• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamical chiral symmetry breaking in QED3

    2014-09-06 10:49:51ZhouYuqing
    關(guān)鍵詞:費(fèi)米子費(fèi)米數(shù)值

    Zhou Yuqing

    (Department of Physics, Southeast University, Nanjing 211189, China)

    ?

    Dynamical chiral symmetry breaking in QED3

    Zhou Yuqing

    (Department of Physics, Southeast University, Nanjing 211189, China)

    In order to examine how a propagator behaves in non-perturbative theories and how its behavior is influenced by the choice of a covariant gauge, a truncated Dyson-Schwinger equation is used to numerically investigate the properties of fermions and bosons in 3D quantum electrodynamics(QED), and a series of self-consistent solutions for the fermion propagator in the Nambu and Wigner phases are obtained. These numerical solutions show that the propagator behaves very differently in the Landau gauge domain and in the infrared energy region outside it. By using the propagators in the Nambu and Wigner phases under various gauges, it is further investigated how the fermion equivalent pressure difference and fermion condensation change with the gauge parameters. These results indicate that the phase transition described by the CJT equivalent potential and the chiral phase transition described by the chiral condensation are not completely identical.

    propagator; covariant gauge; 3D quantum electrodynamics(QED); equivalent pressure difference; fermion condensation; chiral phase transition

    Gauge fields play a basic role in particle physics. According to theoretical physics, all the physical results should be independent of the gauge parameter. The results show this to be true at every level of approximation in perturbation theory, while this has not been successfully demonstrated in general in the non-perturbative case. Within the framework of strong correlation, the system shows dynamical chiral symmetry breaking (DCSB), where the massless fermion gains a nonzero mass. In addition, all of the information about the system can be obtained from the propagators. Therefore, it is necessary to study the idiographic behavior of propagators and the influence of the covariant gauge on behavior in a non-perturbative theory.

    To understand the propagators, we invoke the Dyson-Schwinger (DS) equations for fermion and boson propagators. As is well known, there are two solutions for the DS equations for the fermion propagator, namely, the Nambu and Wigner solutions. In the chiral limit, the Nambu solution corresponds to the chirally broken phase while the Wigner solution corresponds to the chirally symmetric phase. We believe that the Nambu solution is the solution that is realized in the real world. Several studies[1-3]have shown that the Nambu solution occurs only with fermion flavorsNless than a critical valueNc, but none of them has shown the Wigner solution atN

    (1)

    whereξis the covariant gauge parameter. We use four-component spinors for the fermions, and accordingly, a four-dimensional representation for theγmatrices. QED3has many features similar to QCD in 3+1 dimensions. QED3is known to have a phase where the initial chiral symmetry of the theory is spontaneously broken, and it is also known that the fermions are confined to this phase. Moreover, QED3is super-renormalizable, and we can, therefore, avoid the ultraviolet divergences that are present in QED4. These are the basic reasons why QED3is regarded as an ideal toy model for non-perturbative theory. QED3is a possible candidate for the study of DCSB[1-13]and confinement[14-16]within a theory that is structurally much simpler than QCD, while sharing the same basic non-perturbative phenomena. Since the Dyson-Schwinger (DS) equations provide a powerful tool for resolving the propagators in non-perturbative theory, these coupled equations in QED3can be used to investigate our problem.

    1 Truncated Dyson-Schwinger Equations for Propagators

    From the Lagrangian (1) and DS equations for the fermion propagator, we derive

    (2)

    S-1(p)=iγ·pA(p2)+B(p2)

    (3)

    and obtain a function for wave-renormalizationA(p2),

    (4)

    and the fermion self-energyB(p2),

    (5)

    In addition, the DS equation satisfied by the polarization tensor for a photon is given by

    (6)

    The corresponding full photon propagator in a covariant gauge is

    (7)

    with the vacuum polarizationΠ(q2) defined by

    Πρν(q2)=(q2δρν-qρqν)Π(q2)

    (8)

    This vacuum polarization tensor has an ultraviolet divergence which is present only in the longitudinal component and can be removed by applying the projection operator

    (9)

    to project a finite value of vacuum polarization for it,Π(q2)[17].

    In principle, we can obtain the fermion and boson propagators from these coupled equations. Nevertheless, it is too complex to solve the DS equations because the necessary full fermion-photon vertexΓν(p,k) is unknown. Although several studies have attempted to resolve this problem, none are completely satisfactory[4,7-10,18-22].

    1.1 The rainbow approximation

    The simplest scheme for truncating the DS equation is the rainbow approximation. This structure plays the most dominant role in the full vertex in the high energy region and the full fermion-boson vertex reduces to it in a large momentum limit. Due to the complexity of QCD, many works on hadron physics have adopted this ansatz to analyze low energy behavior. We make use of it, although the tensor destroys the Ward-Takahashi identity (WTI). The pivotal functions for the propagators can then be written as

    (10)

    (11)

    (12)

    wherep=q+kandξ′(q2)=ξ[1+Π(q2)].

