• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Design considerations and behavior of reinforced concrete core dams during construction and impounding

    2016-04-18 10:34:52*
    Water Science and Engineering 2016年3期

    *

    Institute of Hydraulic Engineering and Water Resources Management,Vienna University of Technology,Vienna 1040,Austria

    Design considerations and behavior of reinforced concrete core dams during construction and impounding

    Peter Tschernutter*,Adrian Kainrath

    Institute of Hydraulic Engineering and Water Resources Management,Vienna University of Technology,Vienna 1040,Austria

    Available online 16 November 2016

    Reinforced concrete core dams can be an alternative solution to conventional dam designs either for permanent impounded reservoirs or f l ood protection and f l ood-retaining dams.Dams of this type have been constructed in Austria for various reasons and have shown good behavior during operation.For a better understanding of the load-deformation behavior of this type of dams during construction and impounding,numerical simulations were carried out.The interaction between the thin reinforced concrete core and the dam fill material as well as the inf l uence of fill material properties and other main parameters,such as the roughness of the concrete surface and bedding conditions of the concrete core, on the deformation behavior of dams were examined.The results show that high compressive stress is mainly induced by arching effects in the dam body during construction.During the reservoir impounding,the compressive stresses in the core are reduced signif i cantly while the bending moment in the core footing increases.The results also show that the maximum bending moments occur at the core footing and can be signif i cantly reduced by design improvements.The f i ndings in this study can provide general design recommendations for small dams with a central concrete core as a sealing blanket.

    Embankment dam;Concrete diaphragm sealing;Numerical analysis;Concrete core;Structural force

    1.Introduction

    Due to the mountainous topography of Austria and the climatic conditions,large destructive f l oods,mudflows,and avalanches can threaten settlements and infrastructure.In order to protect those areas,f l ood protection structures such as protection dams for retention basins play an important role. For this purpose,dams with a central impermeable concrete core are considered to be a cost-effective and safe solution for smaller embankment dams up to a limited height.The main advantage is a short and weather-independent construction period,which represents a decisive planning factor in alpine regions.It is highly important for designers to understand the behavior of the dam during construction and impounding.

    During recent decades,several studies and research projects have been carried out in Austria to analyze the forces from the damshellonthinmembranoussealingelementsinembankment dams.Most of the research work has been performed at the University of Innsbruck(Schober,1982,1984,2003;Schober et al.,1987;Schober and Henzinger,1984;Hupfauf,1991) and only some dams have been constructed in Austria based on the results of those studies.For intensive research in this field, one dam was equipped with instruments for monitoring the behavior of the dam and the structural forces in the concrete core.Lackinger(1980)and Rammer(1986)performed several basicstudiesonsmall-scalemodeldamsinthe1980s.Theinitial research on this topic was mainly focused on laboratory and basic field measurements.Yagin et al.(1998)collected the data from existing dams worldwide with a concrete core as an inner sealing element and performed some basic analyses regarding the height,construction method,and long-term behavior of those dams.However,research activities on this topic werelimited.Within the last few years,a concrete core as an inner sealing element,especially for small dams,has become more and more popular,leading to open questions regarding the technical design of the concrete core.

    Recent studies based on numerical back-calculations of existing dams have been performed by the authors(Kainrath, 2009,2010;Tschernutter and Nackler,1991;Tschernutter, 2001;Tschernutter et al.,2011),in order to investigate the rheologicalbehaviorofthistypeofdams.Thesestudiesshowed a general lack of knowledge regarding the interaction between the dam body and the concrete core,leading to uncertainties in determining the structural forces in the core wall.One of the critical issues in the design is the way in which the construction material of the dam,the concrete roughness,and the foundation designoftheconcretecore,inf l uencesthestructuralforces.Due to the limited deformation capability of the concrete core without cracking,the question raised are substantial and will be discussed in this paper.The results presented in this paper are basedonanintensivenumericalstudyofanembankmentdamin Austria.The analysis ascertained the factors governing the structural forces in the concrete core in order to provide general design recommendations.

    2.Models and parameters

    2.1.Dam characteristics

    The main aim of constructing a f l ood retention reservoir on the Griffenbach River with a central concrete core embankment dam was to protect villages from f l oods.The dam,with a maximum height of about 24 m and a reservoir retention capacity of 207000 m3,should resist a 100-year f l ood.The maximum height of the central reinforced concrete core reaches 26.3 m.The embankment volume is about 50000 m3, the upstream and downstream slope inclinations are both 1(vertical):2(horizontal),and the fill material is crushed soft rock from a quarry.The embankment material was placed in 60 cm-high layers and compacted with 12-ton static load vibratory rollers.The central reinforced concrete core has a thickness of 40 cm and the concrete quality is C25/30 with an exposure class of XC4(water pressure exceeds 100 kN/m2).

    2.2.Constitutive model for FEM analysis

    The finite element program Plaxis 2D,which has been developed for the analysis of geotechnical structures,was used throughout this analysis.The simulations were carried out with atwo-dimensional(2D)-planestrainmodelofthehighestcrosssection of the dam.The model itself consists of 19671 15-node triangularelements,whichhave12interiorstresspointssituated at different positions.The average element size was 0.8 m.The fi nite element mesh is shown in Fig.1.The model's horizontal expansion amounts to 200 m,which is three times the model's vertical expansion of 70 m.The hardening soil model(Schanz et al.,1999)implemented in PLAXIS was employed for the numerical analysis.It is a modi fi ed version of the hyperbolic model(Duncan and Chang,1970;Duncan et al.,1980).The hardening soil model supersedes the hyperbolic model by far, using the theory of plasticity rather than the theory of elasticity, including soil dilatancy,and introducing a yield cap.The hardeningsoilmodelaccountsinarealisticmannerforthestress dependence of the soil stiffness for oedometric and deviatoric loading as well as for primary loading and reloading.The stress dependency is modeled with three different stiffness moduli:for primary loading,for oedometric loading,andforunloadingandreloading,andtheparametermfortheamount of the stress dependency.The stress dependency of the stiffness E50is nonlinear and given by the following equation:

