• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    An automatic identification algorithm for freeway bottleneckbased on loop detector data

    2014-09-06 10:49:51WangChaonanLiWenquanTongXiaolongChenChen
    關(guān)鍵詞:占有率自動(dòng)識別瓶頸

    Wang Chaonan Li Wenquan Tong Xiaolong Chen Chen

    (School of Transportation, Southeast University, Nanjing 210096, China)

    ?

    An automatic identification algorithm for freeway bottleneckbased on loop detector data

    Wang Chaonan Li Wenquan Tong Xiaolong Chen Chen

    (School of Transportation, Southeast University, Nanjing 210096, China)

    A bottleneck automatic identification algorithm based on loop detector data is proposed. The proposed algorithm selects the critical flow rate as the trigger variable of the algorithm, which is calculated by the road conditions, the level of service and the proportion of trucks. The process of identification includes two parts. One is to identify the upstream of the bottleneck by comparing the distance between the current occupancy rate and the mean value of the occupancy rate and the variance of the occupancy rate. The other process is to identify the downstream of the bottleneck by calculating the difference of the upstream occupancy rate with that of the downstream. In addition, the algorithm evaluation standards, which are based on the time interval of the data, the detection rate and the false alarm rate, are discussed. The proposed algorithm is applied to detect the bottleneck locations in the Shanghai Inner Ring Viaduct Dabaishu-Guangzhong road section. The proposed method has a good performance in improving the accuracy and efficiency of bottleneck identification.

    bottleneck; loop detector data; occupancy rate; flow rate

    Typical bottleneck analysis methods involve congestion graphics, vehicle arrival curves and the traffic flow theory. The methods above are based on the loop detector data. They assume that traffic patterns can be determined by the functional relationship of traffic flow and occupancy. The data analysis methods include decision trees, statistical analysis and filtering. With the development of data collection and information processing technology, the fuzzy theory, expert evaluation, pattern recognition, and artificial intelligence techniques have become important methods in congestion automatic identification algorithms. ACI algorithms can be divided into discrete and continuous types[1-2]. The discrete method is based on the traffic parameter threshold. It is assumed that congestion occurs when a certain traffic parameter is greater than the threshold value. In 1997, with the vehicle arrival curves, Cassidy et al.[3]discussed the length of queues and waiting time in congestion. Based on the research findings of congestion, Bertini et al.[4]proposed an automatic bottleneck recognition algorithm in 2005, identifying and classifying bottlenecks with historical data, and taking speed as the indicator of a bottleneck. However, these algorithms have not analyzed the statistical features of a bottleneck in detail, which decrease the precision of identification algorithms. Besides, most congestion identification algorithms were about congestion points. The research target of bottleneck identification is to discover the congestion influence scope, including the upstream and downstream of bottleneck locations. Therefore, a traffic flow analysis with more integrity is necessary.

    In this research, based on loop detector data, the critical flow rate is calculated as the trigger variable, which is calculated by the road conditions, the level of service and the proportion of trucks. Occupancy is calculated as the identification parameters. In addition, algorithm evaluation standards are discussed.

    1 Description of the Algorithm

    In this algorithm, the critical flow rate is defined as the trigger variable, and it is calculated based on the road conditions, the level of service and the proportion of trucks. When the flow rate is greater than the critical value, the identification process can start[5-6].

    1.1 Trigger variable of the algorithm

    According to the traffic flow theory, when traffic demand exceeds road capacity, resulting in congestion, the flow rate decreases and congestion forms. Therefore, the flow rate can be used as the trigger variable of the algorithm. The critical flow rate is determined by the designed capacity and the level of service. User perceptions are variable at different time and in different environments. AASHTO design standards suggest that a good target level of service in an urban area is D, but in a rural area a good target level of service is C. Generally, when the level of service is C, average speeds begin to decline with increasing flow[7]. We define the situation, in which the level of service is C, as the trigger point. However, it is difficult for the bottleneck automatic identification system to calculate theV/Cratio. The trigger value should be obtained immediately. Therefore, the accumulative flow rate in 5 min as the trigger variable is chosen. Tab.1 lists the criticalV/Cratio based on the level of service and the design speed. The capacity should be multiplied by theV/Cratio when the level of service is C to obtain the trigger value.

    Tab.1 Critical V/Cratio based on LOS and FFS

    The influence of large vehicle on traffic flow is not considered when calculating the free flow speed. Therefore, the trigger value obtained from Tab.1 should be multiplied byfHV.

    1.2 Identification process

    There are two elementary values which need to be defined in the bottleneck automatic identification algorithm. One is the minimum value of the difference between the upstream and downstream occupancy rates. The other one is the minimum value of the upstream occupancy rate. To define the difference between the upstream and downstream occupancy, it must be ensured that the upstream is in a state of congestion, and the downstream is free flow[8-10].

    Before defining the critical value, we should analyze the historical data to obtain the difference between the upstream and downstream occupancy rates. Experiments show that there are some overlaps in the difference between them. As this algorithm also requires the upper occupancy rate greater than a certain critical value, it should be ensured that the critical value of the difference between the upstream and downstream occupancy rates is smaller than the occupancy rate when a bottleneck occurs.