    1.2 Beyond the bare vertex

    Therefore, we write the truncated DS equations for propagators in a covariant gauge as follows:

    (13)

    (14)

    (15)

    2 Numerical Results

    First, we work within the Landau gauge. From the above DS equations for the fermion propagator, we find that the self-energy function has one trivial solution, i.e., the Wigner solution (B(p2)≡0). In the corresponding phase, the fermion remains massless and chiral symmetry is restored. Setting the original value ofB(p2)=0 andA(p2)=1,Π(q2)=1 in the rainbow approximation, we iterate the coupled functions to find stable results, and show these in Fig.1.

    (a)

    (b)

    The line in Fig.1 shows that the vector function of the inverse fermion propagator diminishes asp2→0, while the polarization of the boson reaches infinity asq2→0. Nevertheless, settingA(p2)=1 andΠ(q2)=1 reduces the single-iteration results at large momenta. This is because QED3is asymptotically free andS(p)→S0(p) in the high energy region.

    In addition to the Landau gauge, we also give the behavior of the propagators at several values ofξin Fig.1. It is shown that the behaviors of both the fermion and boson propagators here are different from those in the Landau gauge, whereA(p2) is divergent in the infrared limit. Asξis increased,A(p2) increases more and more rapidly whenp2decreases. Correspondingly,Π(q2) gives the opposite trend forξand, for a particular value ofξ, is not divergent and remains almost constant in the infrared region.

    Moving beyond the rainbow approximation and following the above method, we obtainA(p2),Π(q2) and show them in Fig.2. It is shown that, compared with the bare approximation, the truncated scheme changes the value of solutions at a fixedp2in the infrared region, but apparently does not change the gauge dependence of the fermion or boson propagator behavior.

    (a)

    (b)

    We next consider the Nambu phase. Eqs.(11) and (14) have nontrivial solutions whenB(p2)≠0. The original fermion acquires dynamical mass through the non-perturbative effect. We solve the coupled equations numerically for Eqs.(10) to (15) at several values ofξ.

    Starting withA(p2)≡1,B(p2)≡1, andΠ(q2)≡1, we iterate the three coupled equations until all three functions converge to a stable solution. The typical behavior of the three functionsA,B, andΠin the Nambu phase are plotted in Fig.3 in the rainbow approximation and Fig.4 by application of theBC1vertex. For a value ofξ, it is apparent that all three functions are almost constant in the low energy region.

    (a)

    (b)

    (c)

    Within a range of values ofξ, the infrared value ofA(p2) increases with the increase inξ. Correspondingly, the numerical results show a reversed trend for the infrared value of fermion self-energy and boson polarization withξin each truncated scheme for the DS equation. Nevertheless, the behavior ofA(p2) orΠ(q2) is independent ofξin the high energy region. However, compared with the rainbow approximation,B(p2), which is given beyond the rainbow approximation, appears to depend onξ. Certainly, for any value ofξ, a different truncated scheme has similar behavior but dissimilar numerical values for the three functions in the infrared region.

    (a)

    (b)

    (c)

    Comparing the two phases, we also find thatA(0)<1 in the Nambu phase corresponds to its infrared zero value in the Wigner phase, whileA(0) diverges in the Wigner phase whenΠ(0) reaches a finite value in this covariant gauge theory.

    3 Physical Phase

    The fermion condensate is defined trivially as

    (16)

    In principle, this physical value is independent of the gauge parameter[25-27]. Adopting the above Nambu phase results for the rainbow approximation, we obtain the fermion condensate values and plot them in Fig.5. We find that the value appears to depend on the gauge parameter consequently.

    Fig.5 Gauge dependence of the condensate in the rainbow approximation

    It is easily proved that the rainbow approximation destroys the Ward-Takahashi identity. However, although the value in this figure depends onξ, we see that this condensate is always larger than zero and we learn that the chiral symmetry is broken.

    On the other hand, the Wigner solution gives zero fermion condensate and the chiral symmetry is restored. For anyξ, the Nambu and Wigner solutions are obtained from the same DS equations. The solution that is realized in the real world should be determined. We should compare the effective pressurePbetween the two phases, and the physical one will correspond to the largerPvalue. The effective pressure is given by[28]

    (17)

    Since theΓ2is known only in the rainbow approximation andΓ2=0, we adopt the first term in the last equation to study the phase transition. To indicate the real phase, we define the order parameterΔ=PN-PW.

    It is found that with the increase inξ,Δdecreases and becomes less than 0 whenξreaches the valueξp=9.8(see Fig.6).

    4 Conclusion

    Based on the truncated DS equations applied to the fermion propagator, we have found solutions for both the fermion and boson propagators for several covariant gauges in the Nambu and Wigner phases. Numerical results show that the gauge parameter appears to affect the behavior of the fermion and boson propagators in the low energy region. Apart from the fermion self-energy, the other two functions are minimally affected in the high energy regions for both phases.