    Fig.1.Finite element mesh of analyzed cross-section.

    where c is the cohesion;φ is the friction angle;prefis the reference stress;σ3is the minor principal stress,which is the effective conf i ning pressure applied in a triaxial test;andis the reference stiffness modulus corresponding to the reference stresspref,whichdependsontheminorprincipal stressσ3andis determined from a triaxial stress-strain curve for a mobilization of 50%of the maximum shear strength qf.qfis evaluated with the Mohr-Coulomb failure criterion.The unloading/reloading path is modeled as purely(linear)elastic with the reference Young'smodulusforunloading/reloading.Thederivationof the parameters is depicted in Schanz et al.(1999).

    In the hardening soil model,two different hardening mechanisms(i.e.,isotropic and deviatoric)account for the history of stress paths.Therefore,a shear hardening yield surface(cone)as indicated in Fig.2 isintroduced.Forcompressive (isotropic)stress paths,a cap-type yield surface is used to close the elastic region.Due to shear hardening,the shear yield locus can expand to the Mohr-Coulomb failure surface while the cap expands due to volumetric hardening as a function of the preconsolidation stress.A detailed description of the hardening soil model can be found in Schanz et al.(1999).

    2.3.Applied finite element model and parameters

    Fig.2.Yield contour of hardening soil model in total stress space (Plaxis,2015;Schanz et al.,1999).

    Fig.3.Material zoning for numerical simulation.

    Fig.3 depicts the zoning of the dam body,which was taken into account with six different zones(zones 1 through 6)using the hardening soil model.The bedrock(zone 8)was assumed to be nearly rigid and therefore modeled as linear elastic.For the alluvial subsoil(zone 7),the hardening soil model was chosen.The concrete core with a thickness of 0.4 m was modeled in a linear elastic manner as a plate.For the soilstructure interaction(skin friction),interface elements were placed on both sides of the core.The interaction between soil and structure is controlled by the interface with the reduction factor for skin friction Rinter(Potyondy,1967).The parameter relates the interface strength to the soil strength.Since no triaxial tests have been available,material parameters from literature(Lofquist,1951;Leps,1970;Marachi et al.,1972; Marsal,1967;Saboya and Byrne,1993;Douglas,2002; Xiao et al.,2016)and from back-calculations of similar dams were used to obtain a range of characteristic parameters for different zones.Based on the experience of previous studies(Tschernutter and Nackler,1991;Kainrath,2009, 2010;Tschernutter et al.,2011),upper and lower bounds of characteristic parameters were chosen for the main inf l uencing zones to identify their inf l uence on the rheological behavior of the dam.For this study,the focus was steered to the resulting structural forces in the concrete core.Therefore,the inf l uences of the material parameters of the rockfill shells(zone 1)and the backfilled trench for the core footing(zone 5)as well as the roughness of the concrete core on the rheological behavior of the dam were studied through variation of their values. Furthermore,the bedding condition of the core footing was examined.The general variations of the parameters used in this study are summarized in Table 1.The parameters with upper and lower bounds according to Table 1 are given in Table 2.A more detailed description of the parameters for the hardening soil model is given in Schanz et al.(1999).The values of stiffness E of the bedrock(zone 8)and the reinforced concrete core used forthe linearelastic modelwere 3×106kN/m and 3×107kN/m,respectively.The values of Poisson's ratio ν of the bedrock(zone 8)and the reinforced concrete core were 0.20 and 0.15,respectively.

    The numerical analysis of the construction process was carried out in 19 phases in total,which can be summarized in four main phases:calculation of the initial stress state under gravity loading and reset of the initial deformation to zero,soil excavation of the upper parts of the alluvial layer and the trench for the concrete core footing,simultaneous construction of the concrete core,and upstream and downstream dam zones with a layer thickness of about 2 m,impounding to the maximum water level.

    Table 1Overview of models and parameter variations used in current study.

    Table 2Parameters for hardening soil model used in this study and their bounds.

    3.Results and discussion

    3.1.Stress and deformation analysis

    Fig.4 depicts the distribution of effective horizontal stress of the dam at the end of construction(EOC)and at the maximum water level(MWL).As can be seen in the f i gures, the effective horizontal stress in the downstream dam body signif i cantly increases in the zones adjacent to the concrete core due to the impounding,which is representative for dams with a central core and is caused by a rotation of the principal stress in the lowest third of the downstream dam body. High horizontal stresses and the low height above the base inhibit the mobilization of signif i cant resistance in this area. This leads to horizontal deformations and a structural loading of the concrete core.For this reason,it is of interest how the material of the shell(zone 1)and the backfilled trench(zone 5)inf l uences the horizontal deformation.The horizontal deformation of the concrete core is depicted in Fig.5,with positive values representing the deformation towards downstream and negative values representing the deformation towards upstream.The results show that the absolute horizontal deformation of the concrete core due to impounding is mainly governed by the stiffness of the rockfill shells.A stiff shell zone as specified in model D-2-2 leads to a signif i cantly less horizontal deformation of the core.Fig.5 shows that the absolute horizontal deformation of the core is not affected by the skin friction.The different angles of internal friction for the f i lter and transition zone cause the differences in the horizontal deformation at the end of construction.

    Fig.4.Distribution of effective horizontal stress at end of construction and at maximum water level.

