• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Metal cation crosslinking of TiO2-alginate hybrid gels

    2014-09-06 10:49:51MengJunliWuMinDingWenLiYingZhangJinNiHenmei
    關(guān)鍵詞:雜化二氧化鈦交聯(lián)劑

    Meng Junli Wu Min Ding Wen Li Ying Zhang Jin Ni Henmei

    (School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China)

    ?

    Metal cation crosslinking of TiO2-alginate hybrid gels

    Meng Junli Wu Min Ding Wen Li Ying Zhang Jin Ni Henmei

    (School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China)

    In order to improve the substrate diffusion properties and stability of an immobilized enzyme, alginate microgels modified with TiO2nanoparticles were employed as the enzyme immobilizing support. Ionotropic gelation was applied for the preparation of hybrid gels, while Ca2+, Ce3+, Ni2+, Cu2+and Fe3+were employed as the crosslinkers. Papain was selected as the model enzyme. UV-Vis spectroscopy was employed to investigate the activity of papain to evaluate kinetics and stability. Analysis results show that the highest affinity, the lowest Michaelis-Menten constant (Km=11.0 mg/mL) and the highest stability are obtained when using Cu2+as the crosslinker. The effect of the mass ratio of TiO2to papain on the stability and leakage of papain is also investigated, and the results show that 10∶1 (TiO2∶papain) is optimal because the proper use of TiO2can reduce enzyme leakage and ensure enzyme stability. Preparing Cu/alginate/TiO2hybrid gels via ionotropic gelation can provide a satisfactory diffusion capability and enzyme stability.

    cationic crosslinker;diffusion;hybrid gel;ionotropic gelation; Michaelis-Menten constant;titanium dioxide modified alginate

    Nanoparticles are found in an increasing number of applications in biological materials because of their interesting properties and behaviors[1]. Their large specific surface area allows them to immobilize enzymes and retain enzymatic activities under moderate conditions in a state of high-leveled dispersion[2-3]. Nanosized TiO2is an ideal enzyme support, ascribed to its strong bioadhesive properties, high enzyme loading capacity and activity, and efficient substrate diffusion[4].

    Ionic biopolymers such as alginate and pectin undergo ionotropic gelation and precipitation to form microspheres, in the presence of divalent cations such as Ca2+, Cu2+, Zn2+, and trivalent cations such as Al3+. The mechanism of ionotropic gelation is an electrostatic force between the carboxylic acid groups and cations[5]. Ion-crosslinked alginate microgels are suitable enzyme supports, because of the relatively mild/inert aqueous environment within their matrix, and high gel porosity for substrate and product diffusion[6]. A properly structured alginate matrix can decrease steric hindrance, and provide a network to accommodate conformational change during enzyme reactions. Structures with larger pores allow rapid diffusion, fast enzyme reactions and high enzyme activity. However, enzyme leakage from porous alginate matrices can reach 30% to 80%[7-8].

    The current study aims to improve the substrate diffusion properties and immobilized enzyme stability of alginate microgels. Nanosized TiO2-modified alginate was used as an immobilizing support. Ca2+, Ce3+, Ni2+, Cu2+and Fe3+were used as crosslinkers for ionotropic gelation, and papain was used as a model enzyme. The effect of crosslinkers on enzyme kinetics and stability was investigated. The effect of the mass ratio of TiO2to papain in relative enzyme activity was optimized for Cu/alginate/TiO2hybrid gel-immobilized papain.

    1 Materials and Methods

    1.1 Materials

    The nanoparticles of TiO2(14 nm) with a surface area of 280 m2/g was prepared in the laboratory. Enzyme, papain, cysteine and sodium alginate were purchased from the Chinese Medicine Group Co., Ltd. Calcium chloride, cerous nitrate, nickel chloride, copper chloride and ferric chloride were bought from Shanghai Hua Jing Biological High-Tech Co., Ltd. All reagents were used as received.