    Fig.6 Order parameter at different ξvalues

    In addition to the Landau gauge, the DS equations also provide the monotonic functions forA(p2) andΠ(q2) at several values ofξ. To the best of current knowledge, beyond the Landau gauge, the solutions for the fermion and boson propagators in the Wigner phase are presented in this paper for the first time. With the increase inξ, the infrared value ofAchanges from being zero to a divergent function, while the infrared value ofΠreduces to a constant that decreases withξbut does not completely diminish. We argue that there may be a value ofξfor which the infrared value ofAlies between zero and infinity. However, this value ofξhas not been found in the familiar gauge selected.

    In addition, the effective potential gives a different result around the chiral phase transition from the condensate, which implies that the two order parameters for the chiral phase transition might be self-inconsistent.

    [1]Appelquis T, Nash D, Wijewardhana L C R. Critical-behavior in (2+1)-dimensional QED[J].PhysicalReviewLetters, 1988, 60(25): 2575-2578.

    [2]Nash D. Higher-order corrections in (2+1)-dimensional QED[J].PhysicalReviewLetters, 1989, 62(26): 3024-3026.

    [3]Maris P. Influence of the full vertex and vacuum polarization on the fermion propagator in (2+1)-dimensional QED[J].PhysicalReviewD, 1996, 54(6): 4049-4058.

    [4]Burden C J, Roberts C D. Light-cone regular vertex in 3-dimensional quenched QED [J].PhysicalReviewD, 1991, 44(2): 540-550.

    [5]Pisarski R D. Chiral-symmetry breaking in 3-dimensional electrodynamics[J].PhysicalReviewD, 1984, 29(10): 2423-2426.

    [6]Appelquist T W, Bowick M, Karabali D, et al. Spontaneous chiral-symmetry breaking in 3-dimensional QED[J].PhysicalReviewD, 1986, 33(12): 3704-3713.

    [7]Atkinson D, Johnson P W, Maris P. Dynamic mass generation in 3-dimensional QED-improved vertex function[J].PhysicalReviewD, 1990, 42S(2): 602-609.

    [8]Curtis D C, Pennington M, Walsh D. Dynamics mass generation in QED3and the 1/Nexpansion[J].PhysicsLettersB, 1992, 295(3/4):313-319.

    [9]Kondo K, Nakatani H. Cutoff dependence of self-consistent solutions in unquenched QED3[J].ProgressofTheoreticalPhysics, 1992, 87(1):193-206.

    [10]Bashir A, Raya A. Landau-Khalatnikov-Fradkin transformations and the fermion propagator in quantum electrodynamics[J].PhysicalReviewD, 2002, 66(10):105005.

    [11]Bashir A. Non-perturbative fermion propagator for the massless quenched QED3[J].PhysicsLettersB, 2000, 491(3/4):280-284.

    [12]Liu G Z, Cheng G. Effect of gauge boson mass on chiral symmetry breaking in three-dimensional QED[J].PhysicalReviewD, 2003, 67(6), 065010.

    [13]Feng H T, Sun W M, Hu F, et al. The influence of the gauge boson mass on the critical number of the fermion flavors in QED(3)[J].InternationalJournalofModernPhysicsA, 2005, 20(13):2753-2762.

    [14]Burden C J, Praschifka J, Roberts C D. Photon polarization tensor and gauge dependence in 3-dimensional quantum electrodynamics[J].PhysicalReviewD, 1992, 46(6):2695-2702.

    [15]Maris P. Confinement and complex singularities in 3-dimensional QED[J].PhysicalReviewD, 1995, 52(10): 6087-6097.

    [16]Herbut I F, Seradjeh B H. Permanent confinement in the compact QED3with fermionic matter[J].PhysicalReviewLetters, 2003, 91(17):171601.

    [17]Burden C J, Praschifka J, Roberts C D. Photon polarization tensor and gauge dependence in 3-dimensional quantum electrodynamics[J].PhysicalReviewD, 1992, 46(6): 2695-2702.

    [18]Fischer C S, Alkofer R, Dahm T, et al. Dynamical chiral symmetry breaking in unquenched QED3[J].PhysicalReviewD, 2004, 70(7):073007.

    [19]Simmons E H. Useful gauges for studying dynamic fermion mass generation in arbitrary space-time dimension[J].PhysicalReviewD, 1990, 42(8): 2933-2935.

    [20]Kondo K I, Maris P. First-order phase-transition in 3-dimensional QFD with chern-simons term[J].PhysicalReviewLetters, 1995, 74(1):18-21.

    [21]Gusynin V P, Hams A H, Reenders M. (2+1)-dimensional QED with dynamically massive fermions in vacuum polarization[J].PhysicalReviewD, 1996, 53(4):2227-2235.

    [22]King J E. Transverse vertex and gauge technique in quantum electrodynamics[J].PhysicalReviewD, 1983, 27(8):1821-1829.

    [23]Curtis D C, Pennington M R. Truncating the Schwinger-Dyson equations: how multiplicative renormalizability and the ward identity restrict the 3-point vertex in QED[J].PhysicalReviewD, 1990, 42(12): 4165-4169.

    [24]Ball J S, Chiu T W. Analytic properties of the vertex function in gauge-theories.I [J].PhysicalReviewD, 1980, 22(10): 2542-2549.

