• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Numerical simulation of seismic damage and cracking of concrete slabs of high concrete face rockfill dams

    2016-04-18 10:34:50*
    Water Science and Engineering 2016年3期

    *

    aCollege of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China

    bKey Laboratory of Failure Mechanism and Safety Control Techniques of Earth-rock Dam of the Ministry of Water Resources,Nanjing 210024,China

    cChangjiang Institute of Survey,Planning,Design,and Research,Wuhan 430010,China

    Numerical simulation of seismic damage and cracking of concrete slabs of high concrete face rockfill dams

    Wei-jun Cena,b,*,Lang-sheng Wena,Zi-qi Zhanga,Kun Xiongc

    aCollege of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China

    bKey Laboratory of Failure Mechanism and Safety Control Techniques of Earth-rock Dam of the Ministry of Water Resources,Nanjing 210024,China

    cChangjiang Institute of Survey,Planning,Design,and Research,Wuhan 430010,China

    Available online 20 September 2016

    Based on the damage constitutive model for concrete,the Weibull distribution function was used to characterize the random distribution of the mechanical properties of materials by f i nely subdividing concrete slab elements,and a concrete random mesoscopic damage model was established.The seismic response of a 100-m high concrete face rockfill dam(CFRD),subjected to ground motion with different intensities,was simulated with the three-dimensional finite element method(FEM),with emphasis on exploration of damage and the cracking process of concrete slabs during earthquakes as well as analysis of dynamic damage and cracking characteristics during strong earthquakes.The calculated results show that the number of damaged and cracking elements on concrete slabs grows with the duration of earthquakes.With increasing earthquake intensity,the damaged zone and cracking zone on concrete slabs grow wider.During a 7.0-magnitude earthquake,the stress level of concrete slabs is low for the CFRD,and there is almost no damage or slight damage to the slabs.While during a 9.0-magnitude strong earthquake,the percentages of damaged elements and macrocracking elements continuously ascend with the duration of the earthquake,peaking at approximately 26%and 5%at the end of the earthquake,respectively.The concrete random mesoscopic damage model can depict the entire process of sprouting,growing,connecting,and expanding of cracks on a concrete slab during earthquakes.

    Concrete face rockfill dam;Random mesoscopic damage model;Seismic response;Dynamic damage to concrete slab;Macrocracking;Numerical simulation

    1.Introduction

    Due to adoption of layered filling and thin layer vibration compaction technology,modern concrete face rockfill dams (CFRDs),which are very safe and adaptable to topographical and geological conditions,have become one of the main candidate types for high dams.In the last three decades, CFRDs have been rapidly developed in China,with more than 270 dams constructed or under construction,72 of which are over 100 m in height.

    China is located between the circum-Pacif i c seismic belt and the Mediterranean-Himalayan seismic belt,and is an earthquake-prone country.Many CFRDs are located in regions of high earthquake intensity(Chen et al.,2011,2013).On May 12,2008,the 156-m high Zipingpu CFRD,in southwestern China,suffered a strong earthquake with a Richter magnitude scale of 8.0.The main dam body remained safe on the whole, but extrusion and uplift failures of various degrees along the upper horizontal construction joints and crushing damagenear the middle vertical joints in the concrete slabs occurred (Kong et al.,2011;Wieland,2009;Xu et al.,2015;Zhang et al., 2015a).The structural integrity of concrete slabs under various loads is the key to ensuring the safety of seepage control of CFRDs.In conventional structural analysis of CFRDs,linear or nonlinear elastic models are often used to analyze the stress and deformation of concrete slabs.The possible cracking zone on slabs is determined according to the calculated principal tensile stress,which cannot ref l ect the entire evolution process of sprouting,growing,expanding,and the f i nal state of slab cracks (Arici,2011;Wang et al.,2014).Classical fracture mechanics mainly focuses on the strength problem of structures with cracks and the patterns of crack development.However,the process of damage and cracking of concrete slabs,including mesocrack initiation and the formation and evolution of macrocracks,is complex,and classical fracture mechanics cannot describe the generation of initial mesocracks before the formation of macrocracks.Damage theory,meanwhile,can be employed to study the entire evolution process of the mechanical properties of concrete slabs from mesocrack initiation to fi nal failure under the effect of external loads(Xiong et al., 2013,2014).Over the last decade,a series of concrete mesomechanical damage models have been put forward in China and abroad,including the lattice model(Schlangen and Garboczi,1997),random particle model(Bazant and Tabbara, 1990),micromechanicalmodel(MohamedandHansen, 1999),and random mechanical characteristic model(Tang and Zhu,2003).Owing to the limitation of computational capacity,most of the meso-mechanical damage models have only been used in numerical simulation of a single concrete member or a simple structure,and cannot be used to analyze the mesoscopic damage and macrocracking of entire concrete dams or other complex concrete structures.However,the random mechanical characteristic model has been employed frequently in static and dynamic simulation of failures of concrete or hardfill dams(Huangetal.,2008;Zhongetal.,2009;Xiongetal.,2013, 2014).Zhong et al.(2009)thought that it was impossible to analyze the damage and cracking of concrete dams in a strict mesoscale,while the random mechanical characteristic model, which considers the inf l uence of inhomogeneity in the mesoview based on the assumption of macroscopic homogeneity,is an effective way to simulate the seismic damage to a concrete arch dam.The ultimate failure patterns calculated with this method were consistent with those from laboratory tests in seismic damage analysis of a high arch dam(Zhong et al., 2009).

    In this study,the idea described above was adopted to analyze the cracking process of concrete slabs in a typical 100-m high CFRD.A f i ne secondary subdivision of initial concrete slab elements was conducted first,and then the concrete random mechanical analysis method and damage constitutive model were combined to simulate the dynamic damage and cracking of concrete slabs.Seismic response analysis of the CFRD was carried out using the threedimensional finite element method,focusing on predicting the damage and cracking characteristics of concrete slabs during earthquakes with different intensities.

