• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An approach to improving maneuver performanceof coning algorithm

    2014-09-06 10:49:51TangChuanyeChenXiyuanSongRui
    關(guān)鍵詞:子樣機(jī)動性東南大學(xué)

    Tang Chuanye Chen Xiyuan Song Rui

    (School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)(Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology of Ministry of Education,Southeast University, Nanjing 210096, China)

    ?

    An approach to improving maneuver performanceof coning algorithm

    Tang Chuanye Chen Xiyuan Song Rui

    (School of Instrument Science and Engineering, Southeast University, Nanjing 210096, China)(Key Laboratory of Micro-Inertial Instrument and Advanced Navigation Technology of Ministry of Education,Southeast University, Nanjing 210096, China)

    Aiming to improve the maneuver performance of the strapdown inertial navigation attitude coning algorithm, a new coning correction structure is constructed by adding a sample to the traditional compressed coning correction structure. According to the given definition of classical coning motion, the residual coning correction error based on the new coning correction structure is derived. On the basis of the new structure, the frequency Taylor series method is used for designing a coning correction structure coefficient, and then a new coning algorithm is obtained. Two types of error models are defined for the coning algorithm performance evaluation under coning environments and maneuver environments, respectively. Simulation results indicate that the maneuver accuracy of the new 4-sample coning algorithm is almost double that of the traditional compressed 4-sample coning algorithm. The new coning algorithm has an improved maneuver performance while maintaining coning performance, compared to the traditional compressed coning algorithm.

    coning algorithm; coning correction structure; maneuver performance; coning performance; frequency Taylor series method

    In recent decades, it has always been an attractive task to design an efficient coning algorithm which includes designing an efficient coning correction structure and optimizing the structure coefficient. Miller[1]first presented a three-sample algorithm structure and an approach to designing the coning algorithm in a pure coning environment by truncating the frequency Taylor series of updating rotation vector error. Lee et al.[2]further applied Miller’s idea and arrived at the conclusion that the uncompressed coning correction structure exists in redundancy under coning conditions. According to this conclusion, Ignagni[3]verified that the cross product of both integral angular rate samples is independent of absolute time, and it is merely a function of the time interval between sampling points under coning conditions. Also, Ignagni[3]first designed the compressed coning correction structure and the compressed coning algorithm. Unlike the previous coning algorithms for gyro error-free output, Mark et al.[4]presented a method of tuning a high-order coning algorithm to match the frequency response characteristics of a gyro with filtered output. Based on the compressed coning correction structure, Savage[5]first raised the idea of using the least square method to design the coning correction algorithm for balanced coning performance over a coning frequency range. Subsequently, Savage[6]further applied the least square method to coning algorithm design in pseudo-coning environments. Tang et al.[7]introduced the least square method into the angular rate-based attitude algorithm design. Subsequently, Tang et al.[8-9]presented a new type of angular rate-based coning correction structure for coning error compensation. Chen et al.[10]proposed an improved coning algorithm based on the second optimization method. Song et al.[11]concentrated on the improvement of maneuver accuracy of coning algorithms, and developed an approach to recovering the maneuver accuracy of classical coning algorithms by combining the earliest time Taylor series method and the latest frequency methods. Tang et al.[12]later proposed a half-compressed coning correction structure to improve the maneuver accuracy of classical coning algorithms and to achieve a balance between algorithm accuracy and the throughput.

    This paper first presents a new coning correction structure, which is constructed by adding a sample to the traditional compressed coning correction structure. The frequency Taylor series method is used for the coning algorithm design based on the new structure. Simulation results indicate that the new coning algorithm shows an improved maneuver performance compared to the traditional compressed algorithm, owing to the rationality of the new structure.

    1 Coning Correction Structure

    Generally, the rotation vectorφlfor the attitude update is calculated by using a simple form to approximate the integral of the rotation vector differential equation. A commonly used approximation form[3,5-12]can be written as

    φl=αl+δφl

    αl=α(tl,tl-1)

    (1)

    wheretis the time;αlis the integral of the gyro-sensed angular rateωfrom timetl-1to timetl; δφldenotes the coning correction.

    (2)

    (3)

    Both traditional coning correction forms defined by Eqs.(2) and (3) are equivalent under coning motion conditions, but not equivalent under maneuver conditions. Song et al.[11]indicated that the algorithm based on Eq.(2) can achieve much higher maneuver accuracies, but requires more throughput than those based on Eq.(3). This paper proposes a new coning algorithm differing from the traditional coning algorithm:

    (4)

    whereJsis the coning correction coefficient;θNis the sum of the last two angular increments selected from all samples over timetl-1totl, and it can be directly obtained from the process of computingαlin Eq.(2).