    [25]Haymaker R W. Variational-methods for composite-operators[J].RivistadelNuovoCimento,1991, 14(8):1-89.

    [26]Burden C J, Roberts C D. Gauge covariance and the fermion-photon vertex in 3-dimensional and 4-dimensional, massless quantum electrodynamics[J].PhysicalReviewD, 1993, 47(12):5581-5588.

    [27]Stam K. Dynamical chiral symmetry-breaking[J].PhysicsLettersB, 1985, 152(3/4): 238-240.

    [28]Cornwall J M, Jackiw R, Tomboulis E. Effective action for composite operators[J].PhysicalReviewD, 1974, 10(8):2428-2445.

    三維QED中的動(dòng)力學(xué)手征對稱破缺

    周雨青

    (東南大學(xué)物理系, 南京 211189)

    為了研究非微擾理論中的傳播子行為,以及協(xié)變規(guī)范對其行為的影響,以常用的截?cái)喾桨赶碌腄yson-Schwinger方程為基礎(chǔ),采用數(shù)值聯(lián)立求解的方法研究了三維量子電動(dòng)力學(xué)(QED)中的費(fèi)米子和玻色子的行為,并獲得了一系列不同規(guī)范下費(fèi)米傳播子在Nambu和Wigner相中的自洽解.對這些數(shù)值解的分析表明,遠(yuǎn)離Landau規(guī)范的紅外區(qū)處,傳播子行為明顯不同于Landau規(guī)范中的行為.基于Nambu和Wigner相中的不同規(guī)范下的傳播子,進(jìn)一步對等效壓力差和費(fèi)米凝聚隨規(guī)范參數(shù)的變化做了比較,結(jié)果表明,采用CJT等效勢描述的相變與手征凝聚描述的手征相變兩者之間不完全自洽.

    傳播子; 協(xié)變規(guī)范; 三維QED; 等效壓力差; 費(fèi)米凝聚; 手征相變

    O572.24;O413.2

    Received 2014-06-21.

    Biography:Zhou Yuqing (1961—), male, doctor,professor,zhou-yuqing@263.net.

    s:The National Natural Science Foundation of China (No.10947127), the Science Foundation of Southeast University(No.11047005),

    :Zhou Yuqing.Dynamical chiral symmetry breaking in QED3[J].Journal of Southeast University (English Edition),2014,30(4):544-549.