    2.Damage constitutive model for concrete

    The damage constitutive relationship for concrete under uniaxial stress can be expressed as

    where σ is the stress,ε is the strain,D is the damage variable, and E0is the initial elastic modulus of concrete without damage.

    The damage to each concrete slab element may be tensile or compressive damage according to the maximum tensile strain criterion or Mohr-Coulomb criterion,respectively.Fig.1 shows the tensile and compressive damage constitutive relationships for concrete adopted in this study.Each element on the concrete slab shows elastic properties in the initial stage, and its stress grows with the increasing load.When the stress or strain approaches a critical value determined by the damage criteria,damage to the element or even complete destruction of the element occurs.

    In Fig.1(a),σtis the tensile stress;εtis the tensile strain;ft0is the uniaxial tensile strength;εt0is the tensile strain corresponding to ft0;and εtuis the ultimate tensile strain,εtu=ξεt0, where ξ is the coeff i cient of ultimate tensile strain.In the uniaxial tensile state,the maximum tensile strain criterion is used to determine whether the tensile damage occurs.When the tensile strain reaches εt0,damage to the element occurs; when the elementtensile strain reachesεtu,complete destruction occurs,with the damage variable Dtin the uniaxial tensile state equal to 1,which means that macrocracks appear.

    Fig.1.Damage constitutive relationships for concrete.

    The damage variable Dtin the uniaxial tensile state is as follows:

    where ε1,ε2,and ε3are the first,second,and third principal strains,respectively,and each of them is taken as zero when the values are smaller than zero.

    When an element is in a compressive or shear state,the Mohr-Coulomb criterion isused to determinewhether the compressive(shear)damage occurs.In Fig.1(b),σcis the compressive stress,εcis the compressive strain,fc0is the uniaxial compressive strength,and εc0is the corresponding compressive strain.When the compressive strain reaches εc0, damage to the element occurs.fcris the residual compressive strength,fcr=λfc0,where λ is the coeff i cient of residual compressive strength;εcris the compressive strain corresponding to fcr,εcr=rεc0,where r is the coeff i cient of residual compressive strain;and εcuis the ultimate compressive strain, εcu=ζεc0,where ζ is the coeff i cient of ultimate compressive strain.When the element compressive strain reaches εcu, complete destruction occurs.

    The damage variable Dcin the uniaxial compressive state is as follows:

    In the calculation,the strain state of each element is judged by the maximum tensile strain criterion first,and then by the Mohr-Coulomb criterion.If one criterion is met,tensile or compressive(shear)damage will occur.Otherwise the element is intact.During an earthquake,the element stress of a concrete slab is in the multi-axial stress state.When the stress meets the Mohr-Coulomb criterion,the maximum principal compressive strain εcmaxis used to replace the uniaxial compressive strain for damage judgments,which can be expressed as

    where fcis the compressive strength,μ is Poisson's ratio,φ is the friction angle,and σ1and σ2are the first and second principal stresses,respectively.

    Existing research results indicate that the damage constitutive model for concrete,in which mesoscopic parameters are assigned to concrete elements according to certain rules,can simulate the failure process of concrete specimens under uniaxial tension,compression,and shear stress well(Zhong et al.,2009;Xiong et al.,2013).The macrocrack occurrence and expanding in the specimens are fairly displayed,and the failure pattern obtained with the model is in agreement with that of the experimental results.Different mesoscopic material structures show random failure patterns,but the failure mechanism remains the same.Moreover,this model can simulate the softening process of the stress-strain relationship under different conditions,which ref l ects the basic mechanical characteristics of concrete materials.

    3.Random damage model for concrete slab considering mesoscopic inhomogeneity

    Strictly speaking,in the concrete mesoscopic damagemodel, it is necessary to conduct element discretization for all of the aggregate,cement colloid,and interfaces,so as to take into account different mechanical behaviors of different parts and precisely simulate the damage process of concrete.Due to the limitation of computational capacity and complexity of the problem,it is impossible to implement this idea in large-scale concrete structures under the current conditions.Although a concrete slab is rather small,compared with the dam body in CFRDs,the volume of the concrete slab in a high CFRD is still relatively large.It is not realistic to conduct numerical calculation of concrete slabs in a strict mesoscale.Therefore,an imaginary concept of a so-called relative mesoscale is put forward in this paper,in which the inf l uence of mesoscopic inhomogeneity undertheassumptionofmacroscopichomogeneityofmaterialis considered,and the mesh of a concrete slab can be f i nely subdivided in the so-called relative mesoscale.

    After a f i ne secondary subdivision of the concrete slab mesh,each slab element can be considered a continuous medium,but the mechanical properties,such as Young's modulus, the strength,and Poisson's ratio,are different for each element, which suggests discreteness and inhomogeneity.If the f i nely subdivided concrete slab mesh is regarded as a sample space, each slab element can be considered a sample.When the sample space is large enough,mechanical properties of the concrete slab can be considered random variables,which follow certain random distributions.The mean value of samples stands for the general level of the material's properties, and the variance represents the discrete degree.Although the mesoscopic structure of each concrete slab element cannot be described accurately with this method,as the mechanical properties of the slab are inhomogeneously distributed,with different orders of damage for different elements in the calculation process,the complex nonlinearmechanical behavior of the concrete slab can be simulated as a whole.