    Fig.5.Horizontal deformation of concrete core at end of construction (EOC)and at maximum water level(MWL).

    Fig.6 depicts the differential rotation of the concrete core due to impounding,with negative values representing the differential rotation in the clockwise direction.It can be observed that the model D-2-1a with low stiffness of the material in zone 5(backfilled trench)obtains signif i cantly higher differential rotations in the lower third of the core.This causes a higher curvature accompanied by higher bending moments in the concrete core.Fig.6 shows that a lower skin friction(model D-2-1b)results in higher curvatures of the core.A lower skin friction(model D-2-1b)does not affect the horizontal deformation of the core.Furthermore,differences in the angle of internal friction on both sides of the core lead to deformations during the construction process.It can be concluded that the material and the design of the zones adjacent to the core have a signif i cant inf l uence on the horizontal deformation behavior of the core.As a consequence,a low material stiffness for the downstream shell as well as for the trench backfilling leads to more horizontal deformation during impounding.

    Fig.6.Differential rotation of concrete core during period from end of construction to moment with maximum water level.

    Fig.7.Distribution of effective vertical stress at end of construction and at maximum water level.

    It is common knowledge that the stress distribution within structures depends on the stiffness of different zones,and higher stress always occurs in zones with a higher stiffness. With regard to dams with a concrete core,the stiffness of the core is around 1000 times larger than the stiffness of the adjacent zones.As a consequence,arching effects occur on both sides of the core.The vertical stress distribution at the end of construction and at the maximum water level is depicted in Fig.7.This indicates arching effects on both dam shoulders.The decrease of the vertical stress on both sides of the core is an indication of the redistribution of stress between the soft shells and the stiff concrete core.Consequently,the concrete core is receiving additional vertical loads from the dam body during the construction process.For this reason,the way in which the roughness of the concrete core in fl uences the stress distribution adjacent to the core is of interest.For model D-2-1,a typical rough concrete surface was assumed.For model D-2-1b,a smooth surface(with a slip layer,sliding zone)was assumed.Fig.8 shows the infl uence of the concrete surface roughness on the effective vertical stress.

    The model with the smoother core surface(D-2-1b)leads to higher vertical stresses in the dam body at the end of construction,accompanied by signif i cantly lower compressive stress in the core(Fig.8(a)).It can be seen from the vertical stress distribution in Fig.8(a)that the vertical stress in the zones next to the core obtained from the model with the smooth concrete surface(D-2-1b)is much higher than that obtained from the model with the rough concrete surface (D-2-1).The vertical stress obtained from the model with the smooth surface(D-2-1b)at the maximum water level is much lower than that at the end of construction.This is in accordance with the results for the compressive stress in the core shown in Fig.9.Arching effects in the dam control the stress distribution between the(soft)dam and the(stiff)core. The compressive stress in the concrete core obtained from the model with a smooth concrete surface(D-2-1b)is signif icantly lower than that obtained from the model with the rough surface(D-2-1).On the basis of these results,it can be concluded that a smooth core surface reduces the susceptibility to arching effects in the dam.The arching effects disappear due to impounding,leading to a lower compressive stress in the core.

    3.2.Structural forces in concrete core

    The structural forces in the core depend on the deformation behavior of the dam.The relation between the mass of the concrete core and the mass of the dam body provides information about the inf l uence of the core stiffness on the load distribution in the dam.Since the mass of the concrete core is less than 1%of the mass of the shells,the core does not create any additional horizontal resistance.The structural forces in the core depend on the deformation state of the core,which is governed by the dam behavior.The maximum structural forces occur in the lowest part of the core at the maximum water level.Their magnitude dependson the bedding conditions of the core footing in the bedrock.

    Fig.8.Distribution of effective vertical stress adjacent to core for two different concrete surface roughnesses at the end of construction and for the first impounding to maximum water level.

    Fig.9.Compressive stress distribution in concrete core at the end of construction and at the maximum water level.

    Fig.10 depicts the bending moment distribution of the concrete core for two cases.For the first case(model D-2-1),a rigid connection between the core footing and the bedrock was assumed.For the second case(model D-2-1c),a contact area meeting a Mohr-Coulomb failure criteria was introduced.The model with the rigid connection leads to unrealistic high bending moments in the core,while the second model provides more realistic results,since local failure due to a slightly opening gap occurs in the joint between the bedrock and the concrete core,resulting in a lower bending moment.Lesser restraining of the core footing reduces the bending moment signif i cantly.

    Fig.10.Inf l uence of core base bedding conditions on bending moment in concrete core.

    Fig.11.Interaction between bending moment and axial compressive force for a reinforced cross-section.

    The bearing capacity of the core depends on the interaction between the compressive stress and the bending moment.Fig.11 depicts the M-N interaction diagram for an exemplary cross-section with 15 cm2reinforced area on each side.The whole range of interaction from pure bending to axial load can be visualized with this diagram.For each section of the core in each state of loading,the interaction between the compressive stress and the bending moment must be within the red M-N interaction curve.A stress state exceeding the red M-N interaction curve leads to a yielding of the reinforcement and a failure of the concrete core.The values of the compressive stress and the bending moment for each step of model D-2-1c,including the start of construction,end of construction,maximum water level,and minimum water level,are depicted in the f i gure as a numbered blue line.It can be seen that,during construction,only compressive stress occurs in the concrete core,while,during the impounding,the bending moment increases,along with a reduction of the compressive stress,slightly reducing the bearing capacity.

    4.Conclusions

    This paper contributes to the numerical analysis of the behavior of dams with a reinforced concrete core as a sealing element.Based on the results of this study,the following conclusions can be drawn for the load and deformation behavior of the dam:

    (1)The absolute horizontal deformation of the reinforced concrete core due to impounding is mainly governed by the stiffness of the rockfill shells.A stiffer material leads to lower horizontal displacements.