    10.3969/j.issn.1003-7985.2014.04.024

    10.3969/j.issn.1003-7985.2014.04.024

    猜你喜歡
    費(fèi)米子費(fèi)米數(shù)值
    費(fèi)米能區(qū)重離子反應(yīng)中對稱能系數(shù)的提取
    用固定數(shù)值計(jì)算
    用旋轉(zhuǎn)引力場分辨中微子的費(fèi)米子類型
    數(shù)值大小比較“招招鮮”
    費(fèi)米氣體光晶格模型的漸近軌線
    費(fèi)米:假裝是司機(jī)
    “三重簡并費(fèi)米子”的特點(diǎn)和發(fā)現(xiàn)的意義
    巧妙的實(shí)驗(yàn)設(shè)計(jì)“捕獲”馬約拉納費(fèi)米子(三)
    ——記上海交大領(lǐng)銜的科研團(tuán)隊(duì)成功捕獲馬約拉納費(fèi)米子的重大成果
    基于Fluent的GTAW數(shù)值模擬
    焊接(2016年2期)2016-02-27 13:01:02
    梯狀光晶格中自旋軌道耦合的排斥費(fèi)米氣體
    在线观看66精品国产| 天天影视国产精品| 精品国产乱子伦一区二区三区| 精品久久蜜臀av无| 久久人妻熟女aⅴ| 一夜夜www| 在线天堂中文资源库| 亚洲av美国av| kizo精华| 黄色视频不卡| 亚洲av电影在线进入| 黄频高清免费视频| 亚洲七黄色美女视频| 免费高清在线观看日韩| 亚洲国产精品一区二区三区在线| 一区二区三区精品91| 午夜精品久久久久久毛片777| 一区在线观看完整版| 菩萨蛮人人尽说江南好唐韦庄| 丁香六月天网| 两个人免费观看高清视频| tube8黄色片| 12—13女人毛片做爰片一| 97在线人人人人妻| 欧美黑人精品巨大| 成年人免费黄色播放视频| 国产精品av久久久久免费| 亚洲一区二区三区欧美精品| 国产精品一区二区在线不卡| 免费在线观看影片大全网站| 90打野战视频偷拍视频| 国产单亲对白刺激| 97人妻天天添夜夜摸| 丁香欧美五月| 欧美在线一区亚洲| 人妻久久中文字幕网| 超碰成人久久| 另类亚洲欧美激情| 欧美亚洲 丝袜 人妻 在线| 男女高潮啪啪啪动态图| 激情视频va一区二区三区| 日韩欧美一区二区三区在线观看 | 人妻 亚洲 视频| 大型av网站在线播放| 欧美一级毛片孕妇| 欧美日韩精品网址| 1024香蕉在线观看| 国产精品偷伦视频观看了| av一本久久久久| av免费在线观看网站| 国产精品香港三级国产av潘金莲| 色精品久久人妻99蜜桃| 国产成人一区二区三区免费视频网站| 91精品国产国语对白视频| 国产精品久久久久久精品电影小说| 美女视频免费永久观看网站| 久久久国产精品麻豆| 日韩有码中文字幕| 一区二区三区国产精品乱码| 国产精品麻豆人妻色哟哟久久| 久久中文字幕一级| 少妇的丰满在线观看| 免费在线观看视频国产中文字幕亚洲| 精品视频人人做人人爽| 亚洲一区二区三区欧美精品| 亚洲精品av麻豆狂野| 欧美 日韩 精品 国产| 在线天堂中文资源库| 国产国语露脸激情在线看| 91精品国产国语对白视频| 韩国精品一区二区三区| 国产福利在线免费观看视频| 国产高清国产精品国产三级| 成人特级黄色片久久久久久久 | 精品午夜福利视频在线观看一区 | 亚洲人成77777在线视频| 亚洲国产av新网站| 国产老妇伦熟女老妇高清| 久久国产精品男人的天堂亚洲| 精品免费久久久久久久清纯 | 午夜激情av网站| 他把我摸到了高潮在线观看 | 亚洲 国产 在线| 亚洲av日韩精品久久久久久密| 一进一出抽搐动态| 热99国产精品久久久久久7| 男女无遮挡免费网站观看| 国产精品久久久久久人妻精品电影 | 大片免费播放器 马上看| 黑人巨大精品欧美一区二区蜜桃| 国产伦人伦偷精品视频| 国产精品欧美亚洲77777| 亚洲欧美精品综合一区二区三区| 十八禁网站免费在线| 日本一区二区免费在线视频| 国产精品熟女久久久久浪| 男女无遮挡免费网站观看| 亚洲国产欧美一区二区综合| 精品少妇内射三级| 精品亚洲成a人片在线观看| 国产亚洲精品久久久久5区| 大码成人一级视频| 亚洲熟女毛片儿| 99精品欧美一区二区三区四区| 最黄视频免费看| 色综合婷婷激情| 男女午夜视频在线观看| 这个男人来自地球电影免费观看| 真人做人爱边吃奶动态| 国产又爽黄色视频| 大香蕉久久成人网| 女人爽到高潮嗷嗷叫在线视频| tube8黄色片| 久久久久久久精品吃奶| 看免费av毛片| tube8黄色片| 久久久久久久久久久久大奶| 久久青草综合色| 91字幕亚洲| 亚洲性夜色夜夜综合| bbb黄色大片| 久久精品国产99精品国产亚洲性色 | 好男人电影高清在线观看| 午夜福利一区二区在线看| 