    1.2 Preparation of alginate/TiO2microsphere hybrid gel-immobilized papain

    TiO2nanoparticles (0.2 g) were ultrasonically dispersed in 2 mL of 0.1 mol/L tris (hydroxymethyl) aminomethane (Tris) buffer (pH 7.5) for 20 min. Thereafter, 1 mL of 20 mg/mL papain was added and shaken for 30 min. After a total of 5 mL of alginate was added, the mixture was stirred for 30 min, and then poured into 10 mL of crosslinker solution and aged at room temperature for 1 h to yield the immobilized enzyme microgels. Polymer chains were crosslinked by exchanging gluronic acid Na+with Ca2+, Ce3+, Ni2+, Cu2+and Fe3+. The structure formed was called an egg-box as depicted in Fig.1. As a result, gel networks were formed through the crosslinking of several different chains. Immobilized enzyme microgels were rinsed with pH 7.5 Tris buffer, dried at room temperature for 6 h and stored at 4 ℃ until use.

    Fig.1 Egg-box association of alginate matrix undergoing ionotropic gelation procedure in the presence of multivalent cations

    1.3 Assays of immobilized enzyme activity

    Papain activity was assayed using a casein substrate. The hydrolysis of casein catalyzed by papain released tyrosine, whose presence was detected by the UV absorbance at 275 nm. An appropriate amount of microgels was added to 3 mL of enzyme activator containing 0.005 mol/L cysteine and 0.002 mol/L EDTA. The resultant solution was incubated at 37 ℃ for 10 min. After adding 10 mL of 10 mg/mL casein (preheated to 37 ℃ in a water bath), the solution was incubated at 37 ℃ for 10 min. 10 mL of 5% quality fraction trichloroacetic acid was added to terminate the reaction[9]. After centrifuging at circa 4 000 g for 10 min, the serum was measured by using a UV/VIS spectrophotometer (Metertek SP-830, Metertech Inc., Taiwan, China). One unit of enzyme activity (U, active unit) was defined as the amount of enzyme liberating 1 μg of tyrosine per minute under the assay conditions. The residual activity and relative activity of the immobilized enzyme were calculated by[3]

    Residual activity=

    (1)

    Relative enzyme activity=

    (2)

    1.4 Microgel catalytic kinetics

    The maximum reaction velocityVmaxand Michaelis-Menten constantKmwere determined at pH 7.5 and 37 ℃. The casein substrate concentration was varied from 2.0 to 10.0 mg/mL. The papain reaction rateVwas estimated from the Michaelis-Menten equation, and parameters for the equation were estimated using the linearization method of Lineweaver-Burk[10].

    1.5 Determination of leakage from metal/alginate/TiO2hybrid gels

    The enzyme leakage from alginate/TiO2hybrid gels was evaluated. Immobilized microgels in 10.0 mL of Tris buffer were shocked at 37 ℃ for 6 h. The mixture was centrifuged at approximately 4 000 g, and the clear supernatant was collected. The mass of papain was determined spectrophotometrically (275 nm) at 37 ℃. Microgel leakage is calculated by

    Percentage of leakage of the microspheres=

    2 Results and Discussion

    2.1 Preparation of immobilized enzyme microgels

    Crosslinking with the different cations yielded well-dispersed microgels of alginate/papain. Alginate/TiO2/papain hybrid microgels all had an average diameter of 2.5 mm. The microgels were immersed in saturated calcium chloride to investigate their density and the effect of the crosslinker. Microgels ionotropic-gelated by the five different cations possessed different alginate network structures, particularly with respect to surface characteristics and the pore structure, as shown in Fig.2. It was observed that the density of the two microgels crosslinked with Cu2+and Ca2+, respectively, which is less than that of the saturated CaCl2solution. It is suggested that their porosity and specific surface areas were different[11]. Lower density microgels exist on the top of the saturated calcium chloride, and the higher density ones at the bottom. This implies that the diffusion properties of porous hybrid microgels can be controlled by the ionotropic gelation conditions.

    Fig.2 Different density properties of immobilized enzyme microspheres affected by cross-linking agent in saturated calcium chloride solution

    2.2 Kinetics of catalytic hydrolysis

    Kinetic parameters were obtained by using the Lineweaver-Burk double reciprocal model:

    Microgel porosity greatly depended upon the type of crosslinker and its concentration. In the immobilized enzyme reaction, the substrate had to be transported from the reaction solution to the outer surface of gel matrix, and then to the inner matrix. Accordingly, the resulting diffusion and mass transfer properties were important parameters in the ionotropic gelation procedure.