    積累數(shù)學(xué)基本活動(dòng)經(jīng)驗(yàn)是一個(gè)長期的過程,需要我們在平時(shí)的教學(xué)中不斷為學(xué)生提供活動(dòng)的機(jī)會(huì),精心設(shè)計(jì)組織好每一個(gè)數(shù)學(xué)活動(dòng),使數(shù)學(xué)學(xué)習(xí)成為一個(gè)生動(dòng)活潑、富有創(chuàng)造意義的過程,促進(jìn)學(xué)生思維的發(fā)展。

    As the maximum upstream occupancy rate is affected by the road conditions, we use the distance between the current occupancy rate and the mean value of the occupancy rate fromts-1tots-6instead of the maximum upstream occupancy rate. The distance between the current occupancy rate and the mean value of the occupancy rate is equal to the current occupancy rate subtracting the mean value of occupancy rates fromts-1tots-6.

    Doi=O(i,ts)-E(Ots-1,…,Ots-6)

    (1)

    whereDoiis the distance between the current occupancy rate and the mean value of the occupancy rate fromts-1tots-6;O(i,ts) is the occupancy rate atts;E(Ots-1,…,Ots-6) is the mean value of the occupancy rate fromts-1tots-6.

    IfDoiis greater than the variance of the occupancy rate fromts-1tots-6, we assume that unitiis the upstream of the bottleneck.

    Doi=S(Ots-1,…,Ots-6)+α

    (2)

    whereS(Ots-1,…,Ots-6) is the variance of the occupancy rate fromts-1tots-6;αis the adjustment parameter.

    Based on the definition of a bottleneck, the downstream of the bottleneck is free flow, which means that there is a value difference between the upstream and downstream occupancy. Experiments show that regional differences have an impact on the critical value of the difference between the upstream and downstream occupancy. Data analysis is a common method to determine the critical value of difference, but the analysis process is very complicated. In order to make the parameter in this algorithm universal, we use an adjustment parameter. To speed up the process of bottleneck identification, we also use the mean value of occupancy rate fromts-1tots-6.

    The difference between the upstream and downstream occupancy rates equals the current occupancy rate at pointI, which subtracts the downstream occupancy rate. It should be noted that the value ofnin the following formula requires several further tests.

    P(ts)=O(i,ts)-O(i+n,ts)

    (3)

    whereP(ts) is the difference between the upstream occupancy rate and that of the downstream;O(i,ts) is the downstream occupancy rate at pointi;O(i+n,ts) is the occupancy rate,n=1, 2,…

    The critical value of difference after adjustment equals the difference between the upstream occupancy and the downstream occupancy, divided by the mean value of the occupancy rate fromts-1tots-6.

    Pr(ts)=P(ts)/E(ots-1,…,ots-6)

    (4)

    wherePr(ts) is the critical value of difference after adjustment;E(ots-1,…,ots-6) represents the mean value of the occupancy rate fromts-1tots-6.

    The parameteriin Eq.(3) is defined as the section of pavement units when identifying the location of the bottleneck. The value ofiequals the longitudinal space of loop detectors, which is 20 or 50 m on the expressway.

    The parametertis defined as the data aggregation level. The original loop detector data is collected every 20 s, which is highly volatile. Different data aggregation levels can affect the promptness and accuracy of the algorithm. So the original loop detector data should be facilitated aggregation before being used in the algorithm. Details will be discussed in the following section.

    Fig.1 shows the process of bottleneck automatic identification.

    Fig.1 The process of bottleneck automatic identification

    As shown in Fig.1, the first step of the bottleneck identification algorithm is to divide the road section into several units and to determine data aggregation level. Then, the critical rate of flow is calculated. After preprocessing,f(i,t) is compared with the critical rate. Iff(i,t) is greater, the process of bottleneck identification can start. The process of identification includes two parts. One is to identify the upstream of the bottleneck by comparing the distance between the current occupancy rate and the mean value of occupancy rateDoiwith the variance of the occupancy rate. IfDoiis greater than the variance of the occupancy rate fromts-1tots-6, assume that unitiis the upstream of bottleneck. The other is to identify the downstream of bottleneck by calculatingPr(ts). IfPr(ts) is greater than 0.2, assume that uniti+nis the downstream of bottleneck.

    1.3 Evaluation model

    The accuracy of this automatic recognition algorithm of the bottleneck should be determined by three aspects. The first aspect is the percentage of the bottleneck points that can be recognized at all the bottleneck points; the second is the percentage of “fake bottleneck points” in the bottleneck points that are recognized; and the third is the time interval of the date which can also influence the sensitivity of the algorithm. In practice, regional differences make it difficult to balance the failure of recognizing the real bottleneck points and the mistaken recognition of “fake bottleneck points”. So the optimal choice of parameters depends on the user’s choice of a composite score function that takes the relative costs of missed bottlenecks and false alarms into account.

    The percentage of the bottleneck points recognized equals the number of the bottleneck points which have been recognized divided by the number of the total bottleneck points. While the percentage of “fake bottleneck points” equals the number of the fake bottleneck points which have been recognized, divided by the number of the total bottleneck points which have also been recognized.

    (5)

    whereTis the percentage of the bottleneck points recognized;tbis the number of the bottleneck points which have been recognized;nbrepresents the number of the whole bottleneck points.