国产伦理片在线播放av一区| 狠狠婷婷综合久久久久久88av| 香蕉国产在线看| 一级毛片电影观看| 一本大道久久a久久精品| 18禁观看日本| 免费在线观看完整版高清| 人成视频在线观看免费观看| 久久这里只有精品19| 看免费av毛片| 国产日韩欧美视频二区| 精品视频人人做人人爽| 国产有黄有色有爽视频| 视频区图区小说| svipshipincom国产片| 天堂俺去俺来也www色官网| 啦啦啦 在线观看视频| 99久久精品国产亚洲精品| www日本在线高清视频| 日韩欧美一区二区三区在线观看 | 久久久久久亚洲精品国产蜜桃av| 国产精品国产高清国产av | 日韩人妻精品一区2区三区| 极品人妻少妇av视频| 欧美日韩亚洲国产一区二区在线观看 | 国产日韩欧美视频二区| 精品一品国产午夜福利视频| 欧美日韩亚洲综合一区二区三区_| 免费在线观看黄色视频的| 正在播放国产对白刺激| 亚洲欧美日韩另类电影网站| 人妻一区二区av| 久久九九热精品免费| 黄色a级毛片大全视频| 中文亚洲av片在线观看爽 | 亚洲精品美女久久久久99蜜臀| 人人妻人人澡人人爽人人夜夜| 丝袜人妻中文字幕| 国产精品欧美亚洲77777| 老司机深夜福利视频在线观看| 嫩草影视91久久| 黄色视频不卡| 波多野结衣一区麻豆| 久久久久精品国产欧美久久久| 老司机亚洲免费影院| 十八禁高潮呻吟视频| av有码第一页| 久久香蕉激情| 国产国语露脸激情在线看| 国产高清videossex| 免费日韩欧美在线观看| 精品国产超薄肉色丝袜足j| 国产精品久久久人人做人人爽| 男女免费视频国产| 国产1区2区3区精品| 免费少妇av软件| 两性夫妻黄色片| 99九九在线精品视频| 在线永久观看黄色视频| 欧美日韩一级在线毛片| 亚洲专区国产一区二区| 91av网站免费观看| 日本av手机在线免费观看| 精品亚洲成国产av| 男人操女人黄网站| 黄色视频在线播放观看不卡| 极品教师在线免费播放| 日本av手机在线免费观看| 国产成人系列免费观看| bbb黄色大片| 亚洲色图av天堂| 久久久水蜜桃国产精品网| 一本—道久久a久久精品蜜桃钙片| 久热爱精品视频在线9| 久久精品人人爽人人爽视色| 伦理电影免费视频| 亚洲少妇的诱惑av| 欧美人与性动交α欧美精品济南到| 国产在视频线精品| 啦啦啦 在线观看视频| 一级片'在线观看视频| 999精品在线视频| 日本a在线网址| 国产在线精品亚洲第一网站| 国产高清激情床上av| 一进一出抽搐动态| 精品一区二区三区视频在线观看免费 | 精品少妇内射三级| 久久中文看片网| 十分钟在线观看高清视频www| 国产精品亚洲一级av第二区| 日本a在线网址| 免费在线观看日本一区| 欧美变态另类bdsm刘玥| 可以免费在线观看a视频的电影网站| 亚洲成人免费电影在线观看| cao死你这个sao货| 女人爽到高潮嗷嗷叫在线视频| 亚洲成人国产一区在线观看| 在线av久久热| 婷婷成人精品国产| 免费看十八禁软件| 色老头精品视频在线观看| 成年人免费黄色播放视频| 天天添夜夜摸| 欧美大码av| 国产亚洲精品第一综合不卡| 国产精品美女特级片免费视频播放器 | 黄色视频,在线免费观看| 欧美中文综合在线视频| 亚洲国产成人一精品久久久| 桃红色精品国产亚洲av| 99久久99久久久精品蜜桃| 午夜免费成人在线视频| 成人精品一区二区免费| 久久国产精品影院| 波多野结衣av一区二区av| 亚洲一码二码三码区别大吗| 久久99热这里只频精品6学生| 国产一区有黄有色的免费视频| 后天国语完整版免费观看| a级毛片黄视频| 90打野战视频偷拍视频| 亚洲色图综合在线观看| 男女床上黄色一级片免费看| 国产人伦9x9x在线观看| 欧美av亚洲av综合av国产av| 黄色片一级片一级黄色片| 黑人巨大精品欧美一区二区mp4| 国产男女超爽视频在线观看| 啦啦啦视频在线资源免费观看| 国产精品久久久人人做人人爽| 两人在一起打扑克的视频| 妹子高潮喷水视频| 汤姆久久久久久久影院中文字幕| 手机成人av网站| 久久久国产精品麻豆| 成人18禁高潮啪啪吃奶动态图| 精品亚洲成国产av| 久久这里只有精品19| 动漫黄色视频在线观看| 日韩大码丰满熟妇| a级毛片黄视频| 天天添夜夜摸| 丝袜美足系列| 美女高潮到喷水免费观看| 国产精品 欧美亚洲| 精品人妻1区二区| 男人操女人黄网站| 国产日韩欧美视频二区| 最近最新免费中文字幕在线| 曰老女人黄片| 免费女性裸体啪啪无遮挡网站| 中文字幕av电影在线播放| 欧美午夜高清在线| 亚洲国产中文字幕在线视频| 99re在线观看精品视频| 久久久久国产一级毛片高清牌| 欧美+亚洲+日韩+国产| 大香蕉久久成人网| 日韩一区二区三区影片| 一级,二级,三级黄色视频| 午夜福利影视在线免费观看| 天天添夜夜摸| netflix在线观看网站| 