    The same amount of free and immobilized enzyme applied to 10 mL Tris buffer solution (0.1 mol/L, pH 7.5) at 37 ℃ for 10 min was 20 mg. The substrate concentration of casein varied between 2.0 and 10.0 mg/mL. Each point represented the average value of three independent measurements.

    TheKmvalues of free (not shown) and immobilized papain on Ca2+, Ce3+, Ni2+, Cu2+and Fe3+crosslinked microgels (shown in Fig.3 and Tab.1) were 7.3, 19.3, 24.3, 20.5, 11.0 and 27.7 mg/mL, respectively. LowerKmvalues for immobilized papain indicated a higher affinity to the substrate, and correspondingly, a higher catalytic activity at a lower substrate concentration. The substrate affinity of the microgels decreased after ionotropic gelation, likely because of a lower accessibility of the substrate to the enzyme’s active site. At the same ionic concentration, Cu/alginate/TiO2hybrid gel microspheres exhibited the highest affinity. Such characteristics depended on the crosslinker affinity[9]. Cu2+has a stronger affinity with the carboxyl group than other divalent ions, which improved the permeability of the matrix by exchanging more Na+within the alginate. This benefited the rapid diffusion of the substrate and product[12]. Multivalent ions have a high ionic strength, which restrained the adsorption of the enzyme in the matrix, leading to low affinity[9].

    Fig.3 Lineweaver-Burk plot for immobilized enzyme with different cations as crosslinking agent

    Tab.1 Summary of kinetic parameters for hydrolysis of casein catalyzed by papain

    Kmof the immobilized enzyme was likely predominantly affected by steric hindrance at the enzyme active site, electrostatic forces from ionized functional groups and diffusion limits of substrates within the porous gel.

    In summary, the hybrid gel microstructure can be reasonably controlled through the ionotropic gelation conditions. An appropriate pore structure facilitated access of the substrate to the enzyme active site, and afforded a high catalytic efficiency with lowKmvalues.

    2.3 Stability of immobilized papain in microgel

    The operational stability test were carried out for 5 batch reactions in which the immobilized microspheres were shaken with casein (10 mg/mL) at 37 ℃ for 6 min, and their relative activity were determined by taking the activity of the first batch as a reference(100 %). The activities of free enzyme after one cycle of reaction are shown in Fig.4. Immobilized enzyme activity was measured by the method in Section 1.3. It is clear that papain immobilized in microgels crosslinked with Fe3+exhibited a considerable decrease in activity. Only 30 % of its initial activity was retained after one cycle of the reaction. In contrast, the activity of papain immobilized in the microgels crosslinked with Cu2+, Ce3+, Ni2+and Ca2+, respectively, exhibited a gradual reduction with the increasing cycles of reaction. As shown in Fig.4, correspondingly, the retained activities were 68 %, 54 %, 56 % and 58 % of initial activity after five cycles of reaction, respectively. The gradual decrease in activity was attributed to enzyme leakage[13].

    Fig.4 Operational stability of immobilized enzymes gelated by different crosslinking agents

    The differing microstructures and gel rigidities of papain immobilized microgels were predominantly ascribed to the varying affinities of metal ions and ionic strength[9]. Cu/alginate/TiO2hybrid gels exhibited the strongest affinity and lowest leakage, ensuring a high activity of the immobilized papain. Changes in ionic strength during ionotropic gelation generally impacted profoundly on the matrix structure. The high ionic charge of Ce3+and Fe3+severely reduced the electrostatic interaction and affinity between the metal ions, papain and alginate; thus, the stability of papain immobilized in microgels was lower.

