| 国产伦精品一区二区三区四那| 三级男女做爰猛烈吃奶摸视频| 两个人的视频大全免费| 久久久国产欧美日韩av| 丰满的人妻完整版| 88av欧美| 在线观看免费午夜福利视频| 亚洲人成网站高清观看| 黑人操中国人逼视频| 伊人久久大香线蕉亚洲五| 97人妻精品一区二区三区麻豆| 日韩 欧美 亚洲 中文字幕| 亚洲国产看品久久| 国产高清有码在线观看视频| 97超级碰碰碰精品色视频在线观看| 国产av一区在线观看免费| 婷婷亚洲欧美| 国产午夜福利久久久久久| 久久精品夜夜夜夜夜久久蜜豆| 亚洲精品中文字幕一二三四区| 国产美女午夜福利| svipshipincom国产片| 看片在线看免费视频| 无限看片的www在线观看| 国产精品1区2区在线观看.| 网址你懂的国产日韩在线| 手机成人av网站| 久久香蕉精品热| 国产午夜福利久久久久久| 大型黄色视频在线免费观看| 色在线成人网| 久久这里只有精品中国| 一个人免费在线观看电影 | 三级男女做爰猛烈吃奶摸视频| 好男人电影高清在线观看| 免费电影在线观看免费观看| 国产精品女同一区二区软件 | 国产激情欧美一区二区| 香蕉久久夜色| 伊人久久大香线蕉亚洲五| 一a级毛片在线观看| 夜夜爽天天搞| 成人三级做爰电影| 亚洲午夜理论影院| 丁香六月欧美| 白带黄色成豆腐渣| 久久久久亚洲av毛片大全| 亚洲激情在线av| 69av精品久久久久久| 国产麻豆成人av免费视频| 精品一区二区三区av网在线观看| 亚洲色图av天堂| 久久国产乱子伦精品免费另类| 88av欧美| 这个男人来自地球电影免费观看| 亚洲成a人片在线一区二区| 欧美成人免费av一区二区三区| 黄色丝袜av网址大全| 9191精品国产免费久久| 日本成人三级电影网站| 婷婷精品国产亚洲av在线| 亚洲av免费在线观看| 露出奶头的视频| 国产成人精品久久二区二区91| 国产精品美女特级片免费视频播放器 | 99久国产av精品| 国产亚洲精品综合一区在线观看| 99视频精品全部免费 在线 | 女警被强在线播放| 伦理电影免费视频| 在线观看舔阴道视频| 大型黄色视频在线免费观看| www日本在线高清视频| 国产精品乱码一区二三区的特点| 亚洲国产精品合色在线| 午夜福利高清视频| 我的老师免费观看完整版| 狠狠狠狠99中文字幕| 1024手机看黄色片| 禁无遮挡网站| 亚洲天堂国产精品一区在线| 国产精品一区二区免费欧美| 国产免费男女视频| 国产熟女xx| 国产三级中文精品| 国产男靠女视频免费网站| 国产精品九九99| 亚洲黑人精品在线| 国产视频内射| 日日夜夜操网爽| 亚洲国产高清在线一区二区三| 美女大奶头视频| 琪琪午夜伦伦电影理论片6080| 美女cb高潮喷水在线观看 | 嫩草影视91久久| 波多野结衣高清作品| 男插女下体视频免费在线播放| 91麻豆av在线| 成人高潮视频无遮挡免费网站| 少妇人妻一区二区三区视频| 久久精品综合一区二区三区| 久久天躁狠狠躁夜夜2o2o| 老鸭窝网址在线观看| 中文字幕精品亚洲无线码一区| 一级毛片高清免费大全| 久久精品亚洲精品国产色婷小说| 欧美日韩精品网址| 一级黄色大片毛片| 国产精品久久久久久亚洲av鲁大| 国产蜜桃级精品一区二区三区| 欧美日韩中文字幕国产精品一区二区三区| 