    (2)A bad compaction or soft material for backfilling of the downstream core footing trench creates higher horizontal deformations in the lowest part of the core,accompanied by high structural forces.

    (3)Arching effects in the dam body arise due to rough surface conditions on the core.Those effects induce high compressive stresses in the core during construction,which dissipate during impounding.

    (4)The structural forces in the reinforced concrete core depend on the restraining of the footing.A more f l exible footing leads to lower bending moments and allows higher dam heights.

    (5)The bearing capacity of the reinforced core depends on the interaction between thebending momentand the compressive stress.Both values change due to construction and impounding of the dam.Both values must be checked for each cross-section of the concrete core.

    (6)Up to a limited dam height of about 30—40 m,the core can be designed and constructed without sliding foil between the embankment and the concrete core.For higher dams the application of sliding foil on both sides of the core is necessary to obviate arching effects and reduce the compressive stress in the core.

    Douglas,K.J.,2002.The Shear Strength of Rock Masses.Ph.D.Dissertation. University of New South Wales,Sydney.

    Duncan,J.M.,Chang,C.Y.,1970.Non-linear analysis of stress and strain in soil.J.Soil Mech.Found.Div.96(5),1629—1653.http://dx.doi.org/ 10.1061/JSFEAQ.0001388.

    Duncan,J.M.,Byrne,P.,Wong,K.S.,Mabry,P.,1980.Strength,Stress-stain and Bulk Modulus Parameters for Finite Element Analyses of Stresses and Movements in Soil Masses.University of California,Berkeley.

    Hupfauf,B.,1991.Das Tragverhalten von Staud¨ammen in Abh¨angigkeit von der Dichtungsart.Ph.D.Dissertation.University of Innsbruck,Innsbruck (in German).

    Kainrath,A.,2009.Ein Beitrag zur Untersuchung von Verformungsproblemen an Steinschu¨ttd¨ammen Mittels Elasto-plastischer Stoffgesetze.Vienna University of Technology,Vienna(in German).

    Kainrath,A.,2010.Numerical Back-calculation of Bockhartsee Dam Heightening.Vienna University of Technology,Vienna(in German).

    Lackinger,B.,1980.Das Tragverhalten von Staud¨ammen Mit Membranartigen Dichtungen.University of Innsbruck,Innsbruck(in German).

    Leps,T.M.,1970.Reviewoftheshearingstrengthofrockfill.J.SoilMech.Found. Div.96(4),1159—1170.http://dx.doi.org/10.1061/JSFEAQ.0001365.

    Lofquist,B.,1951.Calculating a concrete-core wall.In:Proceedings of the IV International Congress on Large Dams.New Delhi,p.68.

    Marachi,N.D.,Chan,C.K.,Seed,B.H.,1972.Evaluation of properties of rockfi ll materials.J.Soil Mech.Found.Div.98(1),95—114.http://dx.doi.org/ 10.1061/JSFEAQ.0001658.

    Marsal,R.J.,1967.Large scale testing of rock- fi ll materials.J.Soil Mech. Found.Div.93(2),27—43.

    Plaxis,2015.Material Models Manual.Plaxis B.V.,Delft.

    Potyondy,J.G.,1967.Skin friction between various soils and construction materials.Geotechniquˊe 11(4),339—353.http://dx.doi.org/10.1680/ geot.1961.11.4.339.

    Rammer,L.,1986.Wirklichkeitsnahe Ermittlung der Spannungs-und Verformungszust¨ande von Staud¨ammen Mit Membranartigen Dichtungen Unter Beru¨cksichtigung der R¨aumlichen Tragwirkungen.University of Innsbruck,Innsbruck(in German).

    Saboya Jr.,F.,Byrne,P.M.,1993.Parameters for stress and deformation analysis of rockfill dams.Can.Geotech.J.30(4),690—701.http:// dx.doi.org/10.1139/t93-058.

    Schanz,T.,Vermeer,P.A.,Bonnier,P.G.,1999.The hardening soil model: Formulation and verif i cation.In:Beyond 2000 in Computational Geotechnics-10 Years of Plaxis.Balkema,Rotterdam,pp.1—16.

    Schober,W.,1982.Concrete core diaphragm walls for high embankment dams.In:Proceedings of the 14th ICOLD Congress,Rio de Janeiro.

    Schober,W.,1984.Membranartige Betonkerndichtungen Fu¨r Hohe Staud¨amme.University of Innsbruck,Innsbruck(in German).

    Schober,W.,Henzinger,J.,1984.Membranartige Betonkerndichtungen fu¨r hohe Staud¨amme.University of Innsbruck,Innsbruck(in German).

    Schober,W.,Hupfauf,B.,Lercher,H.,Rammer,L.,1987.Der Staudamm Bockhartsee-Bauerfahrung und Auswertung der Kontrollmessungen.University of Innsbruck,Innsbruck(in German).

    Schober,W.,2003.Embankmentdams:Researchanddevelopment,construction and operation.In:Austrian National Committee on Large Dams,Vienna.

    Tschernutter,P.,Nackler,K.,1991.Construction of Feistritzbach dam with central asphaltic concrete membrane and the inf l uence of poor quality rock on fill behaviour.In:Proceedings of the XVII ICOLD Congress.Vienna, pp.435—442.

    Tschernutter,P.,2001.Inf l uence of soft rock-fill material as dam embankment with central bituminous concrete membrane.Front.Archit.Civ.Eng. China 5(1),435—442.http://dx.doi.org/10.1007/s11709-010-0016-3.