    Weibull(1939)put forward the idea of adopting the method of probability to describe heterogeneous materials.It is impossible to measure the material failure strength accurately, but the probability of material failure when damage occurs at a given stress level can be well def i ned.Tang and Zhu(2003) and Chen(2001)held the view that the Weibull distribution, compared with the normal distribution,was more suitable for simulating the strain softening of inhomogeneous brittle materials.Thus,the Weibull distribution was used to characterize mesoscopic inhomogeneity of material parameters of concrete in this study.The elastic modulus and strength parameters were considered random variables,and assumed to follow the Weibull distribution.In the calculation process,material parameters following the Weibull distribution were assigned to each slab element randomly,and,thus,the concrete slab mesh was considered inhomogeneous.The density function of the Weibull distribution is

    where x is a material parameter that follows the Weibull distribution,x0is a parameter related to the mean value of the material parameter x,and m is the shape parameter of the density function curve of the Weibull distribution.

    The shape parameter m ref l ects the discrete degree of material parameters.With the increase of m,the density function curve changes from a low and wide shape to a high and narrow one,indicating that the material parameter x is closer to x0. Hence,m can also be called a homogeneity coeff i cient in this study.The larger the value m is,the more homogeneous the material is,and the lower the variance of the density function is.In specif i c calculation,random numbers of the uniform distribution are assigned values from 0 to 1,and then,according to the inverse function method and the density function of the Weibull distribution,those random numbers are utilized to form the material parameters.

    4.Dynamic damage and cracking analysis of concrete slab for a high CFRD

    4.1.Finite element model and calculation condition

    A typical 100-m high CFRD was used in a case study.Both upstream and downstream slope ratios were 1:1.4.The finite element model of the dam with a f i nely subdivided mesh of the concrete slab is shown in Fig.2(a).Fig.2(b)shows the mesh of the maximum cross-section of the dam with f i ne slab elements.Figs.2(c)and(d)illustrate the details of original and fi nely subdivided slab elements,as well as cushion elements behind the slab in the transverse direction(zone A)and dam axial direction(zone B),respectively.Each nodal displacement at the dam bottom was f i xed in three directions.

    For concreteslab elements,theelasticmodulusE, compressive strength fc,density ρ,and Poisson's ratio μ are given in Table 1.E and fcare random variables.Some parameters of concrete material are as follows:ξ=8,λ=0.1, r=0.3,and ζ=10.The mesoscopic parameters were obtained from the relationship curve between the mesoscopic and macroscopic elastic moduli and strength ratios according to the simulated results of Xiong et al.(2013).The Duncan E-B model and equivalent linear viscoelastic model were employed for the static and dynamic calculation of rockfill material,andcorresponding material parameters were obtained from Zhang (2015).The peripheral joint was simulated with a thin-layer element.The interface behavior between the slab and cushion was simulated with a nonlinear interface model using the thin-layer element,which was developed in commercial FEM software ADINA by Zhang et al.(2015b).

    Table 1Macroscopic and mesoscopic parameters of concrete slab.

    Fig.2.Finite element model of a CFRD.

    The time histories of three acceleration components were introduced for dynamic analysis after static analysis.The total seismic duration was 20 s,and the time histories of acceleration of a 7.0-magnitude earthquake are shown in Fig.3,with peak values of 100,66.7,and 100 cm/s2in three directions. The time histories of acceleration of 8.0-and 9.0-magnitude earthquakes were obtained through proportional magnif i cation of that of the 7.0-magnitude earthquake.

    4.2.Dynamic damage and cracking analysis of concrete slab

    Fig.4 shows the distributions of dynamic damaged zones and macrocracks on the concrete slab during earthquakes with different seismic intensities.The distribution of dynamic damaged zones on the slab is mainly concentrated in the dam blocks on the riverbank within a range of 2/5 to 4/5 of the slab height.During a 7.0-magnitude earthquake,the damage to the slab shows local mesocracks or crack sprouting,without formation ofcontinuous macrocracking zones.With the increasing seismic intensity,more and more slab elements suffer damage,and the damaged zone gradually expands, mainly in the dam block on the riverbank.Some of the dynamic damaged elements then reach the damage threshold and macrocracks appear on the slab.Under low seismic intensity,there are few macrocracks on the concrete slab,and only a few completely destroyed elements connect,mainly in the range near the peripheral joint.With the increasing seismic intensity, more and more slab elements are completely destroyed and the zone on the slabs with destroyed elements,namely the macrocracking zone,grows wider.

    Fig.3.Time histories of acceleration of 7.0-magnitude earthquake.

    Fig.4.Distribution of dynamic damaged zone and macrocracking zone on concrete slab under earthquakes of different seismic intensities.

    A magnified schematic diagram of local mesocracks on the slab from Fig.4(c)is demonstrated in Fig.5.The string of small red circles at a Gauss point of each element means that when the principal stress of concrete in a certain direction reaches the tensile strength,mesocracks will occur in the plane normal to the principal stress where the red circles exist.On the whole,the direction of mesocracks on the slab is roughly parallel to the peripheral joint.

    Fig.5.Propagation direction of mesocracks on concrete slab in dam block on riverbank.

    During a strong earthquake,the slab suffers the interactive effect of multidirectional tensile and compressive stresses. Thus,stress conditions are relatively complex.Once damage to an individual slab element occurs,mesocracks will occur on the slab,dynamically opening or closing during the earthquake.As damage to the elements becomes severe,the stress surrounding elements will be redistributed in a more concentrated pattern,causing mesocracks to expand continuously and generating macrocracks eventually.Calculation indicates that the tensile damage to the slab element is the main reason for the slab's cracking and complete destruction under strong seismic excitation.Figs.6 and 7 illustrate the distributions of damaged elements and macrocracking zones on the concrete slab at different times during a 9.0-magnitude earthquake,respectively(Here only the left half of the slab is displayed).The f i gures reveal that,with the increasing seismic duration,the damaged elements on the slab grow gradually,and the number of mesocracks on the slab increases signif i cantly,f i nally leading to a large damaged zone.With continuous deepening ofdamage,some elements are completely destroyed,mesocracks pass through adjacent elements,and then the macrocracking or crushed zone on the slab appears.Therefore,throughout the process of the earthquake, we can see the sprouting,developing,and expanding of the slab cracks,namely the dynamic formation and development of damage and cracking.