    (6)

    whereFmeans the percentage of “fake bottleneck points”;fbis the number of the fake bottleneck points which have been mistaken;ibis the number of the total bottleneck points which have been recognized.

    The accuracy of this automatic recognition algorithm of bottleneck can be calculated as

    S=β(αTT-αFF)

    (7)

    whereSis the accuracy of this automatic recognition algorithm of the bottleneck;βis the correction coefficient determined by the time interval;αTis the penalty weight of the success rate;αFis the penalty weight of the false-alarm rate.

    2 Actual Analysis

    One-week (from Sept 21 to Sept 27, 2012) loop detector data on the Shanghai Inner Ring Viaduct (5:00—11:00, 14:00—20:00) were obtained from the Shanghai Transportation Operation Department. The research scope starts from Dabaishu and runs to Guangzhong Road.

    The first step of the bottleneck identification algorithm is to divide the road sections into several units and determine the data aggregation level. In this research, the number of road units is determined by the spacing of loop detectors. If the loop detector data is aggregated into 1-min data, the algorithm should be restricted by some additional conditions. For example, a sustained bottleneck filter is added to smooth the results of the algorithm. This filter discards false positives that are isolated in the time dimension from other detections at the same location.

    It can be seen from Fig.1 that when loop detector data is aggregated into 3-min data sets, the upstream occupancy remains greater than the downstream occupancy but the difference in values fluctuates greatly. To obtain higher recognition rate, the difference between the upstream and downstream occupancy should be set to be small, which will increase the possibility of false alarm bottlenecks. Then we facilitate further aggregation into 5-min and 10-min data sets. As Figs.2(b) and (c) show, the occupancy rates in bottlenecks (Oi) remain stable.

    (a)

    (b)

    (c)

    Based on the above analysis, we conclude that the smaller time interval leads to higher sensitivity. Experiments show that 5-min aggregation data fits the algorithm best.

    In Tab.1, criticalV/Cratio is 0.83 when the level of service is C and the design speed is 80 km/h. Then,fHVis 0.9. The design capacity of the Shanghai Inner Ring Viaduct is 1 800 (pcu·h-1)/lane. Thus, the final critical flow rate in 5 min is 108 pcu.

    Then we input the 5-min data sets to Matlab. When the flow rate is greater than 108 pcu, the algorithm starts. IfDoiis greater than the variance of the occupancy rate fromts-1tots-6, assume that unitiis the upstream of the bottleneck. IfPr(ts) is greater than 0.2, assume that uniti+nis the downstream of the bottleneck.

    The session is identified by Matlab in a space-time distribution airstrip, as shown in Fig.3.

    Fig.3 Bottleneck identified with the algorithm

    Fig.3 presents the bottleneck locations identified which are marked with the triangles. In this analysis, three severe bottleneck locations were found.

    The point where No.56 loop detector is located becomes congested at 6:55, giving rise to congestion and vehicle delays between the No.55 loop detector and No.56 loop detector. The occupancy rate starts to decrease at 9:20, which means that the congestion has started to be relieved. The road section between the No.56 loop detector and No.58 loop detector is free flow between 6:00 and 6:35. Then the occupancy rate begins to increase and the point where the No.58 loop detector is located becomes congested at 7:10. The occupancy rate begins to decrease at 8:40. Finally, the road section has free flow at 9:45.

    3 Evaluation

    In section 2, we analyze the distribution of the bottleneck in time and space through identifying bottleneck locations and their activation and deactivation periods. On the other hand, we are informed of the real distribution of bottlenecks through video data. Based on this, the accuracy of the proposed algorithm is confirmed. The evaluation consists of a series of indices, including the detection rateTand the false alarm rateF.

    It can be seen from Tab.2 that the proposed algorithm has a reasonable detection performance compared to other methods. Otherwise, the percentage of fake bottleneck points is 0.1. The critical flow rate and the occupancy threshold value are decreased to increaseT. The parameter values can be optimized to decreaseFin application.

    Tab.2 Evaluation results of the proposed algorithm

    The proposed algorithm also outperforms previous cumulative curve methods in terms of precision and identification efficiency. In the cumulative curve method, each identification process is subject to interference by earlier data. In the proposed algorithm, the identifying process is only determined by the current data.

    4 Conclusion

    1) The statistical analysis of loop detector data shows that the flow rate and occupancy are more reliable parameters than speed for bottleneck identification, excluding affection by speed limits.

    2) Loop detector data should be aggregated before the identification process. Experiments show that a 5-min aggregation data fits the algorithm best.

    3) A bottleneck identification algorithm based on the flow rate and occupancy is proposed. The proposed algorithm includes the trigger variable, the identification process and the evaluation model. The algorithm reduces the influence of road conditions and data error by parameter optimization. The results show that the proposed algorithm has a good performance in improving the accuracy of bottleneck identification.

    4) Although the results are encouraging, a number of extensions to the algorithm need to be studied. Further research should be carried out to validate this algorithm on other types of roads. Note also that the original loop detectors data should be aggregated before analysis and that we need toseek a better method of data aggregation to increase the speed of the algorithm.