    Tschernutter,P.,Seiwald,S.,Kainrath,A.,2011.Rheological behavior of an embankment dam after heightening.In:Proceedings of the 6th International Conference on Dam Engineering.LNEC,Lisboa,pp.1193—1219.

    Xiao,Y.,Liu,H.,Zhang,W.G.,Liu,H.L.,Yin,F.,Wang,Y.Y.,2016.Testing and modeling of rockfill materials:A review.J.Rock Mech.Geotech.Eng. 8(3),415—422.http://dx.doi.org/10.1016/j.jrmge.2015.09.009.

    Yagin,V.P.,Davydov,I.A.,Mik,V.V.,Leimann,T.V.,1998.Earth dams with concrete and reinforced-concrete core walls.Hydrotech.Constr.32(2), 70—75.http://dx.doi.org/10.1007/BF02905861.

    Received 26 October 2015;accepted 12 February 2016

    *Corresponding author.

    E-mail address:peter.tschernutter@kw.tuwien.ac.at(Peter Tschernutter).

    Peer review under responsibility of Hohai University.

    http://dx.doi.org/10.1016/j.wse.2016.11.006

    1674-2370/?2016 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    ?2016 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    国产午夜精品久久久久久| 欧洲精品卡2卡3卡4卡5卡区| 麻豆av在线久日| 美女大奶头视频| 国产精品98久久久久久宅男小说| 精品无人区乱码1区二区| 国产高清视频在线播放一区| 天堂影院成人在线观看| 少妇被粗大的猛进出69影院| 色尼玛亚洲综合影院| 国产一区二区三区在线臀色熟女| 少妇粗大呻吟视频| 午夜视频精品福利| 欧美中文综合在线视频| 精品国产乱码久久久久久男人| 亚洲欧美日韩无卡精品| 国产亚洲精品综合一区在线观看 | 国产激情久久老熟女| 一个人观看的视频www高清免费观看 | 嫩草影视91久久| 国产人伦9x9x在线观看| 色播亚洲综合网| 97人妻精品一区二区三区麻豆 | 欧美色视频一区免费| 99热只有精品国产| 夜夜看夜夜爽夜夜摸| 9色porny在线观看| 午夜福利在线观看吧| 久久狼人影院| 真人做人爱边吃奶动态| 九色亚洲精品在线播放| 麻豆久久精品国产亚洲av| 国产野战对白在线观看| 久久影院123| 成人亚洲精品av一区二区| 女警被强在线播放| 国产精品自产拍在线观看55亚洲| 乱人伦中国视频| 夜夜躁狠狠躁天天躁| 成人手机av| 久久久久久大精品| 99国产极品粉嫩在线观看| 91老司机精品| 18禁裸乳无遮挡免费网站照片 | 99精品在免费线老司机午夜| 99精品久久久久人妻精品| 91成年电影在线观看| 日本 av在线| 亚洲精品国产区一区二| 国产成人av激情在线播放| 69精品国产乱码久久久| 视频区欧美日本亚洲| 波多野结衣高清无吗| 美国免费a级毛片| 可以免费在线观看a视频的电影网站| 嫁个100分男人电影在线观看| 淫秽高清视频在线观看| 一a级毛片在线观看| 老汉色∧v一级毛片| 麻豆一二三区av精品| 两人在一起打扑克的视频| 大型av网站在线播放| 琪琪午夜伦伦电影理论片6080| 女人高潮潮喷娇喘18禁视频| 亚洲成人免费电影在线观看| netflix在线观看网站| 亚洲男人的天堂狠狠| 亚洲国产欧美一区二区综合| 欧美激情极品国产一区二区三区| 无限看片的www在线观看| 国产在线精品亚洲第一网站| 国产亚洲欧美98| 夜夜爽天天搞| 国产午夜精品久久久久久| 国产三级在线视频| 欧美日韩瑟瑟在线播放| 色尼玛亚洲综合影院| 中文字幕人妻熟女乱码| 国产亚洲精品久久久久5区| 99在线人妻在线中文字幕| 亚洲精品久久成人aⅴ小说| 国产亚洲精品第一综合不卡| 12—13女人毛片做爰片一| 成人永久免费在线观看视频| 黑人欧美特级aaaaaa片| 国产精品亚洲av一区麻豆| 在线观看免费日韩欧美大片| 国产精品久久久久久人妻精品电影| 免费高清在线观看日韩| 亚洲熟妇中文字幕五十中出| 此物有八面人人有两片| 动漫黄色视频在线观看| 看黄色毛片网站| 亚洲欧美日韩高清在线视频| 老司机午夜福利在线观看视频| 