    The percentages of damaged elements and macrocracking (completely destroyed)elements in the total slab element at different times during a 9.0-magnitude earthquake are shown in Fig.8.With the increasing seismic duration,the proportions of dynamically damaged and macrocracking elements do not increase linearly.Both increase signif i cantly in the first half of the earthquake,and later arrive at relatively stable values.At the end of the earthquake,the damaged and macrocracking slab elements account for around 26%and 5%of the total elements,respectively.

    Fig.6.Distribution of damaged elements on concrete slab at different times during 9.0-magnitude earthquake.

    Fig.7.Distribution of macrocracking zone on concrete slab at different times during 9.0-magnitude earthquake.

    Fig.8.Percentages of damaged elements and macrocracking elements on concrete slab at different times under 9.0-magnitude earthquake.

    There are many factors affecting the seismic response of a concrete slab under earthquake excitation.The dam prof i le has a large inf l uence on the dynamic cracking of the slab.Sensitivity analysis shows that,with the increase of the riverbank slope,the seismic effect on the dam gets stronger,the damaged zone on the slab gets wider,and corresponding macrocracks on the slab also increase.With the increasing seismic intensity, the inf l uence of the riverbank slope becomes more and more signif i cant.By contrast,the dam slope has little effect on the dynamic damage of the slab(Zhang,2015).The detailed calculation results will be illustrated in later research.

    5.Conclusions

    The concrete random mesoscopic damage model was extended to describe the dynamic damage behavior of concrete slabs in CFRDs.Compared with the conventional nonlinear viscoelastic or elastoplastic constitutive model,it can better describe the sprouting,growing,connecting,and expanding of slab cracks.Application of the model to a typical 100-m high CFRD shows that this model can well ref l ect the seismic response of a concrete slab during earthquakes.When the seismic intensity is low,the stress level of the slab is low, without damage or with slight damage to the slab;when the seismic intensity increases,the numbers of damaged and macrocracking elements on the slab ascend signif i cantly.After a 9.0-magnitude earthquake,the damaged and macrocracking elements account for about 26%and 5%of the total slab elements,respectively.The anti-seismic safety of the concrete slab is in a controllable state.

    Arici,Y.,2011.Investigation of the cracking of CFRD face plates.Comput. Geotech.38(7),905—916.http://dx.doi.org/10.1016/j.compgeo.2011.06.004.

    Bazant,Z.P.,Tabbara,M.R.,1990.Random particle models for fracture of aggregate or f i ber composites.J.Eng.Mech.116(8),1686—1705.http:// dx.doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1686).

    Chen,S.S.,Fang,X.S.,Qian,Y.J.,2011.Thoughts on safety assessment and earthquake-resistance for high earth-rock dams.Hydro Sci.Eng.(1), 17—21(in Chinese).

    Chen,S.S.,Li,G.Y.,Fu,Z.Z.,2013.Safety criteria and limit resistance capacity of high earth-rock dams subjected to earthquakes.Chin.J.Geotech. Eng.35(1),59—65(in Chinese).

    Chen,Y.Q.,2001.Numerical Simulations of Effective Mechanical Properties and Failure Process of Heterogeneous Materials.Tsinghua University, Beijing(in Chinese).

    Huang,Z.Q.,Shen,X.P.,Tang,C.A.,2008.Numerical simulation of instability failure of high rolled compacted concrete gravity dam.J.Shenyang Univ. Technol.30(5),591—594(in Chinese).

    Kong,X.,Zhou,Y.,Zou,D.,Xu,B.,Yu,L.,2011.Numerical analysis of dislocations of the face slabs of the Zipingpu concrete faced rockfill dam during the Wenchuan earthquake.Earthq.Eng.Eng.Vib.10(4),581—589. http://dx.doi.org/10.1007/s11803-011-0091-z.

    Mazars,J.,1984.Application de la Mecanique de Lendnnag Emment an Comportememt non Lineaire de Structure.Ph.D.Dissertation.These de Doctorat Detat University,Paris(in French).

    Mohamed,A.R.,Hansen,W.,1999.Micromechanical modeling of concrete response under static loading,Part I:Model development and validation. ACI Mater.J.96(2),196—203.

    Schlangen,E.,Garboczi,E.J.,1997.Fracture simulations of concrete using lattice models:Computational aspects.Eng.Fract.Mech.57(2/3), 319—332.http://dx.doi.org/10.1016/S0013-7944(97)00010-6.

    Tang,C.A.,Zhu,W.C.,2003.Damage and Fracture of Concrete.Science Press,Beijing,pp.120—145(in Chinese).

    Wang,Z.J.,Liu,S.H.,Vallejo,L.,Wang,L.J.,2014.Numerical analysis of the causes of face slab cracks in Gongboxia Rockfill Dam.Eng.Geol.181, 224—232.http://dx.doi.org/10.1016/j.enggeo.2014.07.019.

    Weibull,W.,1939.A Statistical Theory of the Strength of Materials.Generalstabens Litograf i ska Anstalts F¨orlag,Stockholm.

    Wieland,M.,2009.The effects of the May 12,2008 Wenchuan Earthquake on large storage dams.Wasserwirtschaft 99(9),10—15.

    Xiong,K.,Weng,Y.H.,He,Y.L.,2013.Seismic failure modes and seismic safety of hardfill dam.Water Sci.Eng.6(2),199—214.http://dx.doi.org/ 10.3882/j.issn.1674-2370.2013.02.008.

    Xiong,K.,Hua,J.J.,Li,R.,2014.Static and seismic failure modes and structural safety of Oyuk Dam considering material heterogeneity.J. Yangtze River Sci.Res.Inst.31(7),74—80,90(in Chinese).