    2 Coning Correction Algorithm

    2.1 Correction coefficient design

    Assume that the body is undergoing the pure coning motion defined by the angular rate vector[3,5,6,9,12],

    (5)

    whereω(t) is an angular rate vector in the body frame at timet;aandbare the amplitudes of the angular oscillations in two orthogonal axes of the body;Ωis the frequency associated with the angular oscillations.

    Based on the coning motion angular rate vector definition by Eq.(5), Ignagni[3]derived the analytical value of the coning correction δφlin Eq.(1) withtl=tl-1+Tl=tl-1+LTk:

    (6)

    whereβis a coning frequency parameter relevant toTk.

    Under the coning motion defined by Eq.(5), the angular increment Δαkis obtained by integrating the angular rate vectorω(t) fromtl-(N-k+1)Tktotl-(N-k)Tk.

    (7)

    Also, the angular incrementθNis obtained by integrating the angular rate vectorω(t) fromtl-2Tktotl.

    (8)

    Then the cross product Δαk×θNis derived from Eqs.(7) and (8) as

    Δαk×θN=

    (9)

    fs(β)≡ sin(sβ)+sin[(s-1)β]-

    sin[(s+1)β]-sin[(s-2)β]

    (10)

    (11)

    Substituting Eq.(6) and Eq.(10) into Eq.(11) gives

    (12)

    According to the Taylor series expansion of sinβaround zero point, we have

    (13)

    Then the errore(β) in Eq.(12) can be expanded as a Taylor series form around zero point,

    (14)

    Setting the coefficients of the firstN-1 terms of Taylor series Eq.(14) to zeros, we can obtain the system of linear equations, which can be simplified as

    (15)

    Defining terms

    J=(Js,1)(N-1)×1Js,1≡Js

    B=(bk,1)(N-1)×1bk,1≡-L2k+1

    (16)

    Then the systems of linear equations (16) can be rewritten in the following matrix form:

    AJ=B

    (17)

    whereAis anN-1 byN-1 square matrix whosek-th row ands-th column component isaks;Bis anN-1 by one column matrix formed from componentsbk,1s;Jis anN-1 by one column matrix formed from componentsJs,1s. Solving Eq.(17), we obtain the optimized coning correction coefficientsJss, which are applicable to the coning correction form defined by Eq.(4).

    J=A-1B

    (18)

    2.2 Algorithm performance evaluation

    Two types of error models are defined to evaluate the coning algorithm performance under coning and maneuver environments.

    (20)

    For evaluating the algorithm performance in maneuver environments, assume that the body is undergoing a maneuver angular motion characterized by the angular rate vector[3,5,9,11],

    (21)

    wheregiis a coefficient vector;Qis the number of coefficient vectors;t0is the beginning time measured. Integrating Eq.(21) fromtl-1tot, we obtain

    (22)

    Eqs.(21) and (22) are substituted into Eq.(1). After integrating and simplifying withtl-1=tl-Tl=tl-LTkandt0=0, we can give the analytical coning correction δφl,

    (23)

    (24)

    2.3 Algorithm example

    The coning correction forms expressed by Eqs.(3) and (4) can be also, respectively, rewritten as

    (25)

    (26)

    Using Eq.(18), we can design the coefficientsJss for anyN-sample algorithm. WhenL=N=4, the new 4-sample algorithm becomes

    (27)

    In addition, the coning coefficientsKss in Eq.(25) are designed by the same optimization method as given in the above. WhenL=N=4, the traditional 4-sample algorithm[3]becomes

    (28)

    3 Simulation

    To illustrate the properties of two 4-sample coning algorithms, algorithm errors are computed under coning environments and maneuver environments, and then algorithm performances are compared and analyzed. In each algorithm,Tk=1 ms,Tl=LTk, andL=N=4.

    In Fig.1, CFSn4 indicates the 4-sample coning algorithm based on Eq.(4) taking the coefficients determined by the coning frequency Taylor series method. CFSc4 represents the 4-sample coning algorithm based on Eq.(3) taking the coefficients determined by the coning frequency Taylor series method.

    Fig.1 Normalized average rotation error rate (β) and vs. coning frequency β/(2πTk)

    For algorithm performance evaluation, we set

    Q=5

    Then the extreme 2 s angular maneuver rate profile is given in Fig.2.

    Fig.2 Maneuver angular rate vs. time

    Fig.1 indicates that the new 4-sample coning algorithm CFSn4 and the traditional compressed 4-sample coning algorithm CFSc4, both with the coefficients optimized by using the coning frequency Taylor series method, have the same algorithm accuracy over the coning frequency range. It means that both algorithms are equivalent. This is because the new coning correction form defined by Eq.(4) and the traditional compressed coning correction form defined by Eq.(3) are both based on the coning motion properties and derived from the uncompressed form defined by Eq.(2).