    [1]Chung K, Rudjanakanoknad J, Cassidy M J. Relation between traffic density and capacity drop at three freeway bottlenecks[J].TransportationResearchPartB:Methodological, 2007, 41(1): 82-95.

    [2]Banks J H. Review of empirical research on congested freeway flow[J].TransportationResearchRecord, 2002, 1802: 225-232.

    [3]Cassidy M J, Windover J R. Methodology for assessing dynamics of freeway traffic flow[J].TransportationResearchRecord, 1995(1484): 73-79.

    [4]Bertini R L, Myton A. Using PeMS data to empirically diagnose freeway bottleneck locations in Orange County, California[J].TransportationResearchRecord, 1925, 2005: 48-57.

    [5]Shoraka M, Puan O C. Review of evaluating existing capacity of weaving segments[J].InternationalJournalofCivilandStructuralEngineering, 2010, 1(3): 683-694.

    [6]Coifman B, Mishalani R, Wang C, et al. Impact of lane-change maneuvers on congested freeway segment delays: pilot study [J].TransportationResearchRecord, 2006, 1965: 152-159.

    [7]Cassidy M J, Mauch M. An observed traffic pattern in long freeway queues[J].TransportationResearchPartA:PolicyandPractice, 2001, 35(2): 143-156.

    [8]Kumar R, Wolenetz M, Agarwalla B, et al. DFuse:a framework for distributed data fusion[C]//Proceedingsofthe1stInternationalConferenceonEmbeddedNetworkedSensorSystems. Los Angeles, CA, USA, 2003:114-125.

    [9]Newell G F. A simplified car-following theory: a lower order model[J].TransportationResearchPartB:Methodological, 2002, 36(3): 195-205.

    [10]Cassidy M J. Bivariate relations in nearly stationary highway traffic[J].TransportationResearchPartB:Methodological,1998, 32(1): 49-59.

    基于線圈數(shù)據(jù)的瓶頸點(diǎn)自動(dòng)識別算法

    王超楠 李文權(quán) 童小龍 陳 晨

    (東南大學(xué)交通學(xué)院, 南京 210096)

    提出了一種基于線圈數(shù)據(jù)的瓶頸點(diǎn)自動(dòng)識別算法.算法以臨界流量作為算法的觸發(fā)變量,根據(jù)道路條件、服務(wù)水平和大型車比例計(jì)算臨界流量.算法的識別程序包括2部分:首先通過計(jì)算當(dāng)前占有率與前時(shí)刻占有率的相對差值來判定瓶頸點(diǎn)上游位置;然后通過計(jì)算上游占有率與下游占有率的相對差值確定瓶頸點(diǎn)下游的位置.此外,提出了基于數(shù)據(jù)集計(jì)周期、瓶頸點(diǎn)識別率和誤判率的算法性能評價(jià)方法.利用上海市內(nèi)環(huán)高架大柏樹-廣中路段的線圈數(shù)據(jù)進(jìn)行試驗(yàn),結(jié)果表明,瓶頸點(diǎn)自動(dòng)識別算法在準(zhǔn)確率和效率上有顯著提高.

    瓶頸點(diǎn);線圈數(shù)據(jù);占有率;流量

    U491.2

    Received 2014-02-22.

    Biographies:Wang Chaonan (1990—), female, graduate; Li Wenquan(corresponding author), male, doctor, professor, wenqli@seu.edu.cn.

    :Wang Chaonan, Li Wenquan, Tong Xiaolong, et al. An automatic identification algorithm for freeway bottleneck based on loop detector data[J].Journal of Southeast University (English Edition),2014,30(4):495-499.