    2.4 Effect of mass ratio of TiO2to papain on the relative activity of immobilized enzyme

    The porosity of the alginate matrices results in potential enzyme leakage. Cu/alginate/TiO2hybrid gels appeared an attractive support material for overcoming this problem. Increasing the mass ratio of TiO2to papain from 5∶1 to 17.5∶1 for Cu/alginate/TiO2hybrid gels resulted in a gradual increase in relative enzyme activity until 10∶1 was reached. After that, as shown in Fig.5(a), further increasing the ratio led the relative enzyme activity to decrease. Enzyme activity related to the amount of adsorbed enzyme. Therefore, the highest activity at 10∶1 was attributed to adsorption saturation. An appropriate use of nanosized TiO2can ensure enzyme stability and reduce leakage[14]. The effect of TiO2on enzyme leakage is shown in Fig.5(b). The determination of leakage from metal/alginate/TiO2hybrid gels was measured by the method of section 1.5. Enzyme leakage from the hybrid gel matrix changed with time. There was about 41% to 51% leakage from the alginate gel, while the hybrid gel exhibited a leakage of approximately 14% to 15%. This indicated that TiO2-modified alginate hybrid gel strongly adsorbed the enzyme, preventing leakage and improving stability.

    (a)

    (b)

    3 Conclusion

    Ionotropic gelation induced by Ca2+, Ce3+, Ni2+, Cu2+and Fe3+can improve the diffusion properties and stability of immobilized papain in TiO2-alginate hybrid gels. The hydrolysis of casein catalyzed by papain immobilized in Cu2+crosslinked microgels exhibited the smallestKmof 11.0 mg/mL, and thus the highest stability. The optimal ratio of nanosized TiO2to papain for the best performance of Cu/alginate/TiO2hybrid gels was 10∶1. Nanosized TiO2in microgels help to prevent leakage of the immobilized papain. Metal ions are effective in regulating the internal pore structure of alginate matrices, and ensuring high rates of diffusion.

    [1]Tao C N, Li G, Wang Y, et al. Enzymatic reporting of peste des petits ruminants virus genes ligating two specific probes on nanoparticles [J].BiotechnologyLetters, 2013, 35(4):613-618.

    [2]Li Y H, Liang H, Sun L W, et al. Nanoparticle-tethered NAD with in situ cofactor regeneration [J].BiotechnologyLetters, 2013, 35(6):915-919.

    [3]Wu M, He Q, Shao Q F, et al. Preparation and characterization of monodispersed microfloccules of TiO2nanoparticles with immobilized multienzymes [J].ACSAppliedMaterials&Interfaces, 2011, 3(9):3300-3307.

    [4]Xu Z, Liu X W, Ma Y S, et al. Interaction of nano-TiO2with lysozyme: insights into the enzyme toxicity of nanosized particles [J].EnvironmentalScienceandPollutionResearch, 2010, 17(3):798-806.

    [5]Nayak A K, Das B, Maji R. Calcium alginate/gum Arabic beads containing glibenclamide: development and in vitro characterization [J].InternationalJournalofBiologicalMacromolecules, 2012, 51(5):1070-1078.

    [6]Maritz J, Krieg H M, Yeates C A, et al. Calcium alginate entrapment of the yeast Rhodosporidium toruloides for the kinetic resolution of 1,2-epoxyoctane [J].BiotechnologyLetters, 2003, 25(20):1775-1781.

    [7]Kierstan M, Bucke C. The immobilization of microbial cells, subcellular organelles, and enzymes in calcium alginate gels [J].BiotechnologyandBioengineering, 1977, 19(3):387-397.

    [8]Ghanem A, Ghaly A. Immobilization of glucose oxidase in chitosan gel beads [J].JournalofAppliedPolymerScience, 2004, 91(2):861-866.

    [9]He Z Y, Christopher B W, Zhou Y T, et al. Papain adsorption on chitosan-coated nylon-based immobilized metal ion (Cu2+, Ni2+, Zn2+, Co2+) affinity membranes [J].SeparationScienceandTechnology, 2010, 45(4):525-534.

    [10]Xue Y, Wu C Y, Branford-White C J, et al. Chemical modification of stem bromelain with anhydride groups to enhance its stability and catalytic activity [J].JournalofMolecularCatalysisB:Enzymatic, 2010, 63(3/4):188-193.

    [11]Thu B, Bruheim P, Espevik T, et al. Alginate polycation microcapsules: I. interaction between alginate and polycation [J].Biomoterials, 1996, 17(10):1031-1040.

    [12]Phetsom J, Khammuang S, Suwannawong P, et al. Copper-alginate encapsulation of crude laccase from Lentinus polychrous Lev. and their effectiveness in synthetic dyes decolorizations [J].JournalofBiologicalSciences, 2009, 9(6):573-583.