    By comparing algorithm errors in the set maneuver environment, Fig.3 illustrates that the maneuver error of the new 4-sample coning algorithm CFSn4 approaches half that of the traditional compressed 4-sample coning algorithm CFSc4. For example, the maximum of thez-component of the maneuver error vector, as the maximum of three components of the error vector for the algorithm CFSn4, is approximately 2.2×10-6(°)/s (about 7.92×10-3(°)/h) and lies at 2 s, and that for the algorithm CFSc4 is approximately 4.2×10-6(°)/s (about 1.512×10-2(°)/h) and also lies at 2 s. It means that for a typical aircraft INS with a 0.01 (°)/h gyro error, the accuracy improvement of the algorithm CFSn4 is significant compared to the algorithm CFSc4 and can evidently improve the INS performance in maneuver environments.

    (a) (b) (c)

    4 Conclusion

    The proposed coning correction algorithm is efficient in coning environments and maneuver environments. The new coning algorithm and the traditional compressed coning algorithm have the same efficiency with the same computation load and coning accuracy. In maneuver environments, the performance of the proposed algorithm is clearly superior to that of the traditional compressed algorithm. The new 4-sample coning algorithm almost doubles in maneuver accuracy, compared to the traditional compressed 4-sample coning algorithm. The proposed algorithm has improved maneuver accuracy while maintaining coning accuracy and algorithm throughput.

    [1]Miller R B. A new strapdown attitude algorithm [J].JournalofGuidance,Control,andDynamics, 1983, 6(4): 287-291.

    [2]Lee J G, Mark J G, Tazartes D A, et al. Extension of strapdown attitude algorithm for high-frequency base motion [J].JournalofGuidance,Control,andDynamics, 1990, 13(4): 738-743.

    [3]Ignagni M B. Efficient class of optimized coning compensation algorithms [J].JournalofGuidance,Control,andDynamics, 1996, 19(2): 424-429.

    [4]Mark J G, Tazartes D A. Tuning of coning algorithms to gyro data frequency response characteristics [J].JournalofGuidance,Control,andDynamics, 2001, 24(4): 641-647.

    [5]Savage P G. Coning algorithm design by explicit frequency shaping [J].JournalofGuidance,Control,andDynamics, 2010, 33(4): 1123-1132.

    [6]Savage P G. Explicit frequency shaped coning algorithms for pseudoconing environments [J].JournalofGuidance,Control,andDynamics, 2011, 34(3): 774-782.

    [7]Tang C Y, Chen X Y, Li J L. Coning algorithm design for angular rate inputs [J].JournalofChineseInertialTechnology, 2013, 21(4): 456-461. (in Chinese)

    [8]Tang C Y, Chen X Y. An angular rate input attitude algorithm in SINS [J].JournalofSoutheastUniversity:NaturalScienceEdition, 2014, 44(3): 544-549. (in Chinese)

    [9]Tang C Y, Chen X Y. A generalized coning correction structure for attitude algorithms [J].MathematicalProblemsinEngineering, 2014, 2014: 1-15.

    [10]Chen J F, Chen X Y, Zhu X F. An improved coning algorithm based on second optimization [J].JournalofChineseInertialTechnology, 2012, 20(2): 131-135. (in Chinese)

    [11]Song M, Wu W Q, Pan X F. Approach to recovering maneuver accuracy in classical coning algorithms [J].JournalofGuidance,Control,andDynamics, 2013, 36(6): 1872-1881.

    [12]Tang C Y, Chen X Y. A class of coning algorithms based on a half-compressed structure [J].Sensors, 2014, 14(8): 14289-14301.

    一種提升圓錐算法機(jī)動性能的方法

    湯傳業(yè) 陳熙源 宋 銳

    (東南大學(xué)儀器科學(xué)與工程學(xué)院, 南京 210096)(東南大學(xué)微慣性儀表與先進(jìn)導(dǎo)航技術(shù)教育部重點(diǎn)實(shí)驗(yàn)室, 南京 210096)

    為提高捷聯(lián)慣導(dǎo)姿態(tài)圓錐算法的機(jī)動性能,提出一種新的圓錐補(bǔ)償結(jié)構(gòu),該結(jié)構(gòu)通過在傳統(tǒng)結(jié)構(gòu)中增加一個子樣獲得.在給出經(jīng)典圓錐運(yùn)動定義的基礎(chǔ)上,推導(dǎo)了基于新的圓錐補(bǔ)償結(jié)構(gòu)的圓錐補(bǔ)償殘余誤差通式,并采用頻率泰勒方法設(shè)計了新的圓錐補(bǔ)償結(jié)構(gòu)系數(shù),從而獲得一類新的圓錐補(bǔ)償算法.定義了2種圓錐算法誤差模型,分別用于圓錐環(huán)境和機(jī)動環(huán)境下的圓錐算法性能評估.仿真結(jié)果表明:新的四子樣圓錐算法的機(jī)動精度比傳統(tǒng)四子樣圓錐算法的機(jī)動精度提高約1倍;與傳統(tǒng)的壓縮圓錐算法相比,新的圓錐算法在保持圓錐性能的同時具有更好的機(jī)動性能.