    Xu,B.,Zou,D.G.,Kong,X.J.,Hu,Z.Q.,Zhou,Y.,2015.Dynamic damage evaluation on the slabs of the concrete faced rockfill dam with the plasticdamage model.Comput.Geotech.65,258—265.http://dx.doi.org/10.1016/ j.compgeo.2015.01.003.

    Zhang,J.M.,Yang,Z.Y.,Gao,X.Z.,Zhang,J.H.,2015a.Geotechnical aspects and seismic damage of the 156-m-high Zipingpu concrete-faced rockfill dam following the Ms 8.0 Wenchuan earthquake.Soil Dyn.Earthq.Eng. 76(s1),145—156.http://dx.doi.org/10.1016/j.soildyn.2015.03.014.

    Zhang,Z.Q.,2015.Study on Mechanism of Crack Damage of Concrete Slabs of High Concrete Face Rockfill Dams under Strong Earthquake.M.E. Dissertation.Hohai University,Nanjing(in Chinese).

    Zhang,Z.Q.,Cen,W.J.,Yuan,L.N.,2015b.Application of interface element in dynamic analysis of CFRD.Appl.Mech.Mater.723,353—357.

    Zhong,H.,Lin,G.,Li,H.J.,2009.Numerical simulation of damage in high arch dam due to earthquake.Front.Archit.Civ.Eng.China 3(3),316—322. http://dx.doi.org/10.1007/s11709-009-0039-9.

    Received 23 August 2015;accepted 29 March 2016

    This work was supported by the Key Laboratory of Failure Mechanism and Safety Control Techniques of Earth-rock Dams of the Ministry of Water Resources(Grant No.YK914019),the CRSRI Open Research Program(Grant No.CKWV2016376/KY),and the National Natural Science Foundation of China(Grant No.51009055).

    *Corresponding author.

    E-mail address:hhucwj@163.com(Wei-jun Cen).

    Peer review under responsibility of Hohai University.

    http://dx.doi.org/10.1016/j.wse.2016.09.001

    1674-2370/?2016 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    ?2016 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http:// creativecommons.org/licenses/by-nc-nd/4.0/).