    [13]Kuo C H, Liu Y C, Chang C M J, et al. Optimum conditions for lipase immobilization on chitosan-coated Fe3O4nanoparticles [J].CarbohydratePolymers, 2012, 87(4):2538-2545.

    [14]Zheng D, Wang N, Wang X, et al. Effects of the interaction of TiO2nanoparticles with bisphenol A on their physicochemical properties and in vitro toxicity [J].JournalofHazardousMaterials, 2012, 199-200:426-432.

    金屬陽離子交聯(lián)TiO2-海藻酸雜化凝膠

    孟俊麗 吳 敏 丁 穩(wěn) 李 穎 張 進 倪恨美

    (東南大學化學化工學院,南京211189)

    為了改善海藻酸鈉固定化酶微球的擴散性與酶活穩(wěn)定性,以納米二氧化鈦修飾海藻酸為固定化酶載體,Ca2+, Ce3+, Ni2+, Cu2+和 Fe3+為雜化凝膠的陽離子交聯(lián)劑,木瓜蛋白酶為模型酶,制備固定化酶微球.通過UV-Vis光譜檢測酶活,考察了5種交聯(lián)劑對固定化酶的動力學和穩(wěn)定性的影響,結(jié)果表明:當Cu2+為交聯(lián)劑時,固定化酶具有最高的親和性、最低的米氏常數(shù)(Km=11.0 mg/mL)和最高 的穩(wěn)定性.研究了TiO2與木瓜蛋白酶的質(zhì)量比對固定化酶穩(wěn)定性以及酶蛋白泄漏的影響,結(jié)果顯示納米二氧化鈦與木瓜蛋白酶的質(zhì)量比為10∶1時,制備的固定化酶微球性能最好,因為二氧化鈦能有效阻止固定化酶的泄漏.通過離子膠凝制備Cu/海藻酸/TiO2雜化凝膠可獲得較好的擴散能力和酶活穩(wěn)定性.

    陽離子交聯(lián)劑;擴散;雜化凝膠;離子膠凝;米氏常數(shù);二氧化鈦修飾海藻酸

    Q814.2

    Received 2014-04-27.

    Biographies:Meng Junli (1986—), female, graduate; Wu Min (corresponding author), female, doctor, professor, seuwumin@seu.edu.cn.

    s:The National Natural Science Foundation of China (No.21005016), the Foundation of Educational Commission of Jiangsu Province (No.JHB2011-2).

    :Meng Junli, Wu Min, Ding Wen, et al. Metal cation crosslinking of TiO2-alginate hybrid gels[J].Journal of Southeast University (English Edition),2014,30(4):526-530.