    圓錐算法;圓錐補(bǔ)償結(jié)構(gòu);機(jī)動性能;圓錐性能;頻率泰勒方法

    V241.6

    Received 2014-05-06.

    Biographies:Tang Chuanye (1982—), male, graduate; Chen Xiyuan (corresponding author), male, doctor, professor, chxiyuan@seu.edu.cn.

    s:The National Natural Science Foundation of China (No.51375087), the Specialized Research Fund for the Doctoral Program of Higher Education (No.20110092110039), the Public Science and Technology Research Funds Projects of Ocean (No.201205035), the Scientific Innovation Research of College Graduates in Jiangsu Province (No.CXZZ12_0097), the Scientific Research Foundation of Graduate School of Southeast University (No.YBJJ1349).

    :Tang Chuanye, Chen Xiyuan, Song Rui. An approach to improving maneuver performance of coning algorithm[J].Journal of Southeast University (English Edition),2014,30(4):439-444.

    10.3969/j.issn.1003-7985.2014.04.007

    10.3969/j.issn.1003-7985.2014.04.007

    猜你喜歡
    子樣機(jī)動性東南大學(xué)
    2024年2月24日,在北極邊緣演習(xí)中,美海軍陸戰(zhàn)隊的高機(jī)動性火炮火箭系統(tǒng)正在發(fā)射
    軍事文摘(2024年7期)2024-04-12 00:44:34
    旋轉(zhuǎn)式多比例分樣方法對作物籽粒分樣效果的研究
    《東南大學(xué)學(xué)報(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(醫(yī)學(xué)版)》稿約
    《東南大學(xué)學(xué)報(醫(yī)學(xué)版)》稿約
    加標(biāo)回收率的辯證定論
    淺談減少煤樣采集誤差的方法
    快拍系統(tǒng) 5款相機(jī)攜帶系統(tǒng),在減輕身體負(fù)擔(dān)之余更保證機(jī)動性。
    基于BTT的反魚雷魚雷攔截彈道研究
    中文字幕av电影在线播放| 国产精品一二三区在线看| 老熟女久久久| 一本一本久久a久久精品综合妖精| 99国产综合亚洲精品| 午夜精品久久久久久毛片777| 免费久久久久久久精品成人欧美视频| 国产在视频线精品| 女人高潮潮喷娇喘18禁视频| 国产精品二区激情视频| 99香蕉大伊视频| 国产精品一区二区免费欧美 | 99国产精品免费福利视频| 男女边摸边吃奶| 午夜激情久久久久久久| 黄色视频在线播放观看不卡| 成年动漫av网址| 亚洲七黄色美女视频| 精品一区二区三区四区五区乱码| 丰满少妇做爰视频| 无遮挡黄片免费观看| 日韩视频一区二区在线观看| 成人国产av品久久久| 一边摸一边抽搐一进一出视频| 国产野战对白在线观看| 性色av乱码一区二区三区2| 性少妇av在线| 国产亚洲精品一区二区www | www.