    欧美成狂野欧美在线观看| 亚洲欧美日韩高清在线视频| 日韩国内少妇激情av| 国产一区二区三区视频了| 99re在线观看精品视频| 成人午夜高清在线视频| 欧美色视频一区免费| 国模一区二区三区四区视频 | 夜夜躁狠狠躁天天躁| 精品日产1卡2卡| 在线国产一区二区在线| 久久精品人妻少妇| 国产精品精品国产色婷婷| 欧美日韩一级在线毛片| 人人妻人人看人人澡| 悠悠久久av| 日韩欧美一区二区三区在线观看| 大型av网站在线播放| 国产精品亚洲av一区麻豆| 人人妻人人看人人澡| 国内少妇人妻偷人精品xxx网站 | 欧美日韩福利视频一区二区| 久久 成人 亚洲| 黄色 视频免费看| 欧美黄色片欧美黄色片| 真人一进一出gif抽搐免费| 日韩欧美国产在线观看| 亚洲精品在线美女| 19禁男女啪啪无遮挡网站| 毛片女人毛片| 成人一区二区视频在线观看| 黄色 视频免费看| 国产精品一区二区三区四区久久| 久9热在线精品视频| 精品久久久久久久久久免费视频| 日本黄大片高清| 男女做爰动态图高潮gif福利片| 一个人免费在线观看电影 | 久久久久免费精品人妻一区二区| 亚洲自拍偷在线| 国产精品精品国产色婷婷| 很黄的视频免费| 成人精品一区二区免费| 此物有八面人人有两片| 制服丝袜大香蕉在线| 夜夜夜夜夜久久久久| 欧美高清成人免费视频www| 日本免费一区二区三区高清不卡| 精品久久久久久久毛片微露脸| bbb黄色大片| 日日摸夜夜添夜夜添小说| 人妻夜夜爽99麻豆av| 十八禁网站免费在线| 午夜福利视频1000在线观看| 怎么达到女性高潮| 波多野结衣高清无吗| 小说图片视频综合网站| 国产私拍福利视频在线观看| 1024视频免费在线观看| 50天的宝宝边吃奶边哭怎么回事| 成人国产一区最新在线观看| 国产伦人伦偷精品视频| 久久久久久亚洲精品国产蜜桃av| 久久精品亚洲精品国产色婷小说| 在线观看一区二区三区| 俄罗斯特黄特色一大片| 欧美丝袜亚洲另类 | 日韩欧美精品v在线| 极品教师在线免费播放| 人妻久久中文字幕网| www日本在线高清视频| 亚洲真实伦在线观看| 黄色视频,在线免费观看| 亚洲一区高清亚洲精品| 婷婷精品国产亚洲av| 久久精品国产亚洲av香蕉五月| 99久久无色码亚洲精品果冻| 最近最新中文字幕大全电影3| 精品一区二区三区视频在线观看免费| 亚洲无线在线观看| 首页视频小说图片口味搜索| 成人高潮视频无遮挡免费网站| 美女午夜性视频免费| 亚洲黑人精品在线| 最近最新中文字幕大全电影3| 妹子高潮喷水视频| 天天添夜夜摸| 亚洲国产中文字幕在线视频| 亚洲成人久久性| 亚洲中文av在线| 非洲黑人性xxxx精品又粗又长| 91九色精品人成在线观看| 久久国产乱子伦精品免费另类| 日本免费a在线| 熟女少妇亚洲综合色aaa.| 成人高潮视频无遮挡免费网站| www.自偷自拍.com| 人妻夜夜爽99麻豆av| 久久草成人影院| 国产探花在线观看一区二区| 欧美乱码精品一区二区三区| 一区二区三区高清视频在线| 国产av一区二区精品久久| 久久精品综合一区二区三区| 国产精品久久视频播放| 久9热在线精品视频| 精品无人区乱码1区二区| 久久伊人香网站| 国产aⅴ精品一区二区三区波| 两个人免费观看高清视频| 一夜夜www| 日韩高清综合在线| 亚洲第一欧美日韩一区二区三区| 最新美女视频免费是黄的| 亚洲最大成人中文| 午夜两性在线视频| 久久久国产欧美日韩av| 国产精品久久久人人做人人爽| www.999成人在线观看| av超薄肉色丝袜交足视频| bbb黄色大片| 丰满人妻熟妇乱又伦精品不卡| 日韩精品中文字幕看吧| 亚洲全国av大片| 国产精品久久久av美女十八| 欧美黄色片欧美黄色片| 狠狠狠狠99中文字幕| 后天国语完整版免费观看| 国产精品 欧美亚洲| 国产亚洲精品综合一区在线观看 | 一级作爱视频免费观看| 不卡av一区二区三区| 国产主播在线观看一区二区| 国产精品美女特级片免费视频播放器 | 国产99久久九九免费精品| 久久久久亚洲av毛片大全| 日本免费a在线| 亚洲国产精品久久男人天堂| 欧美日韩黄片免| or卡值多少钱| 精品久久久久久成人av| 天天躁夜夜躁狠狠躁躁| 香蕉丝袜av| 99热这里只有精品一区 | 亚洲av成人不卡在线观看播放网| 老鸭窝网址在线观看| 国产在线精品亚洲第一网站| 亚洲成人中文字幕在线播放| 久久久国产成人免费| 欧美乱码精品一区二区三区| 欧美黄色片欧美黄色片| 美女 人体艺术 gogo| 超碰成人久久| 美女黄网站色视频| 亚洲免费av在线视频| 国产精品一区二区三区四区免费观看 | 在线观看66精品国产| 一二三四社区在线视频社区8| 国产私拍福利视频在线观看| 国产av又大| 午夜日韩欧美国产| 久久天堂一区二区三区四区| 三级毛片av免费| 国内精品一区二区在线观看| 久久久久久久午夜电影| 高清在线国产一区| 女人高潮潮喷娇喘18禁视频| 这个男人来自地球电影免费观看| 成人永久免费在线观看视频| 长腿黑丝高跟| 久久久国产成人精品二区| 亚洲国产精品合色在线| 欧美黑人欧美精品刺激| 少妇的丰满在线观看| 午夜激情av网站| 日本精品一区二区三区蜜桃| 一卡2卡三卡四卡精品乱码亚洲| 成人特级黄色片久久久久久久| 91成年电影在线观看| 国产激情久久老熟女| 欧美日韩黄片免| 日韩欧美免费精品| 级片在线观看| 日韩免费av在线播放| 99国产精品一区二区蜜桃av| 欧美高清成人免费视频www| 亚洲国产精品999在线| 亚洲精华国产精华精| 天堂av国产一区二区熟女人妻 | 国产麻豆成人av免费视频| 国内精品一区二区在线观看| 亚洲熟妇熟女久久| 99热6这里只有精品| 老熟妇乱子伦视频在线观看| 国产精品日韩av在线免费观看| 色av中文字幕| 又粗又爽又猛毛片免费看| 国产成人精品无人区| 欧美一级a爱片免费观看看 | 脱女人内裤的视频| 国产高清激情床上av| 香蕉久久夜色| 91麻豆精品激情在线观看国产| 中文字幕精品亚洲无线码一区| 