久9热在线精品视频| 日韩欧美免费精品| 啦啦啦 在线观看视频| 亚洲成人国产一区在线观看| 欧美日本亚洲视频在线播放| 999久久久精品免费观看国产| 欧美 亚洲 国产 日韩一| 在线观看舔阴道视频| 欧美一级a爱片免费观看看 | 免费看a级黄色片| 亚洲精品国产区一区二| 手机成人av网站| 好看av亚洲va欧美ⅴa在| 国产精品电影一区二区三区| 日韩欧美国产在线观看| www国产在线视频色| 波多野结衣一区麻豆| 亚洲九九香蕉| 亚洲中文av在线| 男女下面进入的视频免费午夜 | 一夜夜www| 宅男免费午夜| 欧美黑人欧美精品刺激| 男女下面进入的视频免费午夜 | 亚洲精品中文字幕一二三四区| 国产私拍福利视频在线观看| 国产三级在线视频| 亚洲一区二区三区不卡视频| 精品久久久久久久久久免费视频| 精品日产1卡2卡| 中文字幕色久视频| 免费看十八禁软件| 视频区欧美日本亚洲| 午夜免费观看网址| 村上凉子中文字幕在线| 99久久久亚洲精品蜜臀av| 女性被躁到高潮视频| 看免费av毛片| 久久久国产成人精品二区| a级毛片在线看网站| 国产精品爽爽va在线观看网站 | 亚洲色图 男人天堂 中文字幕| 在线观看午夜福利视频| 大型av网站在线播放| 久久中文字幕人妻熟女| 十八禁网站免费在线| 在线永久观看黄色视频| 国产精品久久久久久精品电影 | 精品一区二区三区视频在线观看免费| 国产一级毛片七仙女欲春2 | 久久精品亚洲精品国产色婷小说| 亚洲午夜理论影院| 亚洲中文日韩欧美视频| 国产1区2区3区精品| 精品卡一卡二卡四卡免费| 真人做人爱边吃奶动态| 免费一级毛片在线播放高清视频 | 久久狼人影院| 男人舔女人下体高潮全视频| 免费少妇av软件| 日韩成人在线观看一区二区三区| 波多野结衣av一区二区av| 精品人妻1区二区| 免费在线观看影片大全网站| 亚洲三区欧美一区| 亚洲成人免费电影在线观看| 精品一区二区三区视频在线观看免费| 亚洲欧美日韩另类电影网站| 日韩精品中文字幕看吧| 91九色精品人成在线观看| 一本综合久久免费| 国产成人免费无遮挡视频| 国产亚洲精品av在线| 久久久久久久久中文| 国产精品乱码一区二三区的特点 | 1024视频免费在线观看| 国产一区在线观看成人免费| 国产精品久久久久久亚洲av鲁大| 天天躁夜夜躁狠狠躁躁| 丝袜在线中文字幕| 亚洲成人久久性| 午夜视频精品福利| 黄色 视频免费看| 老熟妇仑乱视频hdxx| 亚洲专区中文字幕在线| 自线自在国产av| 成人国产一区最新在线观看| 99国产极品粉嫩在线观看| 97碰自拍视频| 久久欧美精品欧美久久欧美| 亚洲美女黄片视频| 巨乳人妻的诱惑在线观看| 国产亚洲精品第一综合不卡| 亚洲第一av免费看| av视频免费观看在线观看| 国产真人三级小视频在线观看| 国产不卡一卡二| 午夜福利一区二区在线看| 亚洲精品久久成人aⅴ小说| 亚洲熟妇熟女久久| 免费高清在线观看日韩| 69av精品久久久久久| 国产精品久久久久久人妻精品电影| 高清毛片免费观看视频网站| 久久九九热精品免费| 在线观看日韩欧美| x7x7x7水蜜桃| 成熟少妇高潮喷水视频| 亚洲欧洲精品一区二区精品久久久| 啦啦啦观看免费观看视频高清 | 精品人妻在线不人妻| 大陆偷拍与自拍| 国产精品秋霞免费鲁丝片| 国产日韩一区二区三区精品不卡| 欧美一级毛片孕妇| 制服人妻中文乱码| 欧美一级a爱片免费观看看 | 长腿黑丝高跟| or卡值多少钱| cao死你这个sao货| 午夜福利视频1000在线观看 | 国产主播在线观看一区二区| 亚洲第一电影网av| 国产免费男女视频| 人妻丰满熟妇av一区二区三区| 国产精品久久久久久精品电影 | 在线视频色国产色| 久久亚洲精品不卡| 男女做爰动态图高潮gif福利片 | 精品免费久久久久久久清纯| 最近最新中文字幕大全免费视频| 精品免费久久久久久久清纯| 中文字幕另类日韩欧美亚洲嫩草| 欧美成人性av电影在线观看| 亚洲精品久久国产高清桃花| 成年人黄色毛片网站| 母亲3免费完整高清在线观看| 在线观看午夜福利视频| 国产熟女午夜一区二区三区| 国产欧美日韩综合在线一区二区| 极品人妻少妇av视频| 成人三级做爰电影| 91大片在线观看| 丁香六月欧美| 欧美国产精品va在线观看不卡| 国语自产精品视频在线第100页| 侵犯人妻中文字幕一二三四区| 中文字幕精品免费在线观看视频| 亚洲av五月六月丁香网| 亚洲欧美激情在线| 国产成人欧美| av在线播放免费不卡| 国产91精品成人一区二区三区| 亚洲第一青青草原| 天堂动漫精品| 日韩视频一区二区在线观看| 69av精品久久久久久| 大香蕉久久成人网| 精品熟女少妇八av免费久了| 丝袜美腿诱惑在线| 久热这里只有精品99| 丝袜在线中文字幕| av电影中文网址| 亚洲第一欧美日韩一区二区三区| av超薄肉色丝袜交足视频| 国产私拍福利视频在线观看| 亚洲人成网站在线播放欧美日韩| 久久久久久久久免费视频了| 两人在一起打扑克的视频| 国产成人精品久久二区二区91| 宅男免费午夜| 亚洲精品一区av在线观看| 99国产精品一区二区三区| 成人三级做爰电影| 两性夫妻黄色片| 