自偷自拍.com| 叶爱在线成人免费视频播放| 精品久久久久久电影网| 高清欧美精品videossex| 日韩制服丝袜自拍偷拍| 久久国产精品大桥未久av| 黄色片一级片一级黄色片| 19禁男女啪啪无遮挡网站| 午夜福利乱码中文字幕| 欧美激情极品国产一区二区三区| av超薄肉色丝袜交足视频| 久久精品成人免费网站| 欧美国产精品一级二级三级| 国产精品99久久99久久久不卡| 日韩电影二区| 亚洲一区二区三区欧美精品| 午夜成年电影在线免费观看| 超碰97精品在线观看| 欧美老熟妇乱子伦牲交| 69精品国产乱码久久久| 亚洲国产欧美网| 韩国精品一区二区三区| 国产精品一区二区在线观看99| 视频区图区小说| 啦啦啦视频在线资源免费观看| 欧美亚洲日本最大视频资源| 久久女婷五月综合色啪小说| 国产区一区二久久| 亚洲午夜精品一区,二区,三区| tube8黄色片| 丝袜美腿诱惑在线| 亚洲精品国产一区二区精华液| 9热在线视频观看99| 在线观看免费视频网站a站| 美女大奶头黄色视频| 高清av免费在线| 在线 av 中文字幕| 久久精品熟女亚洲av麻豆精品| cao死你这个sao货| 国产一区二区 视频在线| 韩国高清视频一区二区三区| 十八禁网站网址无遮挡| 男女边摸边吃奶| av天堂久久9| 黄色视频在线播放观看不卡| 欧美+亚洲+日韩+国产| 亚洲第一av免费看| 国产欧美日韩精品亚洲av| 国产免费现黄频在线看| 电影成人av| 国产av又大| 极品人妻少妇av视频| 熟女少妇亚洲综合色aaa.| 亚洲国产精品一区三区| 老司机深夜福利视频在线观看 | 免费观看人在逋| 色精品久久人妻99蜜桃| 精品国产乱码久久久久久小说| av一本久久久久| 99久久综合免费| 久久久精品区二区三区| 日韩精品免费视频一区二区三区| 高清视频免费观看一区二区| 90打野战视频偷拍视频| 男女边摸边吃奶| 免费不卡黄色视频| 日本wwww免费看| 午夜影院在线不卡| 女人久久www免费人成看片| 亚洲国产欧美一区二区综合| av福利片在线| 午夜免费鲁丝| 水蜜桃什么品种好| 在线观看人妻少妇| 欧美日韩中文字幕国产精品一区二区三区 | 国产精品九九99| 老鸭窝网址在线观看| 可以免费在线观看a视频的电影网站| 国产免费一区二区三区四区乱码| 激情视频va一区二区三区| 精品亚洲成a人片在线观看| 亚洲精品一区蜜桃| 熟女少妇亚洲综合色aaa.| av不卡在线播放| 日韩中文字幕欧美一区二区| 秋霞在线观看毛片| 极品少妇高潮喷水抽搐| 久久亚洲国产成人精品v| 肉色欧美久久久久久久蜜桃| 日韩制服骚丝袜av| 中文字幕av电影在线播放| 国产精品久久久久久精品古装| 国产91精品成人一区二区三区 | 男女之事视频高清在线观看| 国产成人影院久久av| 成人国产av品久久久| 菩萨蛮人人尽说江南好唐韦庄| 免费av中文字幕在线| 99九九在线精品视频| 秋霞在线观看毛片| 男人添女人高潮全过程视频| 久久女婷五月综合色啪小说| 久久久国产成人免费| 爱豆传媒免费全集在线观看| 午夜福利乱码中文字幕| 亚洲成av片中文字幕在线观看| 国产精品二区激情视频| 亚洲精品日韩在线中文字幕| a在线观看视频网站| 男女国产视频网站| 水蜜桃什么品种好| 日韩视频在线欧美| 国产成人精品久久二区二区91| bbb黄色大片| 黄片播放在线免费| 黄色视频在线播放观看不卡| 久久久精品免费免费高清| av网站免费在线观看视频| 午夜成年电影在线免费观看| 女性被躁到高潮视频| 天天影视国产精品| 久久综合国产亚洲精品| 一级毛片女人18水好多| a级毛片黄视频| 欧美av亚洲av综合av国产av| 大香蕉久久网| 中亚洲国语对白在线视频| 久9热在线精品视频| 午夜成年电影在线免费观看| 一本久久精品| 日韩一区二区三区影片| 精品亚洲成国产av| av有码第一页| tocl精华| 人妻久久中文字幕网| 一本久久精品| 中文字幕制服av| 99精品欧美一区二区三区四区| 人成视频在线观看免费观看| 亚洲国产av影院在线观看| 久久人人爽av亚洲精品天堂| 亚洲午夜精品一区,二区,三区| 啦啦啦免费观看视频1| 久久久水蜜桃国产精品网| 99香蕉大伊视频| 久久久久久久久免费视频了| 老司机深夜福利视频在线观看 | 啦啦啦 在线观看视频| 亚洲欧美精品自产自拍| 久久九九热精品免费| av福利片在线| 