    10.3969/j.issn.1003-7985.2014.04.016

    10.3969/j.issn.1003-7985.2014.04.016

    猜你喜歡
    占有率自動(dòng)識別瓶頸
    數(shù)據(jù)參考
    自動(dòng)識別系統(tǒng)
    特別健康(2018年3期)2018-07-04 00:40:18
    微軟領(lǐng)跑PC操作系統(tǒng)市場 Win10占有率突破25%
    突破霧霾治理的瓶頸
    金屬垃圾自動(dòng)識別回收箱
    基于IEC61850的配網(wǎng)終端自動(dòng)識別技術(shù)
    電測與儀表(2016年6期)2016-04-11 12:06:38
    突破瓶頸 實(shí)現(xiàn)多贏
    滁州市中小學(xué)田徑場地現(xiàn)狀調(diào)查與分析
    9月服裝銷售疲軟
    中國服飾(2014年11期)2015-04-17 06:48:50
    如何渡過初創(chuàng)瓶頸期
    香蕉久久夜色| 怎么达到女性高潮| 午夜激情欧美在线| 午夜福利视频1000在线观看| 男女视频在线观看网站免费| 少妇裸体淫交视频免费看高清| 免费电影在线观看免费观看| 一进一出好大好爽视频| www.色视频.com| 亚洲内射少妇av| 国产精品日韩av在线免费观看| 在线观看美女被高潮喷水网站 | 最近在线观看免费完整版| 叶爱在线成人免费视频播放| 高清日韩中文字幕在线| 亚洲激情在线av| 国产国拍精品亚洲av在线观看 | 国产日本99.免费观看| 最新在线观看一区二区三区| 午夜激情福利司机影院| 美女 人体艺术 gogo| 国产精品亚洲av一区麻豆| 亚洲国产中文字幕在线视频| 精品一区二区三区av网在线观看| 免费av观看视频| 国产精品国产高清国产av| 亚洲精品在线美女| 国产野战对白在线观看| 欧美bdsm另类| 美女高潮喷水抽搐中文字幕| 最近视频中文字幕2019在线8| 男女视频在线观看网站免费| 亚洲人与动物交配视频| 亚洲av中文字字幕乱码综合| 亚洲精品一区av在线观看| 女生性感内裤真人,穿戴方法视频| 男人和女人高潮做爰伦理| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 免费av不卡在线播放| av欧美777| 亚洲欧美日韩卡通动漫| 久久精品国产99精品国产亚洲性色| 亚洲午夜理论影院| 国产一区在线观看成人免费| a在线观看视频网站| 亚洲天堂国产精品一区在线| 成人av一区二区三区在线看| 亚洲国产欧美人成| 美女高潮的动态| 韩国av一区二区三区四区| 亚洲 国产 在线| 国产一区二区激情短视频| 在线观看日韩欧美| 欧美乱码精品一区二区三区| 搡老岳熟女国产| 亚洲七黄色美女视频| 性欧美人与动物交配| 亚洲国产日韩欧美精品在线观看 | 欧美日韩亚洲国产一区二区在线观看| 99视频精品全部免费 在线| www.色视频.com| 一边摸一边抽搐一进一小说| 国产探花在线观看一区二区| 国产av在哪里看| 俄罗斯特黄特色一大片| 日本撒尿小便嘘嘘汇集6| 亚洲成av人片在线播放无| 欧美又色又爽又黄视频| 观看美女的网站| 亚洲精品456在线播放app | 亚洲中文日韩欧美视频| 搡老岳熟女国产| 岛国在线免费视频观看| 欧美另类亚洲清纯唯美| 免费av不卡在线播放| 国产欧美日韩一区二区三| 国产成人影院久久av| 久久国产精品人妻蜜桃| 精品电影一区二区在线| 日韩欧美免费精品| 亚洲avbb在线观看| 动漫黄色视频在线观看| 精品久久久久久久毛片微露脸| 免费在线观看亚洲国产| www日本在线高清视频| av国产免费在线观看| 亚洲av熟女| 亚洲国产中文字幕在线视频| 亚洲中文字幕一区二区三区有码在线看| 国产精品一区二区三区四区久久| 在线观看日韩欧美| 亚洲va日本ⅴa欧美va伊人久久| av国产免费在线观看| 亚洲国产精品成人综合色| 国产成人啪精品午夜网站| 免费av不卡在线播放| 美女黄网站色视频| 亚洲欧美激情综合另类| 99久久九九国产精品国产免费| 搡女人真爽免费视频火全软件 | 亚洲欧美日韩东京热| 3wmmmm亚洲av在线观看| 在线观看午夜福利视频| 国产激情欧美一区二区| 欧美又色又爽又黄视频| 亚洲欧美日韩卡通动漫| 国产成人av激情在线播放| 99久久久亚洲精品蜜臀av| 少妇的逼好多水| 久99久视频精品免费| 亚洲午夜理论影院| 国产主播在线观看一区二区| 午夜精品久久久久久毛片777| 国产欧美日韩精品一区二区| 最好的美女福利视频网| www.www免费av| 久久久久久久亚洲中文字幕 | 亚洲内射少妇av| 热99re8久久精品国产| 欧美高清成人免费视频www| 