成人国产综合亚洲| 听说在线观看完整版免费高清| 伦理电影免费视频| 国产野战对白在线观看| 午夜精品久久久久久毛片777| 亚洲自偷自拍图片 自拍| 99热只有精品国产| 久久久国产成人精品二区| 精品国产超薄肉色丝袜足j| 舔av片在线| 午夜久久久久精精品| 欧美又色又爽又黄视频| 99在线视频只有这里精品首页| 日本熟妇午夜| 久久久久久大精品| 精品一区二区三区av网在线观看| 亚洲片人在线观看| 国产区一区二久久| 老汉色∧v一级毛片| 免费观看人在逋| 欧美一级a爱片免费观看看 | 日日爽夜夜爽网站| 在线永久观看黄色视频| 国产97色在线日韩免费| 老汉色∧v一级毛片| 国产成人精品无人区| 精品国内亚洲2022精品成人| 亚洲精品久久成人aⅴ小说| 狂野欧美白嫩少妇大欣赏| 欧美不卡视频在线免费观看 | 搞女人的毛片| 九九热线精品视视频播放| 一卡2卡三卡四卡精品乱码亚洲| 亚洲精品在线美女| 一级片免费观看大全| 可以在线观看毛片的网站| 国产成人系列免费观看| 成人av在线播放网站| 欧美日韩精品网址| 国产伦人伦偷精品视频| 99精品在免费线老司机午夜| 亚洲激情在线av| 成人国语在线视频| 午夜免费成人在线视频| 成人av在线播放网站| 黄色成人免费大全| 亚洲av熟女| 国产成人精品久久二区二区免费| 中文字幕人妻丝袜一区二区| 亚洲国产精品久久男人天堂| 午夜福利在线在线| 两性夫妻黄色片| 曰老女人黄片| 久久人妻福利社区极品人妻图片| 国产激情偷乱视频一区二区| 国产精品,欧美在线| 亚洲人成伊人成综合网2020| 成人av一区二区三区在线看| 国产精华一区二区三区| 在线观看66精品国产| 91av网站免费观看| 免费在线观看日本一区| 久久中文看片网| 成熟少妇高潮喷水视频| 村上凉子中文字幕在线| 久久久精品国产亚洲av高清涩受| 精品国产超薄肉色丝袜足j| 国产高清有码在线观看视频 | www日本黄色视频网| 成人av在线播放网站| 在线观看免费视频日本深夜| 欧美在线一区亚洲| 国产在线精品亚洲第一网站| 成人国产综合亚洲| 熟女少妇亚洲综合色aaa.| 久久精品亚洲精品国产色婷小说| 久久久国产欧美日韩av| 啪啪无遮挡十八禁网站| 亚洲天堂国产精品一区在线| 免费在线观看影片大全网站| 在线观看免费日韩欧美大片| 国产精品亚洲一级av第二区| 欧美成人一区二区免费高清观看 | 妹子高潮喷水视频| 午夜福利视频1000在线观看| 欧美成人午夜精品| 久久天躁狠狠躁夜夜2o2o| 无限看片的www在线观看| 久久香蕉国产精品| 一级毛片女人18水好多| 十八禁网站免费在线| 日韩欧美国产在线观看| 国产欧美日韩一区二区三| 精品日产1卡2卡| 国产三级在线视频| 成年免费大片在线观看| 国产精品影院久久| 无人区码免费观看不卡| 国产三级中文精品| 99热6这里只有精品| 成人av一区二区三区在线看| 国产熟女午夜一区二区三区| 老汉色∧v一级毛片| 18禁裸乳无遮挡免费网站照片| 亚洲最大成人中文| 深夜精品福利| 久久久国产成人精品二区| 亚洲欧美精品综合一区二区三区| 99热只有精品国产| 午夜免费激情av| 日日夜夜操网爽| 法律面前人人平等表现在哪些方面| 亚洲国产精品合色在线| 黄色女人牲交| 在线观看免费日韩欧美大片| 看免费av毛片| 成人国产一区最新在线观看| 欧美zozozo另类| 在线播放国产精品三级| 久久精品人妻少妇| 久久中文字幕一级| 国产精品久久电影中文字幕| 午夜两性在线视频| 国产亚洲欧美在线一区二区| 欧美中文日本在线观看视频| 欧美激情久久久久久爽电影| av欧美777| 久久香蕉激情| 看黄色毛片网站| 色噜噜av男人的天堂激情| 国产亚洲欧美98| 97碰自拍视频| 中文字幕精品亚洲无线码一区| 午夜福利高清视频| 国产精品美女特级片免费视频播放器 | 亚洲人成网站在线播放欧美日韩| 免费看十八禁软件| 夜夜看夜夜爽夜夜摸| 18美女黄网站色大片免费观看| 欧美激情久久久久久爽电影| 国产精品 国内视频| 亚洲av五月六月丁香网| a级毛片在线看网站| 亚洲一区中文字幕在线| 国产精品 国内视频| 激情在线观看视频在线高清| 精品久久久久久久末码| 中文亚洲av片在线观看爽| 精品久久久久久久末码| 久久香蕉精品热| 午夜福利在线观看吧| 午夜激情av网站| 啪啪无遮挡十八禁网站| 麻豆成人av在线观看| av超薄肉色丝袜交足视频| 午夜激情av网站| 欧美黑人巨大hd| 精品福利观看| 久久久久九九精品影院| 在线观看www视频免费| 国产成人影院久久av| av福利片在线观看| 精品久久久久久久末码| 成人特级黄色片久久久久久久| 久久久久九九精品影院| 麻豆久久精品国产亚洲av| 国产欧美日韩一区二区精品| 老熟妇仑乱视频hdxx| 免费在线观看黄色视频的| 国产精品综合久久久久久久免费| 久久久精品国产亚洲av高清涩受| 久久人人精品亚洲av| 97超级碰碰碰精品色视频在线观看| 婷婷精品国产亚洲av在线| e午夜精品久久久久久久| 人人妻人人澡欧美一区二区| 99久久综合精品五月天人人| 久久精品夜夜夜夜夜久久蜜豆 | 久久久国产欧美日韩av| 老司机福利观看| 在线观看一区二区三区| 亚洲欧洲精品一区二区精品久久久| 一进一出好大好爽视频| 夜夜躁狠狠躁天天躁| 亚洲精品美女久久av网站| 日日夜夜操网爽| 色综合站精品国产| 无限看片的www在线观看| 亚洲精品中文字幕一二三四区| 亚洲一区中文字幕在线| www.www免费av| 国产视频一区二区在线看| 日韩大码丰满熟妇| 999久久久精品免费观看国产| 亚洲成av人片免费观看| 亚洲 国产 在线| 亚洲欧美激情综合另类| 国产一区在线观看成人免费| 精品久久久久久久久久久久久| 少妇被粗大的猛进出69影院| 国产在线精品亚洲第一网站| 久久久久久国产a免费观看| 99久久99久久久精品蜜桃| 在线观看美女被高潮喷水网站 | 欧美性猛交╳xxx乱大交人| 无限看片的www在线观看| 亚洲欧美一区二区三区黑人| 