国产精品av久久久久免费| 亚洲精品日韩在线中文字幕| 美女扒开内裤让男人捅视频| 久久人人97超碰香蕉20202| 无遮挡黄片免费观看| 亚洲精品中文字幕一二三四区 | 欧美日韩成人在线一区二区| 国产成人啪精品午夜网站| 午夜91福利影院| 悠悠久久av| 久久天堂一区二区三区四区| 亚洲一码二码三码区别大吗| 亚洲国产av影院在线观看| 我的亚洲天堂| 侵犯人妻中文字幕一二三四区| 午夜福利视频在线观看免费| 十八禁网站网址无遮挡| 久久免费观看电影| 日本wwww免费看| 在线观看免费高清a一片| 超碰成人久久| 少妇 在线观看| 男女午夜视频在线观看| 五月开心婷婷网| 中文欧美无线码| 正在播放国产对白刺激| 不卡av一区二区三区| 男人舔女人的私密视频| 丝瓜视频免费看黄片| 久久久精品免费免费高清| 成年美女黄网站色视频大全免费| 精品国产一区二区久久| 欧美一级毛片孕妇| 精品少妇久久久久久888优播| 少妇 在线观看| av在线app专区| www.av在线官网国产| 免费高清在线观看视频在线观看| 国产精品亚洲av一区麻豆| 美女福利国产在线| 久久久久久久大尺度免费视频| 国产在线观看jvid| 国产欧美日韩一区二区三 | 中国美女看黄片| 国产高清国产精品国产三级| 一边摸一边抽搐一进一出视频| 99国产极品粉嫩在线观看| 日韩,欧美,国产一区二区三区| 国产黄色免费在线视频| 婷婷丁香在线五月| 黄色毛片三级朝国网站| 性色av一级| 精品视频人人做人人爽| 国产亚洲精品久久久久5区| 国产麻豆69| 精品国产乱子伦一区二区三区 | av网站免费在线观看视频| e午夜精品久久久久久久| 免费一级毛片在线播放高清视频 | 男女国产视频网站| 97人妻天天添夜夜摸| 国产深夜福利视频在线观看| 欧美激情 高清一区二区三区| 69av精品久久久久久 | 黄片大片在线免费观看| 老司机午夜十八禁免费视频| 9色porny在线观看| 中文字幕精品免费在线观看视频| 一区二区三区激情视频| 欧美黄色片欧美黄色片| 亚洲精品久久久久久婷婷小说| 国产成人啪精品午夜网站| 欧美日韩av久久| 国产淫语在线视频| 人人妻人人爽人人添夜夜欢视频| 午夜福利免费观看在线| 亚洲精品自拍成人| 午夜激情久久久久久久| 精品高清国产在线一区| 99香蕉大伊视频| 91麻豆av在线| 午夜日韩欧美国产| 18禁观看日本| 久久久欧美国产精品| 国产精品久久久久久人妻精品电影 | 侵犯人妻中文字幕一二三四区| 午夜福利视频在线观看免费| 在线永久观看黄色视频| 亚洲七黄色美女视频| 日韩有码中文字幕| 日本猛色少妇xxxxx猛交久久| 岛国在线观看网站| 成人国产一区最新在线观看| 久久中文看片网| 成人黄色视频免费在线看| 91精品国产国语对白视频| 丝袜在线中文字幕| 大码成人一级视频| 啦啦啦 在线观看视频| 一区二区三区激情视频| 五月开心婷婷网| 黄色片一级片一级黄色片| 国产av国产精品国产| 不卡一级毛片| 国产伦理片在线播放av一区| 啪啪无遮挡十八禁网站| 欧美另类亚洲清纯唯美| 中文字幕精品免费在线观看视频| 亚洲少妇的诱惑av| 性高湖久久久久久久久免费观看| 久久性视频一级片| 午夜激情久久久久久久| 欧美 亚洲 国产 日韩一| a级片在线免费高清观看视频| 国产成人免费观看mmmm| 美女国产高潮福利片在线看| 91精品三级在线观看| 国产区一区二久久| 一级a爱视频在线免费观看| 国产精品.久久久| 爱豆传媒免费全集在线观看| 精品久久久精品久久久| 亚洲少妇的诱惑av| 99国产精品一区二区蜜桃av | 美女中出高潮动态图| 成人手机av| 欧美久久黑人一区二区| 亚洲精品第二区| 国产欧美亚洲国产| 中文字幕人妻熟女乱码| 美女福利国产在线| 国产精品久久久av美女十八| 亚洲五月婷婷丁香| 精品少妇内射三级| av视频免费观看在线观看| 桃红色精品国产亚洲av| 少妇猛男粗大的猛烈进出视频| 波多野结衣av一区二区av| 永久免费av网站大全| 青春草亚洲视频在线观看| 亚洲专区中文字幕在线| 精品国产一区二区三区久久久樱花| 国产精品亚洲av一区麻豆| 欧美精品亚洲一区二区| 日本精品一区二区三区蜜桃| 