色在线成人网| 国产精品久久视频播放| 日本一本二区三区精品| 波多野结衣高清无吗| 国产精品自产拍在线观看55亚洲| 欧美极品一区二区三区四区| 小说图片视频综合网站| 亚洲精品国产精品久久久不卡| 在线免费观看不下载黄p国产 | 国产av麻豆久久久久久久| 午夜福利高清视频| 国产黄色小视频在线观看| 国产精品久久久久久久久免 | 身体一侧抽搐| 黄色视频,在线免费观看| 亚洲国产欧美人成| 亚洲不卡免费看| 女同久久另类99精品国产91| 亚洲av日韩精品久久久久久密| 国产视频内射| 黄色日韩在线| 成年女人永久免费观看视频| 国产精品久久电影中文字幕| 亚洲国产高清在线一区二区三| 亚洲av成人av| 首页视频小说图片口味搜索| 亚洲欧美日韩东京热| 国产高清激情床上av| 午夜老司机福利剧场| 怎么达到女性高潮| 少妇人妻一区二区三区视频| 日韩高清综合在线| 波多野结衣巨乳人妻| 女人高潮潮喷娇喘18禁视频| 日韩av在线大香蕉| 国内精品久久久久精免费| 亚洲av成人不卡在线观看播放网| 欧美成人a在线观看| 欧美国产日韩亚洲一区| 日韩人妻高清精品专区| 天天躁日日操中文字幕| 国产激情偷乱视频一区二区| 丁香欧美五月| 午夜精品在线福利| 搞女人的毛片| 五月玫瑰六月丁香| 久久久国产成人精品二区| 国产精品99久久99久久久不卡| 久久中文看片网| 亚洲欧美日韩高清专用| 搞女人的毛片| 亚洲熟妇中文字幕五十中出| 老司机午夜福利在线观看视频| 又紧又爽又黄一区二区| 国产一区二区亚洲精品在线观看| 午夜福利成人在线免费观看| 中文亚洲av片在线观看爽| 国产一区二区激情短视频| 美女高潮的动态| 国产精品98久久久久久宅男小说| 欧美日韩中文字幕国产精品一区二区三区| 亚洲avbb在线观看| 日韩精品青青久久久久久| 69人妻影院| 国产又黄又爽又无遮挡在线| 一进一出抽搐gif免费好疼| 天天添夜夜摸| 最近最新中文字幕大全电影3| 久久久久久人人人人人| 免费人成视频x8x8入口观看| 成人精品一区二区免费| 精品国产美女av久久久久小说| 久9热在线精品视频| 一本综合久久免费| 亚洲av成人av| 国产精品久久电影中文字幕| 亚洲av成人不卡在线观看播放网| 十八禁人妻一区二区| 一区二区三区国产精品乱码| 18禁国产床啪视频网站| 性欧美人与动物交配| 精品不卡国产一区二区三区| 最近视频中文字幕2019在线8| 亚洲久久久久久中文字幕| 精品国产超薄肉色丝袜足j| a级毛片a级免费在线| 亚洲av电影不卡..在线观看| 久久精品91蜜桃| 噜噜噜噜噜久久久久久91| 国产精品久久久久久久久免 | 午夜福利在线在线| 免费人成视频x8x8入口观看| 国产亚洲精品一区二区www| 国产私拍福利视频在线观看| 欧美中文日本在线观看视频| 日韩欧美 国产精品| 91在线精品国自产拍蜜月 | 国产精品女同一区二区软件 | 两个人视频免费观看高清| 亚洲欧美日韩高清专用| 91av网一区二区| 狠狠狠狠99中文字幕| 亚洲成a人片在线一区二区| 免费在线观看日本一区| 亚洲成人久久性| 综合色av麻豆| 国产成人av教育| 免费在线观看日本一区| 国产精品久久久久久久电影 | 99国产精品一区二区蜜桃av| 最新在线观看一区二区三区| 人人妻人人看人人澡| 中文字幕av成人在线电影| 国产一区二区亚洲精品在线观看| 成人av在线播放网站| 亚洲在线观看片| 亚洲中文字幕日韩| 美女黄网站色视频| a在线观看视频网站| 一本精品99久久精品77| 免费av不卡在线播放| 国产精品av视频在线免费观看| 欧美xxxx黑人xx丫x性爽| 国产高清videossex| 熟女电影av网| 国产一区二区在线av高清观看| 欧美一级毛片孕妇| 好男人电影高清在线观看| 男女视频在线观看网站免费| 成人永久免费在线观看视频| 久久精品综合一区二区三区| 最新美女视频免费是黄的| 欧美日本亚洲视频在线播放| 欧美日韩一级在线毛片| 日本成人三级电影网站| 成人午夜高清在线视频| 免费av观看视频| 国产精品,欧美在线| 欧美3d第一页| ponron亚洲| 丝袜美腿在线中文| 成人永久免费在线观看视频| 欧美日韩中文字幕国产精品一区二区三区| 男女那种视频在线观看| 欧美在线黄色| 久久精品91无色码中文字幕| 成人欧美大片| 高清日韩中文字幕在线| 国产真实乱freesex| 人人妻人人看人人澡| 国产91精品成人一区二区三区| 国产97色在线日韩免费| 日韩免费av在线播放| 精品久久久久久久末码| www日本在线高清视频| 久久精品综合一区二区三区| 夜夜躁狠狠躁天天躁| 亚洲精品成人久久久久久| 别揉我奶头~嗯~啊~动态视频| 成年版毛片免费区| 少妇裸体淫交视频免费看高清| 啦啦啦观看免费观看视频高清| www日本黄色视频网| 婷婷亚洲欧美| 国产精品日韩av在线免费观看| 高清在线国产一区| 精品久久久久久,| 午夜精品在线福利| 日韩中文字幕欧美一区二区| 色精品久久人妻99蜜桃| 欧美不卡视频在线免费观看| 免费看美女性在线毛片视频| 夜夜躁狠狠躁天天躁| 国内揄拍国产精品人妻在线| 老司机午夜福利在线观看视频| ponron亚洲| 高清毛片免费观看视频网站| 国产精品1区2区在线观看.