色播亚洲综合网| 美女 人体艺术 gogo| 中文字幕最新亚洲高清| 好看av亚洲va欧美ⅴa在| 国产精品亚洲一级av第二区| 久久久久亚洲av毛片大全| 18禁国产床啪视频网站| 国产精品精品国产色婷婷| 男插女下体视频免费在线播放| 狂野欧美激情性xxxx| 日日摸夜夜添夜夜添小说| 免费无遮挡裸体视频| 午夜免费成人在线视频| 淫秽高清视频在线观看| 精品熟女少妇八av免费久了| 精品一区二区三区av网在线观看| 白带黄色成豆腐渣| 九九久久精品国产亚洲av麻豆 | 欧美性猛交╳xxx乱大交人| 精品免费久久久久久久清纯| bbb黄色大片| 亚洲国产精品久久男人天堂| 九色国产91popny在线| 婷婷精品国产亚洲av| 国产又色又爽无遮挡免费看| 亚洲欧美一区二区三区黑人| 狂野欧美激情性xxxx| 又黄又粗又硬又大视频| 一级a爱片免费观看的视频| 欧美成人性av电影在线观看| 亚洲avbb在线观看| h日本视频在线播放| 欧美黑人欧美精品刺激| 亚洲国产精品成人综合色| 一级作爱视频免费观看| av黄色大香蕉| 成年版毛片免费区| 久久99热这里只有精品18| 免费搜索国产男女视频| 午夜成年电影在线免费观看| 在线观看66精品国产| 五月伊人婷婷丁香| 99久久无色码亚洲精品果冻| 国产精品久久电影中文字幕| 麻豆成人av在线观看| 欧美午夜高清在线| 久久久久九九精品影院| 夜夜躁狠狠躁天天躁| 两个人的视频大全免费| 国产亚洲欧美在线一区二区| 国产日本99.免费观看| 国产精品亚洲美女久久久| 亚洲精品一区av在线观看| 听说在线观看完整版免费高清| 最新在线观看一区二区三区| 国产人伦9x9x在线观看| 好看av亚洲va欧美ⅴa在| 国产精品98久久久久久宅男小说| 婷婷精品国产亚洲av在线| 在线永久观看黄色视频| 久久久久久久精品吃奶| 可以在线观看的亚洲视频| 精品国内亚洲2022精品成人| 国产成+人综合+亚洲专区| 村上凉子中文字幕在线| 黄色女人牲交| 亚洲五月婷婷丁香| 免费在线观看亚洲国产| 欧美高清成人免费视频www| 国产黄片美女视频| 国产蜜桃级精品一区二区三区| av视频在线观看入口| 国产v大片淫在线免费观看| 好看av亚洲va欧美ⅴa在| 日本与韩国留学比较| 久久中文字幕人妻熟女| 色综合欧美亚洲国产小说| 国产精品一区二区精品视频观看| 草草在线视频免费看| 成人午夜高清在线视频| 亚洲av电影不卡..在线观看| 一二三四在线观看免费中文在| 国内揄拍国产精品人妻在线| 国产精品久久视频播放| 国内久久婷婷六月综合欲色啪| 我的老师免费观看完整版| 看免费av毛片| 国产精品亚洲美女久久久| 久久久久亚洲av毛片大全| 成在线人永久免费视频| 最近最新免费中文字幕在线| 亚洲一区高清亚洲精品| 色综合婷婷激情| 亚洲av成人不卡在线观看播放网| 久久久水蜜桃国产精品网| 欧美成狂野欧美在线观看| 国产成人av激情在线播放| 午夜福利在线观看免费完整高清在 | 日日夜夜操网爽| 男人舔女人的私密视频| 亚洲国产欧美人成| 精品一区二区三区四区五区乱码| 久久精品国产综合久久久| 亚洲国产精品sss在线观看| 99国产精品一区二区蜜桃av| 国产高清videossex| 黄色成人免费大全| 哪里可以看免费的av片| 