日韩有码中文字幕| 国产免费视频播放在线视频| 精品人妻一区二区三区麻豆| 日本a在线网址| 视频区图区小说| 国产成人精品久久二区二区免费| 国产日韩欧美亚洲二区| 成在线人永久免费视频| 精品一区二区三区四区五区乱码| 欧美国产精品va在线观看不卡| 巨乳人妻的诱惑在线观看| 丝袜美腿诱惑在线| 菩萨蛮人人尽说江南好唐韦庄| 久久青草综合色| 亚洲专区中文字幕在线| 高清视频免费观看一区二区| 超色免费av| 久久热在线av| 韩国高清视频一区二区三区| 久久av网站| 后天国语完整版免费观看| 精品国产乱子伦一区二区三区 | 91av网站免费观看| 夜夜夜夜夜久久久久| 色婷婷久久久亚洲欧美| 十八禁网站网址无遮挡| 成年女人毛片免费观看观看9 | 亚洲国产欧美日韩在线播放| 深夜精品福利| 久久免费观看电影| 正在播放国产对白刺激| 热re99久久精品国产66热6| 国产91精品成人一区二区三区 | 亚洲精品中文字幕一二三四区 | 日韩有码中文字幕| 精品国内亚洲2022精品成人 | 亚洲av电影在线进入| 日本wwww免费看| 欧美精品亚洲一区二区| 国产av精品麻豆| 久久影院123| 亚洲成人免费av在线播放| 91av网站免费观看| 一级片'在线观看视频| 国产精品一二三区在线看| 国产精品一区二区在线观看99| 最新在线观看一区二区三区| 夜夜骑夜夜射夜夜干| avwww免费| 青草久久国产| 一本久久精品| 青春草视频在线免费观看| 亚洲国产欧美一区二区综合| 欧美大码av| 动漫黄色视频在线观看| 久久久久精品人妻al黑| 午夜精品久久久久久毛片777| 黄色怎么调成土黄色| 亚洲精品国产av蜜桃| 岛国毛片在线播放| 成人国产av品久久久| 欧美人与性动交α欧美精品济南到| 亚洲欧美日韩高清在线视频 | 少妇精品久久久久久久| 最近中文字幕2019免费版| 美女扒开内裤让男人捅视频| 麻豆乱淫一区二区| 一二三四社区在线视频社区8| 国产精品亚洲av一区麻豆| 在线 av 中文字幕| 在线观看一区二区三区激情| 久久精品成人免费网站| 久久青草综合色| 亚洲第一av免费看| 99热国产这里只有精品6| 亚洲va日本ⅴa欧美va伊人久久 | 国产精品.久久久| 操美女的视频在线观看| 亚洲va日本ⅴa欧美va伊人久久 | 久久人妻福利社区极品人妻图片| 中文字幕色久视频| 九色亚洲精品在线播放| kizo精华| 免费在线观看黄色视频的| 亚洲中文日韩欧美视频| 丁香六月天网| 国产成人精品久久二区二区91| 男女国产视频网站| 999久久久精品免费观看国产| 日韩,欧美,国产一区二区三区| 久久精品久久久久久噜噜老黄| 黑人操中国人逼视频| 国产一区有黄有色的免费视频| 亚洲天堂av无毛| 欧美激情久久久久久爽电影 | 亚洲免费av在线视频| 国产在视频线精品| 美女中出高潮动态图| 91国产中文字幕| 欧美乱码精品一区二区三区| 欧美黑人精品巨大| 18在线观看网站| 看免费av毛片| 国产日韩欧美在线精品| 国产黄色免费在线视频| 日日摸夜夜添夜夜添小说| 国产精品麻豆人妻色哟哟久久| av网站免费在线观看视频| 人人澡人人妻人| 在线观看人妻少妇| 亚洲激情五月婷婷啪啪| 窝窝影院91人妻| 无遮挡黄片免费观看| 亚洲精品久久久久久婷婷小说| 日日摸夜夜添夜夜添小说| 国产精品麻豆人妻色哟哟久久| 一级,二级,三级黄色视频| xxxhd国产人妻xxx| 人人妻,人人澡人人爽秒播| 欧美精品人与动牲交sv欧美| 精品国内亚洲2022精品成人 | 19禁男女啪啪无遮挡网站| 女人精品久久久久毛片| 黄色视频在线播放观看不卡| 一二三四社区在线视频社区8| 国产一区二区在线观看av| 欧美日韩av久久| 亚洲精品美女久久av网站| 99热网站在线观看| a 毛片基地| 日韩三级视频一区二区三区| 久久久国产精品麻豆| 黄色怎么调成土黄色| 欧美黑人精品巨大| 18禁黄网站禁片午夜丰满| 免费日韩欧美在线观看| 久久ye,这里只有精品| 老汉色∧v一级毛片| www.999成人在线观看| 人成视频在线观看免费观看| 美女福利国产在线| 日韩电影二区| 色婷婷av一区二区三区视频| 久久久久久人人人人人| 