天堂动漫精品| 久久人人97超碰香蕉20202| 侵犯人妻中文字幕一二三四区| 国产成人精品久久二区二区免费| 成人国语在线视频| 午夜精品在线福利| 久久九九热精品免费| 婷婷丁香在线五月| 精品国内亚洲2022精品成人| 欧美绝顶高潮抽搐喷水| 欧美精品亚洲一区二区| 婷婷精品国产亚洲av在线| 亚洲片人在线观看| 国产亚洲欧美在线一区二区| 亚洲精华国产精华精| av片东京热男人的天堂| 成人18禁在线播放| 亚洲午夜理论影院| 亚洲成人免费电影在线观看| 97碰自拍视频| 亚洲久久久国产精品| 国产高清有码在线观看视频 | 中文字幕av电影在线播放| 亚洲精品国产色婷婷电影| 色av中文字幕| 正在播放国产对白刺激| 高潮久久久久久久久久久不卡| 色老头精品视频在线观看| 亚洲五月色婷婷综合| 99国产极品粉嫩在线观看| 精品一品国产午夜福利视频| 欧美老熟妇乱子伦牲交| 亚洲狠狠婷婷综合久久图片| 亚洲黑人精品在线| 久久午夜亚洲精品久久| 可以免费在线观看a视频的电影网站| 国产精品一区二区免费欧美| 91九色精品人成在线观看| 亚洲熟女毛片儿| 亚洲美女黄片视频| 十八禁网站免费在线| 久久中文字幕一级| 真人一进一出gif抽搐免费| 欧美丝袜亚洲另类 | 亚洲自偷自拍图片 自拍| 欧美性长视频在线观看| 18禁观看日本| 男女做爰动态图高潮gif福利片 | 成在线人永久免费视频| 免费观看人在逋| 女性生殖器流出的白浆| 国产精品一区二区三区四区久久 | 免费人成视频x8x8入口观看| 精品久久久久久久毛片微露脸| 女生性感内裤真人,穿戴方法视频| 他把我摸到了高潮在线观看| 日韩成人在线观看一区二区三区| 老司机靠b影院| 国产精品98久久久久久宅男小说| 欧美日本视频| 国产亚洲精品一区二区www| 热re99久久国产66热| 午夜免费鲁丝| 脱女人内裤的视频| 国产精品野战在线观看| 老司机靠b影院| 深夜精品福利| 又大又爽又粗| 午夜福利成人在线免费观看| 黄色毛片三级朝国网站| 身体一侧抽搐| www.999成人在线观看| 嫁个100分男人电影在线观看| 日韩欧美国产在线观看| 一级a爱视频在线免费观看| 国产成人系列免费观看| 制服丝袜大香蕉在线| 最新在线观看一区二区三区| 国产成人免费无遮挡视频| ponron亚洲| 老汉色av国产亚洲站长工具| 午夜精品在线福利| 50天的宝宝边吃奶边哭怎么回事| 在线观看www视频免费| 国产精品免费一区二区三区在线| 国产成人影院久久av| 久久人妻av系列| 亚洲 欧美 日韩 在线 免费| 99热只有精品国产| 如日韩欧美国产精品一区二区三区| av天堂久久9| 女同久久另类99精品国产91| 国产私拍福利视频在线观看| 99riav亚洲国产免费| 久久影院123| 身体一侧抽搐| 国产精品一区二区三区四区久久 | 亚洲精品一区av在线观看| 亚洲av电影在线进入| 99久久精品国产亚洲精品| 91九色精品人成在线观看| 欧美av亚洲av综合av国产av| 亚洲七黄色美女视频| 老司机福利观看| 一级a爱视频在线免费观看| 国产不卡一卡二| 国产成人精品久久二区二区91| 首页视频小说图片口味搜索| 免费在线观看视频国产中文字幕亚洲| 国产三级在线视频| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美精品综合久久99| 美女国产高潮福利片在线看| 精品人妻在线不人妻| 欧美乱妇无乱码| 国内精品久久久久精免费| 久久精品91蜜桃| 欧美激情极品国产一区二区三区| 国产麻豆69| 岛国在线观看网站| avwww免费| а√天堂www在线а√下载| 亚洲国产中文字幕在线视频| 黑人巨大精品欧美一区二区mp4| 国产私拍福利视频在线观看| 给我免费播放毛片高清在线观看| 免费在线观看视频国产中文字幕亚洲| 99热只有精品国产| 亚洲色图 男人天堂 中文字幕| 怎么达到女性高潮| 一进一出抽搐gif免费好疼| 嫩草影院精品99| 性欧美人与动物交配| 午夜激情av网站| 国产精品免费一区二区三区在线| 69精品国产乱码久久久| 99久久99久久久精品蜜桃| 成人三级黄色视频| 久久久久国内视频| 一级毛片女人18水好多| www.自偷自拍.com| 亚洲一码二码三码区别大吗| 又黄又爽又免费观看的视频| 岛国视频午夜一区免费看| 热99re8久久精品国产| 亚洲色图av天堂| 久久久水蜜桃国产精品网| 国产成人欧美在线观看| 黄色成人免费大全| 色综合站精品国产| 亚洲av电影不卡..