无人区码免费观看不卡| 亚洲最大成人中文| 一进一出好大好爽视频| 后天国语完整版免费观看| 欧美成人免费av一区二区三区| 欧美不卡视频在线免费观看| 国产私拍福利视频在线观看| 精品熟女少妇八av免费久了| 欧美绝顶高潮抽搐喷水| 国产精品,欧美在线| 最近在线观看免费完整版| 欧美日本视频| 一区福利在线观看| 麻豆成人午夜福利视频| 日韩精品中文字幕看吧| 亚洲18禁久久av| 美女 人体艺术 gogo| 在线十欧美十亚洲十日本专区| www日本黄色视频网| 亚洲av熟女| 国产精品一区二区免费欧美| 国产三级中文精品| 亚洲欧美日韩卡通动漫| 91老司机精品| 999精品在线视频| 在线观看美女被高潮喷水网站 | 精品久久久久久久久久免费视频| av在线蜜桃| 极品教师在线免费播放| 法律面前人人平等表现在哪些方面| 亚洲 欧美 日韩 在线 免费| 一二三四社区在线视频社区8| 精品无人区乱码1区二区| 一个人看视频在线观看www免费 | 日本在线视频免费播放| av福利片在线观看| 一级a爱片免费观看的视频| 中亚洲国语对白在线视频| 国产成人精品久久二区二区免费| 久久精品91蜜桃| 香蕉av资源在线| 精品久久久久久久末码| 欧美成人免费av一区二区三区| 亚洲va日本ⅴa欧美va伊人久久| 午夜福利在线在线| 久久久精品欧美日韩精品| 黄色片一级片一级黄色片| 可以在线观看毛片的网站| 国产高潮美女av| 日韩欧美免费精品| 老司机午夜福利在线观看视频| 国产99白浆流出| 97超视频在线观看视频| 毛片女人毛片| 啦啦啦观看免费观看视频高清| 欧美在线黄色| 久久性视频一级片| 一区二区三区国产精品乱码| 国产真人三级小视频在线观看| 美女cb高潮喷水在线观看 | 91麻豆精品激情在线观看国产| 亚洲欧美日韩高清专用| 国产午夜精品论理片| 香蕉av资源在线| 美女 人体艺术 gogo| 黄色成人免费大全| 欧美日韩精品网址| 老司机深夜福利视频在线观看| 久久精品国产清高在天天线| bbb黄色大片| 欧美日韩综合久久久久久 | 又紧又爽又黄一区二区| 亚洲av日韩精品久久久久久密| 熟女少妇亚洲综合色aaa.| 亚洲一区二区三区色噜噜| 搡老妇女老女人老熟妇| 精品一区二区三区av网在线观看| 在线视频色国产色| 精品一区二区三区视频在线 | 久久精品夜夜夜夜夜久久蜜豆| 国产亚洲av嫩草精品影院| 日本熟妇午夜| 天堂动漫精品| 精品久久久久久成人av| 黑人巨大精品欧美一区二区mp4| 视频区欧美日本亚洲| 制服人妻中文乱码| 日韩成人在线观看一区二区三区| 欧美成狂野欧美在线观看| 亚洲va日本ⅴa欧美va伊人久久| 国产午夜精品久久久久久| 又爽又黄无遮挡网站| 精品一区二区三区视频在线观看免费| av欧美777| 美女cb高潮喷水在线观看 | 国产欧美日韩精品亚洲av| 亚洲第一欧美日韩一区二区三区| 麻豆久久精品国产亚洲av| 19禁男女啪啪无遮挡网站| 在线播放国产精品三级| 最新中文字幕久久久久 | 看片在线看免费视频| 亚洲av免费在线观看| 99久国产av精品| 久久人人精品亚洲av| 女警被强在线播放| 欧美日韩黄片免| 午夜福利在线观看吧| 亚洲欧美日韩东京热| 国产精品自产拍在线观看55亚洲| 99精品在免费线老司机午夜| 变态另类丝袜制服| 成人一区二区视频在线观看| 国产午夜精品久久久久久| 成人欧美大片| 成年女人永久免费观看视频| 窝窝影院91人妻| 国产一区二区在线av高清观看| 丁香六月欧美| 亚洲精品美女久久久久99蜜臀| 九色国产91popny在线| 午夜免费观看网址| www.