    10.3969/j.issn.1003-7985.2014.04.021

    10.3969/j.issn.1003-7985.2014.04.021

    猜你喜歡
    雜化二氧化鈦交聯(lián)劑
    交聯(lián)劑對醇型有機硅密封膠的影響
    粘接(2021年2期)2021-06-10 01:08:11
    α-細辛腦脂質(zhì)聚合物雜化納米粒的制備及表征
    亞砷酸鹽提高藻與蚤培養(yǎng)基下納米二氧化鈦的穩(wěn)定性
    元素雜化阻燃丙烯酸樹脂的研究進展
    中國塑料(2016年1期)2016-05-17 06:13:00
    化學教學中的分子雜化軌道學習
    元素雜化阻燃聚苯乙烯的研究進展
    中國塑料(2016年11期)2016-04-16 05:25:55
    鐵摻雜二氧化鈦的結(jié)構(gòu)及其可見或紫外光下對有機物催化降解的行為探析
    交聯(lián)聚合物及其制備方法和應(yīng)用
    石油化工(2015年9期)2015-08-15 00:43:05
    助交聯(lián)劑在彩色高硬度EPDM膠料中的應(yīng)用
    二氧化鈦納米管的制備及其應(yīng)用進展
    国产在视频线在精品| 国产不卡一卡二| 久久精品综合一区二区三区| 老司机影院成人| 久久精品国产亚洲av天美| 蜜桃亚洲精品一区二区三区| 日日摸夜夜添夜夜添小说| 成人亚洲欧美一区二区av| 国产一区二区三区av在线 | 一进一出好大好爽视频| 一级毛片我不卡| 亚洲人成网站在线播| 国产伦在线观看视频一区| 1000部很黄的大片| 精品久久国产蜜桃| 简卡轻食公司| 人人妻人人看人人澡| 成人av一区二区三区在线看| 97在线视频观看| 精品一区二区三区视频在线| 国产在线男女| 国产av在哪里看| 国产一区二区亚洲精品在线观看| 热99re8久久精品国产| 大又大粗又爽又黄少妇毛片口| 国产亚洲精品久久久久久毛片| 18禁黄网站禁片免费观看直播| 免费看美女性在线毛片视频| 精品午夜福利视频在线观看一区| 少妇高潮的动态图| 五月伊人婷婷丁香| 男女视频在线观看网站免费| 精品久久久久久久久久久久久| 两性午夜刺激爽爽歪歪视频在线观看| 久久精品国产自在天天线| 最近中文字幕高清免费大全6| 久久久久性生活片| 亚洲成av人片在线播放无| 22中文网久久字幕| av在线天堂中文字幕| 少妇人妻精品综合一区二区 | 中文字幕久久专区| 久久热精品热| 黄色视频,在线免费观看| 热99re8久久精品国产| 精品久久久久久久人妻蜜臀av| 99久久久亚洲精品蜜臀av| 欧美精品国产亚洲| 51国产日韩欧美| 国产av麻豆久久久久久久| 两个人的视频大全免费| 久久久久久大精品| 亚洲av一区综合| 一区二区三区免费毛片| 色尼玛亚洲综合影院| 亚洲经典国产精华液单| 亚洲一级一片aⅴ在线观看| 一边摸一边抽搐一进一小说| 亚洲av成人精品一区久久| 全区人妻精品视频| 亚州av有码| 国产亚洲av嫩草精品影院| 国产aⅴ精品一区二区三区波| 亚洲欧美日韩东京热| 91av网一区二区| 男女之事视频高清在线观看| 99热这里只有精品一区| 黄色日韩在线| 国产男人的电影天堂91| 最近2019中文字幕mv第一页| 欧美人与善性xxx| 国产真实伦视频高清在线观看| 俄罗斯特黄特色一大片| 欧美成人免费av一区二区三区| 国产精品乱码一区二三区的特点| 热99在线观看视频| 亚洲四区av| 天堂影院成人在线观看| 国产高清视频在线播放一区| 久久久久久国产a免费观看| 日韩 亚洲 欧美在线| 日日摸夜夜添夜夜添小说| 亚洲av中文av极速乱| 欧美性猛交╳xxx乱大交人| 亚洲成人久久爱视频| 成人亚洲精品av一区二区| 国产成人一区二区在线| 日韩精品有码人妻一区| 久久九九热精品免费| 大又大粗又爽又黄少妇毛片口| 在线观看av片永久免费下载| 偷拍熟女少妇极品色| 又爽又黄无遮挡网站| 内射极品少妇av片p| 少妇人妻一区二区三区视频| 久久精品影院6| 毛片一级片免费看久久久久| 最近最新中文字幕大全电影3| 国内精品美女久久久久久| 久久人人爽人人爽人人片va| 日本黄色片子视频| av福利片在线观看| АⅤ资源中文在线天堂| 