国产精品99久久99久久久不卡| 国产成人影院久久av| 国产一区二区三区视频了| av福利片在线| 97碰自拍视频| 特大巨黑吊av在线直播| 国产精品久久久人人做人人爽| 精品第一国产精品| 黄色视频不卡| 国产伦在线观看视频一区| 性色av乱码一区二区三区2| 亚洲欧美日韩东京热| 最近最新免费中文字幕在线| 精品国产亚洲在线| 美女 人体艺术 gogo| 亚洲成人精品中文字幕电影| svipshipincom国产片| 日韩欧美三级三区| 男男h啪啪无遮挡| 免费观看人在逋| 手机成人av网站| 俺也久久电影网| 国产一级毛片七仙女欲春2| 禁无遮挡网站| 嫩草影视91久久| 久久久国产成人精品二区| 日本 av在线| 日本一本二区三区精品| 国产精品日韩av在线免费观看| 搡老熟女国产l中国老女人| 国产高清有码在线观看视频 | √禁漫天堂资源中文www| 国产精品久久久久久精品电影| 一本精品99久久精品77| 久久精品综合一区二区三区| 天天一区二区日本电影三级| 国产成人影院久久av| 国产高清视频在线播放一区| 夜夜夜夜夜久久久久| 一a级毛片在线观看| 正在播放国产对白刺激| 国产一区二区激情短视频| 一本综合久久免费| 18美女黄网站色大片免费观看| 色哟哟哟哟哟哟| 国产成人一区二区三区免费视频网站| 五月伊人婷婷丁香| 国产又黄又爽又无遮挡在线| 久久久久久大精品| 曰老女人黄片| 麻豆国产av国片精品| 女人高潮潮喷娇喘18禁视频| 国产精品 欧美亚洲| 日本精品一区二区三区蜜桃| 欧美乱码精品一区二区三区| 最近最新免费中文字幕在线| ponron亚洲| 久久这里只有精品19| 国产一区二区在线观看日韩 | 久久久国产成人免费| 2021天堂中文幕一二区在线观| 亚洲国产中文字幕在线视频| 久久精品影院6| 91在线观看av| 午夜福利在线观看吧| 两个人的视频大全免费| 成人国语在线视频| 国产精品,欧美在线| 久久久久久久久中文| 99国产精品一区二区蜜桃av| 身体一侧抽搐| 久久精品国产99精品国产亚洲性色| 国产高清激情床上av| 国产探花在线观看一区二区| 精品免费久久久久久久清纯| 夜夜看夜夜爽夜夜摸| 中文字幕精品亚洲无线码一区| 国产一区在线观看成人免费| 欧美一级a爱片免费观看看 | 在线a可以看的网站| 精品久久久久久久末码| 女同久久另类99精品国产91| 日韩大码丰满熟妇| 欧美成人午夜精品| 在线看三级毛片| 午夜a级毛片| 啦啦啦观看免费观看视频高清| 嫩草影院精品99| 黄色成人免费大全| 黄色片一级片一级黄色片| 国产一区二区在线观看日韩 | 久久久国产成人免费| 少妇熟女aⅴ在线视频| 高清毛片免费观看视频网站| 午夜免费成人在线视频| 国产高清videossex| 亚洲无线在线观看| 国产精品98久久久久久宅男小说| 午夜精品久久久久久毛片777| 国产精品久久久av美女十八| 亚洲在线自拍视频| 精品免费久久久久久久清纯| 国产一区二区三区视频了| 国产97色在线日韩免费| 在线免费观看的www视频| 欧美高清成人免费视频www| 母亲3免费完整高清在线观看| 一进一出抽搐gif免费好疼| 精品午夜福利视频在线观看一区| 88av欧美| 亚洲欧美日韩东京热| 真人一进一出gif抽搐免费| 国产成人系列免费观看| 国产精品永久免费网站| 欧美一区二区国产精品久久精品 | 女生性感内裤真人,穿戴方法视频| 国产免费男女视频| 后天国语完整版免费观看| 久久人人精品亚洲av| 亚洲欧洲精品一区二区精品久久久| 久久久久久国产a免费观看| 757午夜福利合集在线观看| 久9热在线精品视频| 国产真人三级小视频在线观看| 91老司机精品| 国产伦人伦偷精品视频| 精品国产超薄肉色丝袜足j| 精品一区二区三区四区五区乱码| av在线播放免费不卡| 国产精品野战在线观看| 国产精品自产拍在线观看55亚洲| 亚洲色图av天堂| 无人区码免费观看不卡| 精品国产美女av久久久久小说| 中文字幕高清在线视频| 在线观看午夜福利视频| 午夜影院日韩av| 精品一区二区三区av网在线观看| 18禁美女被吸乳视频| 两个人的视频大全免费| 亚洲男人的天堂狠狠| videosex国产| 久热爱精品视频在线9| 免费在线观看成人毛片| 亚洲激情在线av| 国产精品亚洲美女久久久| 欧美乱妇无乱码| 国产真人三级小视频在线观看| 一级毛片精品| 午夜福利在线观看吧| 国产av在哪里看| 久久久久久久久免费视频了| 亚洲七黄色美女视频| 久久久久久九九精品二区国产 | 国产精品一区二区三区四区久久| 成人高潮视频无遮挡免费网站| 久99久视频精品免费| 一区福利在线观看| 亚洲av成人一区二区三| 国产精华一区二区三区| 美女午夜性视频免费| 麻豆一二三区av精品| 日本 欧美在线| 女人高潮潮喷娇喘18禁视频| 淫妇啪啪啪对白视频| 国产成人精品无人区| 日韩精品青青久久久久久| 久久午夜综合久久蜜桃| 一夜夜www| 精品电影一区二区在线| 亚洲欧洲精品一区二区精品久久久| 免费看美女性在线毛片视频| 麻豆久久精品国产亚洲av| 亚洲男人的天堂狠狠| 亚洲狠狠婷婷综合久久图片| 精品一区二区三区视频在线观看免费| 午夜福利成人在线免费观看| 一个人免费在线观看的高清视频| 久久精品91蜜桃| 欧美另类亚洲清纯唯美| 中文字幕熟女人妻在线| 欧美日韩黄片免| 法律面前人人平等表现在哪些方面| 最近视频中文字幕2019在线8| 亚洲中文字幕一区二区三区有码在线看 | 国产久久久一区二区三区| 天天添夜夜摸| 人妻夜夜爽99麻豆av| 成人18禁在线播放| 欧美日韩乱码在线| 久久久久久九九精品二区国产 | 精品久久久久久久毛片微露脸| 精品国产超薄肉色丝袜足j| 校园春色视频在线观看| 听说在线观看完整版免费高清| 999精品在线视频| 成人18禁在线播放| 男女之事视频高清在线观看| 亚洲 国产 在线| 国内久久婷婷六月综合欲色啪| 99国产综合亚洲精品| 一进一出抽搐gif免费好疼| 精品日产1卡2卡| 亚洲国产欧美人成|