香蕉国产在线看| a级毛片黄视频| 天堂中文最新版在线下载| 亚洲欧美日韩高清在线视频 | 韩国精品一区二区三区| 在线观看免费日韩欧美大片| 精品少妇久久久久久888优播| 久久久欧美国产精品| 精品久久蜜臀av无| 自线自在国产av| 亚洲色图 男人天堂 中文字幕| 日韩 亚洲 欧美在线| 永久免费av网站大全| 日韩免费高清中文字幕av| 久久久国产精品麻豆| 制服人妻中文乱码| 亚洲欧美色中文字幕在线| 在线观看免费午夜福利视频| 激情视频va一区二区三区| 亚洲一区二区三区欧美精品| 国产成+人综合+亚洲专区| 视频区欧美日本亚洲| 久久久久久久精品精品| 日韩电影二区| 一本—道久久a久久精品蜜桃钙片| 丝瓜视频免费看黄片| 欧美精品一区二区免费开放| 又黄又粗又硬又大视频| 视频区欧美日本亚洲| av天堂久久9| 国产免费av片在线观看野外av| 欧美一级毛片孕妇| 国产野战对白在线观看| 日韩制服骚丝袜av| 十八禁高潮呻吟视频| 麻豆国产av国片精品| 亚洲成人免费电影在线观看| 一级,二级,三级黄色视频| 成年人午夜在线观看视频| 性色av乱码一区二区三区2| 丝袜美足系列| 五月开心婷婷网| 国产精品一区二区在线不卡| 亚洲第一av免费看| 亚洲国产av新网站| 飞空精品影院首页| 中文欧美无线码| 一边摸一边抽搐一进一出视频| 国产av精品麻豆| 50天的宝宝边吃奶边哭怎么回事| 久久毛片免费看一区二区三区| 亚洲国产欧美在线一区| 亚洲国产成人一精品久久久| 国产色视频综合| 韩国高清视频一区二区三区| 男女边摸边吃奶| 97精品久久久久久久久久精品| 欧美精品一区二区大全| 日韩 亚洲 欧美在线| 免费看十八禁软件| 亚洲va日本ⅴa欧美va伊人久久 | 少妇裸体淫交视频免费看高清 | 他把我摸到了高潮在线观看 | 国产97色在线日韩免费| 国产欧美日韩一区二区三区在线| 91国产中文字幕| 欧美日韩精品网址| 亚洲av欧美aⅴ国产| 老司机亚洲免费影院| 亚洲国产日韩一区二区| 9色porny在线观看| 亚洲第一青青草原| 男女国产视频网站| av欧美777| 亚洲欧洲日产国产| av在线app专区| 在线av久久热| 乱人伦中国视频| 久久久久久亚洲精品国产蜜桃av| 人人妻,人人澡人人爽秒播| 极品人妻少妇av视频| 亚洲专区中文字幕在线| 男人操女人黄网站| 999精品在线视频| 亚洲一卡2卡3卡4卡5卡精品中文| 999精品在线视频| 中文字幕人妻熟女乱码| 国产欧美日韩一区二区三区在线| 一区在线观看完整版| 亚洲精品中文字幕在线视频| 中文欧美无线码| 另类精品久久| 亚洲人成电影观看| 一二三四在线观看免费中文在| 久久人妻熟女aⅴ| 一本综合久久免费| 国产免费现黄频在线看| 欧美中文综合在线视频| 三上悠亚av全集在线观看| 免费人妻精品一区二区三区视频| 热re99久久国产66热| 男女床上黄色一级片免费看| 青青草视频在线视频观看| 国产伦理片在线播放av一区| 青春草亚洲视频在线观看| 亚洲男人天堂网一区| 久久久久久久久免费视频了| 91精品三级在线观看| 丝袜美足系列| 国产成人精品久久二区二区91| 久久久久网色| 交换朋友夫妻互换小说| 黄色视频在线播放观看不卡| 色精品久久人妻99蜜桃| 久热爱精品视频在线9| 丝袜人妻中文字幕| 久久人人爽人人片av| 嫁个100分男人电影在线观看| 国产日韩欧美视频二区| 免费观看a级毛片全部| 中文字幕精品免费在线观看视频| 天天操日日干夜夜撸| 亚洲熟女毛片儿| bbb黄色大片| 精品国产一区二区三区四区第35| 亚洲第一欧美日韩一区二区三区 | 飞空精品影院首页| 夜夜夜夜夜久久久久| av视频免费观看在线观看| 窝窝影院91人妻| 欧美xxⅹ黑人| 精品国产超薄肉色丝袜足j| 99热网站在线观看| 久久久欧美国产精品| 精品少妇内射三级| 啪啪无遮挡十八禁网站| 老司机靠b影院| 亚洲av男天堂| 在线观看免费视频网站a站| 免费av中文字幕在线| 精品国产一区二区三区四区第35| 两个人看的免费小视频| 女性生殖器流出的白浆| 91精品伊人久久大香线蕉| 叶爱在线成人免费视频播放| 一本大道久久a久久精品| 亚洲黑人精品在线|