精华液| 久久久久久九九精品二区国产| 99国产精品一区二区蜜桃av| 在线观看舔阴道视频| 视频区欧美日本亚洲| 国产成人av激情在线播放| 宅男免费午夜| 午夜成年电影在线免费观看| 18禁黄网站禁片免费观看直播| 精品一区二区三区四区五区乱码| 18禁观看日本| 色视频www国产| 一级a爱片免费观看的视频| 久久久久性生活片| 午夜福利高清视频| 毛片女人毛片| 在线观看免费视频日本深夜| cao死你这个sao货| 国语自产精品视频在线第100页| 十八禁人妻一区二区| 身体一侧抽搐| 国产成人aa在线观看| 国产野战对白在线观看| 亚洲欧美精品综合久久99| 一级a爱片免费观看的视频| 欧美另类亚洲清纯唯美| 成人三级黄色视频| 精品99又大又爽又粗少妇毛片 | 久久国产精品影院| 天堂√8在线中文| 久久午夜综合久久蜜桃| 久久精品人妻少妇| 嫩草影院精品99| 国产高清三级在线| 精品国产美女av久久久久小说| 成熟少妇高潮喷水视频| 亚洲真实伦在线观看| 一进一出抽搐动态| 2021天堂中文幕一二区在线观| 又爽又黄无遮挡网站| 色噜噜av男人的天堂激情| 性欧美人与动物交配| 亚洲成人精品中文字幕电影| 国产精品亚洲av一区麻豆| av天堂在线播放| 国内精品久久久久久久电影| 99久久久亚洲精品蜜臀av| 欧美乱妇无乱码| 国产亚洲av高清不卡| 69av精品久久久久久| 不卡av一区二区三区| 听说在线观看完整版免费高清| 99国产精品99久久久久| 国产高清视频在线观看网站| 国产aⅴ精品一区二区三区波| 巨乳人妻的诱惑在线观看| 精品日产1卡2卡| 搡老岳熟女国产| 国产单亲对白刺激| 久久国产乱子伦精品免费另类| xxxwww97欧美| 女人高潮潮喷娇喘18禁视频| 中文字幕精品亚洲无线码一区| 国产爱豆传媒在线观看| 精品熟女少妇八av免费久了| 久久久久久九九精品二区国产| 麻豆成人午夜福利视频| 色哟哟哟哟哟哟| 亚洲欧美日韩高清专用| 黄色 视频免费看| 午夜精品久久久久久毛片777| 黄色 视频免费看| 亚洲国产色片| 亚洲专区中文字幕在线| 国产精品美女特级片免费视频播放器 | 91字幕亚洲| 三级毛片av免费| 伊人久久大香线蕉亚洲五| 国产美女午夜福利| 欧美+亚洲+日韩+国产| 久久久久性生活片| 久久人人精品亚洲av| 免费看日本二区| 少妇丰满av| 99久久成人亚洲精品观看| 免费电影在线观看免费观看| 久久久久久久久免费视频了| 九色成人免费人妻av| 在线国产一区二区在线| 免费看美女性在线毛片视频| 99国产精品一区二区三区| 亚洲欧美日韩卡通动漫| 在线观看66精品国产| 俺也久久电影网| av在线蜜桃| av片东京热男人的天堂| 少妇人妻一区二区三区视频| 国产单亲对白刺激| 午夜a级毛片| 久久午夜综合久久蜜桃| 88av欧美| 美女被艹到高潮喷水动态| 淫秽高清视频在线观看| 熟妇人妻久久中文字幕3abv|