| 免费看美女性在线毛片视频| 色综合婷婷激情| 亚洲av免费在线观看| 午夜福利成人在线免费观看| 少妇人妻一区二区三区视频| xxxwww97欧美| 日韩欧美国产一区二区入口| 中文字幕精品亚洲无线码一区| 夜夜看夜夜爽夜夜摸| 99国产精品一区二区蜜桃av| 99国产精品一区二区三区| 亚洲熟妇熟女久久| 亚洲人成网站高清观看| 国产91精品成人一区二区三区| 亚洲av不卡在线观看| 日韩欧美国产一区二区入口| x7x7x7水蜜桃| 国内少妇人妻偷人精品xxx网站| 一边摸一边抽搐一进一小说| 黄色日韩在线| 啪啪无遮挡十八禁网站| 免费看光身美女| 国产精品三级大全| 老师上课跳d突然被开到最大视频 久久午夜综合久久蜜桃 | 国产伦精品一区二区三区视频9 | 免费看a级黄色片| 麻豆国产av国片精品| 女同久久另类99精品国产91| 最近最新中文字幕大全免费视频| 久久精品国产亚洲av涩爱 | 国产美女午夜福利| 欧美一区二区精品小视频在线| 国模一区二区三区四区视频| 亚洲精品一卡2卡三卡4卡5卡| 51午夜福利影视在线观看| 一级毛片高清免费大全| 99热只有精品国产| 观看免费一级毛片| 一进一出好大好爽视频| 欧美另类亚洲清纯唯美| 午夜福利欧美成人| 老司机福利观看| 国产成人系列免费观看| 亚洲第一欧美日韩一区二区三区| 欧美日本亚洲视频在线播放| 精品无人区乱码1区二区| 12—13女人毛片做爰片一| 99riav亚洲国产免费| 成人国产综合亚洲| 丝袜美腿在线中文| 精品福利观看| 亚洲黑人精品在线| 久久久久国产精品人妻aⅴ院| av在线天堂中文字幕| 可以在线观看毛片的网站| www.999成人在线观看| 午夜久久久久精精品| av欧美777| 成熟少妇高潮喷水视频| 久久精品国产亚洲av香蕉五月| 久久草成人影院| 国产av在哪里看| 一进一出抽搐动态| 在线观看av片永久免费下载| 狂野欧美白嫩少妇大欣赏| 身体一侧抽搐| 成人av在线播放网站| 成人av一区二区三区在线看| 操出白浆在线播放| 伊人久久大香线蕉亚洲五| 99精品久久久久人妻精品| 国内精品美女久久久久久| 久久午夜亚洲精品久久| 成年女人看的毛片在线观看| 亚洲av免费高清在线观看| 成人特级黄色片久久久久久久| 午夜福利在线观看吧| 欧美日韩精品网址| 久久亚洲真实| 国产精品亚洲一级av第二区| 一本一本综合久久| 免费在线观看影片大全网站| 亚洲国产色片| 国产乱人视频| 精品久久久久久久末码| 在线观看舔阴道视频| 国产99白浆流出| 天天一区二区日本电影三级| 97人妻精品一区二区三区麻豆| 国产精品久久视频播放| 99热精品在线国产| 久久国产乱子伦精品免费另类| 欧美在线一区亚洲| 麻豆一二三区av精品| 精品国产三级普通话版| bbb黄色大片| 免费av不卡在线播放| 国产亚洲欧美在线一区二区| 蜜桃久久精品国产亚洲av| ponron亚洲| 亚洲五月天丁香| 午夜日韩欧美国产| 日韩欧美一区二区三区在线观看| 99在线视频只有这里精品首页| 亚洲国产精品合色在线| 国产国拍精品亚洲av在线观看 | 免费av观看视频| 国产私拍福利视频在线观看| 首页视频小说图片口味搜索| 欧美三级亚洲精品| 欧美日韩乱码在线| 日韩大尺度精品在线看网址| 国产一区二区在线观看日韩 | 亚洲国产日韩欧美精品在线观看 | 亚洲成av人片在线播放无| 乱人视频在线观看| 亚洲最大成人中文| 亚洲精品久久国产高清桃花| 夜夜看夜夜爽夜夜摸| 免费观看的影片在线观看| 999久久久精品免费观看国产| 欧美成狂野欧美在线观看| 精品一区二区三区视频在线观看免费| 国产淫片久久久久久久久 | 国产乱人伦免费视频| 综合色av麻豆| 国产成人啪精品午夜网站| 悠悠久久av| 狠狠狠狠99中文字幕| 夜夜躁狠狠躁天天躁| 午夜福利在线在线| 日韩高清综合在线| 国产成+人综合+亚洲专区| 亚洲精品色激情综合| 国产69精品久久久久777片| 欧美三级亚洲精品| 一夜夜www| 日日摸夜夜添夜夜添小说| 精品国产三级普通话版| 免费在线观看亚洲国产| 国产极品精品免费视频能看的| 两个人视频免费观看高清| 中文字幕av在线有码专区| 国产精品一及| 狂野欧美激情性xxxx| 精品电影一区二区在线| 午夜免费激情av| 岛国在线观看网站| 欧美黑人欧美精品刺激| 最新在线观看一区二区三区| 国产精品久久久久久亚洲av鲁大| 99精品久久久久人妻精品| 