男女床上黄色一级片免费看| 黑人欧美特级aaaaaa片| 日韩欧美三级三区| 午夜久久久在线观看| 国产亚洲精品第一综合不卡| 久久久精品国产亚洲av高清涩受| 男人舔女人的私密视频| 国产av精品麻豆| 美女扒开内裤让男人捅视频| 激情在线观看视频在线高清 | 国产老妇伦熟女老妇高清| 少妇精品久久久久久久| 亚洲国产精品一区二区三区在线| 久久 成人 亚洲| 男女床上黄色一级片免费看| 精品第一国产精品| 一区福利在线观看| 美女扒开内裤让男人捅视频| 波多野结衣av一区二区av| 日本wwww免费看| 久久久精品区二区三区| 老鸭窝网址在线观看| 咕卡用的链子| 天天添夜夜摸| 丰满少妇做爰视频| www.999成人在线观看| 操美女的视频在线观看| 亚洲av成人一区二区三| 在线亚洲精品国产二区图片欧美| 日韩 欧美 亚洲 中文字幕| 亚洲av第一区精品v没综合| 久久精品国产99精品国产亚洲性色 | 日本欧美视频一区| 老司机午夜福利在线观看视频 | 久久久国产成人免费| 一区二区三区激情视频| 国产黄频视频在线观看| 久久久精品区二区三区| 欧美成狂野欧美在线观看| 在线观看免费视频日本深夜| 国产成人影院久久av| 国产精品久久久久久精品电影小说| 肉色欧美久久久久久久蜜桃| 老司机深夜福利视频在线观看| 国产av精品麻豆| 精品卡一卡二卡四卡免费| 国产亚洲欧美在线一区二区| 色综合婷婷激情| 日韩熟女老妇一区二区性免费视频| 午夜免费鲁丝| 亚洲精品国产精品久久久不卡| 黄色怎么调成土黄色| 国产伦理片在线播放av一区| 国产成人av激情在线播放| 欧美激情 高清一区二区三区| 正在播放国产对白刺激| 国产伦理片在线播放av一区| 人人妻人人添人人爽欧美一区卜| 日本精品一区二区三区蜜桃| 看免费av毛片| 日韩熟女老妇一区二区性免费视频| 国产av国产精品国产| 一二三四社区在线视频社区8| 久久人人爽av亚洲精品天堂| 老汉色av国产亚洲站长工具| 人人妻人人添人人爽欧美一区卜| 黄色视频不卡| 丁香六月欧美| 国产精品一区二区在线观看99| 男男h啪啪无遮挡| 日韩熟女老妇一区二区性免费视频| 窝窝影院91人妻| 亚洲熟妇熟女久久| 热re99久久国产66热| 90打野战视频偷拍视频| 精品久久久精品久久久| 狠狠狠狠99中文字幕| 午夜91福利影院| 午夜福利一区二区在线看| 91国产中文字幕| 黄色毛片三级朝国网站| 丝瓜视频免费看黄片| 高清黄色对白视频在线免费看| 法律面前人人平等表现在哪些方面| 丝袜在线中文字幕| 中文字幕人妻熟女乱码| 国产高清视频在线播放一区| 女警被强在线播放| 免费看a级黄色片| 桃花免费在线播放| 精品一区二区三卡| 久久久精品94久久精品| 深夜精品福利| 真人做人爱边吃奶动态| 丝袜美腿诱惑在线| 国产精品国产高清国产av | 老司机福利观看| 欧美在线黄色| av一本久久久久| 亚洲成人国产一区在线观看| 免费观看av网站的网址| 最近最新免费中文字幕在线| 黄网站色视频无遮挡免费观看| 久久精品亚洲av国产电影网| 老熟妇仑乱视频hdxx| 一进一出抽搐动态| 在线观看人妻少妇| 中文字幕色久视频| 一区二区日韩欧美中文字幕| 久久国产精品人妻蜜桃| 久久久水蜜桃国产精品网| 国产成人免费无遮挡视频| 亚洲精品国产精品久久久不卡| 久久 成人 亚洲| 亚洲av日韩精品久久久久久密| 亚洲av成人一区二区三| 久久国产精品大桥未久av| 国产成+人综合+亚洲专区| 18禁美女被吸乳视频| 国产精品国产高清国产av | 一级片'在线观看视频| 亚洲精品久久成人aⅴ小说| 免费av中文字幕在线| 欧美精品高潮呻吟av久久| 中文字幕色久视频| 精品亚洲乱码少妇综合久久| 一区二区三区精品91| 亚洲 欧美一区二区三区| 午夜免费成人在线视频| 老鸭窝网址在线观看| 精品卡一卡二卡四卡免费| 日本欧美视频一区| 超色免费av| 午夜福利影视在线免费观看| 国产主播在线观看一区二区| 热99re8久久精品国产| 亚洲精品在线美女| 欧美激情高清一区二区三区| 亚洲欧洲精品一区二区精品久久久| 黑人巨大精品欧美一区二区蜜桃| 制服诱惑二区| 国产老妇伦熟女老妇高清| 91精品三级在线观看| 国产成人一区二区三区免费视频网站| 免费在线观看视频国产中文字幕亚洲| 蜜桃在线观看..