在线观看| 久久国产精品影院| 19禁男女啪啪无遮挡网站| 最新在线观看一区二区三区| 成年版毛片免费区| 中文字幕人妻丝袜一区二区| 国产亚洲欧美98| 久久香蕉精品热| 90打野战视频偷拍视频| 午夜视频精品福利| 国产av一区二区精品久久| 一区二区三区精品91| 亚洲专区字幕在线| 欧美午夜高清在线| 久久久国产成人免费| 美国免费a级毛片| 宅男免费午夜| 老司机午夜十八禁免费视频| 亚洲色图av天堂| 男女床上黄色一级片免费看| 国产成人一区二区三区免费视频网站| 国产99久久九九免费精品| 97人妻精品一区二区三区麻豆 | 十分钟在线观看高清视频www| 亚洲性夜色夜夜综合| 天天添夜夜摸| 99国产精品免费福利视频| 涩涩av久久男人的天堂| 亚洲久久久国产精品| 非洲黑人性xxxx精品又粗又长| 久久精品亚洲精品国产色婷小说| 日韩欧美一区二区三区在线观看| 青草久久国产| 无限看片的www在线观看| 亚洲视频免费观看视频| 操出白浆在线播放| 欧美绝顶高潮抽搐喷水| 黄片小视频在线播放| 免费在线观看黄色视频的| 看黄色毛片网站| 成人国产一区最新在线观看| 国产亚洲欧美在线一区二区| 大码成人一级视频| 成人特级黄色片久久久久久久| 亚洲无线在线观看| 性欧美人与动物交配| 侵犯人妻中文字幕一二三四区| 亚洲中文av在线| 99久久精品国产亚洲精品| 老熟妇乱子伦视频在线观看| 91精品三级在线观看| 亚洲第一欧美日韩一区二区三区| 动漫黄色视频在线观看| av在线天堂中文字幕| 国产激情久久老熟女| 欧美不卡视频在线免费观看 | 99香蕉大伊视频| 欧美绝顶高潮抽搐喷水| 亚洲熟妇中文字幕五十中出| 欧美中文日本在线观看视频| 变态另类成人亚洲欧美熟女 | √禁漫天堂资源中文www| 国产精品久久久久久亚洲av鲁大| 18禁裸乳无遮挡免费网站照片 | 久久九九热精品免费| 成人永久免费在线观看视频| 婷婷六月久久综合丁香| 久久久久久亚洲精品国产蜜桃av| 亚洲精品国产区一区二| 国产伦人伦偷精品视频| 精品国内亚洲2022精品成人| 精品一品国产午夜福利视频| 热99re8久久精品国产| 亚洲电影在线观看av| 99国产精品一区二区蜜桃av| 一区二区三区国产精品乱码| 国产私拍福利视频在线观看| 婷婷丁香在线五月| 97碰自拍视频| 好男人在线观看高清免费视频 | 欧美激情久久久久久爽电影 | 国产激情欧美一区二区| 国产欧美日韩一区二区三| 极品人妻少妇av视频| 在线观看www视频免费| 免费搜索国产男女视频| 国产熟女xx| 国产午夜精品久久久久久| √禁漫天堂资源中文www| 久久国产乱子伦精品免费另类| 三级毛片av免费| 久久久久久免费高清国产稀缺| 日本 欧美在线| 欧美性长视频在线观看| 女性生殖器流出的白浆| 午夜免费鲁丝| 91麻豆精品激情在线观看国产| 精品午夜福利视频在线观看一区| 99国产极品粉嫩在线观看| 国产熟女午夜一区二区三区| 日韩中文字幕欧美一区二区| 久久九九热精品免费| 精品国产国语对白av| 久久精品国产清高在天天线| 91麻豆av在线| 日韩成人在线观看一区二区三区| 久久这里只有精品19| 亚洲精品国产区一区二| 99riav亚洲国产免费| 亚洲色图av天堂| 久久精品国产亚洲av高清一级| 精品久久久精品久久久| 免费高清在线观看日韩| 99精品在免费线老司机午夜| 美女免费视频网站| 桃色一区二区三区在线观看| 少妇粗大呻吟视频| 成人手机av| 又紧又爽又黄一区二区| cao死你这个sao货| www.www免费av| 少妇熟女aⅴ在线视频| 国产一区二区三区在线臀色熟女| 日日爽夜夜爽网站| 十八禁网站免费在线| 欧洲精品卡2卡3卡4卡5卡区| 无遮挡黄片免费观看| 性少妇av在线| 大型黄色视频在线免费观看| 青草久久国产| 一区二区三区激情视频| 日本 欧美在线| 老熟妇乱子伦视频在线观看| 国产精品av久久久久免费| 在线国产一区二区在线| 国产一区二区三区综合在线观看| 校园春色视频在线观看| 亚洲国产毛片av蜜桃av| av片东京热男人的天堂| 日本五十路高清| 非洲黑人性xxxx精品又粗又长| 国产精品综合久久久久久久免费 | 免费久久久久久久精品成人欧美视频| 成人三级黄色视频| 国产精品亚洲av一区麻豆| 99国产极品粉嫩在线观看| 热99re8久久精品国产| 国产欧美日韩一区二区三区在线| 好男人在线观看高清免费视频 | 女同久久另类99精品国产91| 久久精品91无色码中文字幕| 777久久人妻少妇嫩草av网站| av视频在线观看入口| 99国产精品一区二区三区| 国产亚洲精品久久久久5区| 国产精品亚洲美女久久久| 欧美日韩亚洲综合一区二区三区_| 欧美日本视频| 免费女性裸体啪啪无遮挡网站| 欧美乱色亚洲激情| 搡老妇女老女人老熟妇| 亚洲最大成人中文| а√天堂www在线а√下载| 好看av亚洲va欧美ⅴa在| 男女之事视频高清在线观看| 欧美 亚洲 国产 日韩一| 18禁美女被吸乳视频| 欧美精品啪啪一区二区三区| 啪啪无遮挡十八禁网站| 在线观看66精品国产| 日韩大码丰满熟妇| 亚洲国产高清在线一区二区三 | 国产精品,欧美在线| 天堂影院成人在线观看| 亚洲第一青青草原| 亚洲情色 制服丝袜| 免费高清视频大片| 成人欧美大片| 亚洲无线在线观看| 在线国产一区二区在线| 岛国视频午夜一区免费看| 成人三级做爰电影| 成人三级黄色视频| 美女扒开内裤让男人捅视频| 久久亚洲精品不卡| 亚洲天堂国产精品一区在线| 国产精品久久久av美女十八| 久9热在线精品视频| ponron亚洲| 欧美日韩福利视频一区二区| 国产精品亚洲一级av第二区| 最近最新中文字幕大全免费视频| 国语自产精品视频在线第100页| 麻豆av在线久日| 久久久久久免费高清国产稀缺|