亚洲 欧美 日韩 在线 免费| 99riav亚洲国产免费| 欧美区成人在线视频| 母亲3免费完整高清在线观看| 国产亚洲精品av在线| 久久久久久久午夜电影| 亚洲在线观看片| 免费av毛片视频| 亚洲av不卡在线观看| 色在线成人网| 国内精品久久久久久久电影| 午夜福利高清视频| 精品欧美国产一区二区三| 九九在线视频观看精品| 母亲3免费完整高清在线观看| 老司机深夜福利视频在线观看| 欧美一区二区国产精品久久精品| 亚洲在线观看片| 久久久久久久久久黄片| 日本在线视频免费播放| 一级a爱片免费观看的视频| 非洲黑人性xxxx精品又粗又长| 亚洲专区中文字幕在线| 欧美色视频一区免费| 婷婷精品国产亚洲av| 国产高清有码在线观看视频| 亚洲无线观看免费| 国产一区二区在线av高清观看| 日韩大尺度精品在线看网址| 18禁国产床啪视频网站| 在线播放国产精品三级| 午夜a级毛片| 欧美另类亚洲清纯唯美| 欧美bdsm另类| 中出人妻视频一区二区| 色在线成人网| av片东京热男人的天堂| av中文乱码字幕在线| 一级黄片播放器| 欧美日韩黄片免| 欧美成人一区二区免费高清观看| 欧美日韩精品网址| 色播亚洲综合网| 亚洲一区二区三区不卡视频| 长腿黑丝高跟| 国产精品一区二区免费欧美| 九九久久精品国产亚洲av麻豆| 最新在线观看一区二区三区| 国产爱豆传媒在线观看| 给我免费播放毛片高清在线观看| 一个人看的www免费观看视频| 最近视频中文字幕2019在线8| 国内精品久久久久精免费| 色综合亚洲欧美另类图片| 亚洲av不卡在线观看| 日韩 欧美 亚洲 中文字幕| 亚洲人与动物交配视频| 国产一区二区三区视频了| 给我免费播放毛片高清在线观看| 在线观看66精品国产| 69av精品久久久久久| 看黄色毛片网站| 女生性感内裤真人,穿戴方法视频| 在线播放国产精品三级| 亚洲精品成人久久久久久| 久久久久国内视频| 色老头精品视频在线观看| av在线天堂中文字幕| 亚洲国产中文字幕在线视频| 波多野结衣高清无吗| 久久久国产成人免费| 一级黄色大片毛片| 亚洲性夜色夜夜综合| 啦啦啦韩国在线观看视频| 天堂动漫精品| 观看免费一级毛片| 日韩欧美三级三区| 日韩欧美在线二视频| 亚洲精品日韩av片在线观看 | 午夜免费激情av| 手机成人av网站| 一边摸一边抽搐一进一小说| 亚洲精品一卡2卡三卡4卡5卡| 长腿黑丝高跟| 国产av一区在线观看免费| 国产蜜桃级精品一区二区三区| 高清在线国产一区| 3wmmmm亚洲av在线观看| 亚洲欧美激情综合另类| 亚洲av成人不卡在线观看播放网| 国产美女午夜福利| 国产精品久久久久久亚洲av鲁大| 国内精品久久久久久久电影| 亚洲精品在线观看二区| x7x7x7水蜜桃| 午夜福利在线在线| x7x7x7水蜜桃| 国产三级在线视频| 性欧美人与动物交配| 在线视频色国产色| 久久精品国产99精品国产亚洲性色| 午夜福利18| 久久精品国产99精品国产亚洲性色| 欧美av亚洲av综合av国产av| 蜜桃亚洲精品一区二区三区| 18禁黄网站禁片免费观看直播| 欧美一级毛片孕妇| 五月伊人婷婷丁香| 精品日产1卡2卡| 91av网一区二区| 欧美日韩亚洲国产一区二区在线观看| 美女免费视频网站| 精品99又大又爽又粗少妇毛片 | 国产色爽女视频免费观看| 国产伦精品一区二区三区视频9 | 亚洲专区国产一区二区| 国产精品久久久久久人妻精品电影| 国产精品乱码一区二三区的特点| 我要搜黄色片| 亚洲欧美日韩东京热| 一个人观看的视频www高清免费观看| 色老头精品视频在线观看| 国产高清有码在线观看视频| www日本在线高清视频| 制服丝袜大香蕉在线| 亚洲va日本ⅴa欧美va伊人久久| 69人妻影院| 激情在线观看视频在线高清| 嫩草影院入口| av天堂中文字幕网| 毛片女人毛片| 麻豆久久精品国产亚洲av| 成人性生交大片免费视频hd| 伊人久久大香线蕉亚洲五| 亚洲人成伊人成综合网2020| 人人妻,人人澡人人爽秒播| 欧美丝袜亚洲另类 | 在线播放国产精品三级| 午夜免费观看网址| 午夜精品一区二区三区免费看| 久久久久久久久久黄片| 一级毛片女人18水好多| 国产精品日韩av在线免费观看| 99久久99久久久精品蜜桃| 香蕉丝袜av| 日韩国内少妇激情av| 欧美激情在线99| 久久国产精品影院| 黄片大片在线免费观看| 色哟哟哟哟哟哟| 成人性生交大片免费视频hd| 成人国产一区最新在线观看| x7x7x7水蜜桃| 日韩成人在线观看一区二区三区| 亚洲欧美精品综合久久99| 国产高清激情床上av| 亚洲天堂国产精品一区在线| 99精品欧美一区二区三区四区| 脱女人内裤的视频| 久久久国产精品麻豆| 看片在线看免费视频| 欧美性猛交╳xxx乱大交人| 国产伦在线观看视频一区| 制服丝袜大香蕉在线| 亚洲最大成人中文|