| 美女扒开内裤让男人捅视频| 久久av网站| 亚洲 欧美一区二区三区| 国产高清videossex| 免费在线观看影片大全网站| 男人操女人黄网站| 亚洲精品国产区一区二| 成人手机av| 久久久精品区二区三区| 亚洲一区二区三区欧美精品| 欧美人与性动交α欧美软件| 岛国毛片在线播放| 亚洲精品国产色婷婷电影| 国产在线一区二区三区精| 免费看十八禁软件| 国产成人精品久久二区二区免费| a级片在线免费高清观看视频| 精品久久蜜臀av无| 丝瓜视频免费看黄片| 99久久国产精品久久久| 建设人人有责人人尽责人人享有的| 俄罗斯特黄特色一大片| 黄色毛片三级朝国网站| 欧美黄色片欧美黄色片| 国产亚洲午夜精品一区二区久久| 搡老岳熟女国产| av片东京热男人的天堂| 国产欧美日韩一区二区三区在线| 亚洲av国产av综合av卡| 777久久人妻少妇嫩草av网站| 69av精品久久久久久 | 亚洲第一青青草原| 亚洲精品国产色婷婷电影| 国产xxxxx性猛交| 日本撒尿小便嘘嘘汇集6| 欧美亚洲日本最大视频资源| 香蕉丝袜av| 精品少妇久久久久久888优播| 丝瓜视频免费看黄片| 久久免费观看电影| 中文字幕精品免费在线观看视频| 国产精品二区激情视频| 自拍欧美九色日韩亚洲蝌蚪91| 精品亚洲乱码少妇综合久久| 别揉我奶头~嗯~啊~动态视频| 国产免费视频播放在线视频| 99re在线观看精品视频| 国产精品亚洲av一区麻豆| 777久久人妻少妇嫩草av网站| 岛国毛片在线播放| 国产99久久九九免费精品| 日本精品一区二区三区蜜桃| 大片免费播放器 马上看| 大型av网站在线播放| 激情视频va一区二区三区| 亚洲国产av影院在线观看| 亚洲av成人不卡在线观看播放网| 亚洲色图 男人天堂 中文字幕| 女人爽到高潮嗷嗷叫在线视频| 亚洲久久久国产精品| 色综合欧美亚洲国产小说| 99国产极品粉嫩在线观看| 亚洲人成电影观看| 一二三四在线观看免费中文在| 男女之事视频高清在线观看| 黄色毛片三级朝国网站| 精品少妇黑人巨大在线播放| 91老司机精品| 免费在线观看完整版高清| www.精华液| 两个人免费观看高清视频| 91大片在线观看| 亚洲人成77777在线视频| 国产精品99久久99久久久不卡| 99精品久久久久人妻精品| 国产精品久久久av美女十八| 黄色a级毛片大全视频| 欧美激情高清一区二区三区| 国产亚洲一区二区精品| 成人国语在线视频| 深夜精品福利| 欧美 亚洲 国产 日韩一| 成人手机av| 在线观看人妻少妇| 亚洲情色 制服丝袜| 久久中文字幕人妻熟女| 国产日韩欧美视频二区| 女人精品久久久久毛片| 免费在线观看完整版高清| av电影中文网址| 免费人妻精品一区二区三区视频| 91成人精品电影| 久久热在线av| 免费女性裸体啪啪无遮挡网站| 久久久精品区二区三区| 国产成人av教育| 新久久久久国产一级毛片| 国产区一区二久久| 欧美+亚洲+日韩+国产| 99热国产这里只有精品6| 亚洲伊人色综图| 国产欧美日韩综合在线一区二区| 纯流量卡能插随身wifi吗| 国产国语露脸激情在线看| 国产不卡一卡二| 丁香六月欧美| 色精品久久人妻99蜜桃| 十八禁高潮呻吟视频| 91大片在线观看| 国产有黄有色有爽视频| 超碰97精品在线观看| 久久久久国产一级毛片高清牌| 十八禁网站网址无遮挡| 激情在线观看视频在线高清 | 91老司机精品| 亚洲一码二码三码区别大吗| 国产欧美日韩一区二区三区在线| 国产精品 欧美亚洲| 90打野战视频偷拍视频| 欧美成人午夜精品| 桃花免费在线播放| 99re6热这里在线精品视频| www日本在线高清视频| 中文字幕人妻熟女乱码| 久热这里只有精品99| 国产成人精品久久二区二区免费| 欧美日本中文国产一区发布| 欧美激情久久久久久爽电影 | 日日爽夜夜爽网站| 一边摸一边抽搐一进一出视频| 久久久久久久精品吃奶| 国产精品1区2区在线观看. | 久热这里只有精品99| 黄色a级毛片大全视频| 国产精品自产拍在线观看55亚洲 | 国产日韩欧美亚洲二区| 午夜激情久久久久久久| avwww免费| 成人18禁高潮啪啪吃奶动态图| 女性生殖器流出的白浆| 色综合欧美亚洲国产小说| 久久亚洲精品不卡| 久久ye,这里只有精品| 成年人免费黄色播放视频| 午夜激情av网站| 性少妇av在线| 99国产精品免费福利视频| 老熟妇乱子伦视频在线观看| 久久久精品国产亚洲av高清涩受| 久久中文看片网| 757午夜福利合集在线观看| 黄色片一级片一级黄色片| 91麻豆精品激情在线观看国产 | 日日摸夜夜添夜夜添小说| 一边摸一边抽搐一进一小说 | 满18在线观看网站| 嫩草影视91久久| 欧美久久黑人一区二区| 纵有疾风起免费观看全集完整版| 日韩欧美国产一区二区入口| 国产一区二区 视频在线| 99国产精品一区二区蜜桃av | 叶爱在线成人免费视频播放| 久久婷婷成人综合色麻豆| 免费av中文字幕在线| 日韩欧美免费精品| 老司机靠b影院| 伦理电影免费视频| 亚洲欧美一区二区三区黑人| 自线自在国产av| 黄片播放在线免费| 男女下面插进去视频免费观看| 亚洲伊人色综图| 精品少妇久久久久久888优播| 最近最新免费中文字幕在线| 天天躁狠狠躁夜夜躁狠狠躁| 久久国产亚洲av麻豆专区| 这个男人来自地球电影免费观看| 丁香欧美五月| 亚洲国产欧美网|