在线免费观看不下载黄p国产| 日韩成人伦理影院| 国产一区二区三区av在线 | 日本三级黄在线观看| 久久久欧美国产精品| 国产av在哪里看| 国产色婷婷99| 免费一级毛片在线播放高清视频| 九九在线视频观看精品| 丰满乱子伦码专区| 欧美极品一区二区三区四区| 欧美日韩一区二区视频在线观看视频在线 | 两个人的视频大全免费| 淫秽高清视频在线观看| 亚洲人成网站在线播| 插逼视频在线观看| 乱系列少妇在线播放| 日本一本二区三区精品| 欧美日韩在线观看h| 两个人视频免费观看高清| 99热这里只有精品一区| 久久精品91蜜桃| АⅤ资源中文在线天堂| 校园春色视频在线观看| av天堂中文字幕网| 成人特级av手机在线观看| 韩国av在线不卡| 两性午夜刺激爽爽歪歪视频在线观看| 亚洲精品色激情综合| 亚洲成人久久爱视频| 欧美激情国产日韩精品一区| 亚洲成人中文字幕在线播放| 老司机影院成人| 欧美日本视频| 99热网站在线观看| 麻豆成人午夜福利视频| 久久鲁丝午夜福利片| 精品久久久久久久久亚洲| 免费人成视频x8x8入口观看| 小蜜桃在线观看免费完整版高清| 久久久成人免费电影| 精品欧美国产一区二区三| 日韩一区二区视频免费看| av在线观看视频网站免费| 亚州av有码| 男插女下体视频免费在线播放| 国产 一区 欧美 日韩| 亚洲国产日韩欧美精品在线观看| 日韩人妻高清精品专区| 成年女人永久免费观看视频| 99国产极品粉嫩在线观看| 97超视频在线观看视频| 狂野欧美激情性xxxx在线观看| 乱系列少妇在线播放| 日韩在线高清观看一区二区三区| 悠悠久久av| 日本精品一区二区三区蜜桃| 午夜亚洲福利在线播放| 成人无遮挡网站| 狂野欧美白嫩少妇大欣赏| 老司机午夜福利在线观看视频| 亚洲第一电影网av| 99精品在免费线老司机午夜| 亚洲性久久影院| 小说图片视频综合网站| 男人舔奶头视频| 男人舔女人下体高潮全视频| 国产成年人精品一区二区| 天堂√8在线中文| 亚洲国产欧美人成| 欧美在线一区亚洲| 亚洲欧美中文字幕日韩二区| 性欧美人与动物交配| 中文字幕av在线有码专区| 国产伦在线观看视频一区| 小说图片视频综合网站| 男人舔奶头视频| 久久这里只有精品中国| 女生性感内裤真人,穿戴方法视频| 一级毛片久久久久久久久女| 亚洲精品影视一区二区三区av| 麻豆国产av国片精品| 一级av片app| 国产精品一区二区免费欧美| 午夜日韩欧美国产| 亚洲经典国产精华液单| 国内少妇人妻偷人精品xxx网站| 久久精品国产自在天天线| 黑人高潮一二区| 少妇裸体淫交视频免费看高清| 国产成人影院久久av| 麻豆精品久久久久久蜜桃| 欧美国产日韩亚洲一区| 免费人成在线观看视频色| 色综合色国产| 国产精品综合久久久久久久免费| 婷婷色综合大香蕉| 国产亚洲91精品色在线| 日本免费a在线| 99久久精品国产国产毛片| 啦啦啦啦在线视频资源| 天堂影院成人在线观看| 日韩成人伦理影院| 免费观看在线日韩| 欧美日韩在线观看h| 国产亚洲91精品色在线| 欧美zozozo另类| 狂野欧美白嫩少妇大欣赏| 久久久久精品国产欧美久久久| 在线国产一区二区在线| 高清午夜精品一区二区三区 | 亚洲精品一卡2卡三卡4卡5卡| 日本免费一区二区三区高清不卡| 国产一区二区在线观看日韩| 成年女人永久免费观看视频| 91在线精品国自产拍蜜月| 麻豆成人午夜福利视频| 别揉我奶头 嗯啊视频| 真人做人爱边吃奶动态| 国内精品一区二区在线观看| 日韩一本色道免费dvd| 九九久久精品国产亚洲av麻豆| 最近视频中文字幕2019在线8| 俺也久久电影网| 免费看av在线观看网站| 亚洲人成网站高清观看| 国产精品国产高清国产av| 中文字幕av成人在线电影| 国产私拍福利视频在线观看| 免费大片18禁| 人妻少妇偷人精品九色| 日本在线视频免费播放| 欧美日韩国产亚洲二区| 两个人的视频大全免费| 日韩制服骚丝袜av| 最近视频中文字幕2019在线8| 欧美另类亚洲清纯唯美| 免费看光身美女| 亚洲激情五月婷婷啪啪| av在线天堂中文字幕| 久久99热6这里只有精品| 最近最新中文字幕大全电影3| 人妻制服诱惑在线中文字幕| ponron亚洲| 亚洲av.av天堂| 亚洲aⅴ乱码一区二区在线播放| 简卡轻食公司| 老女人水多毛片| 又黄又爽又免费观看的视频| 日日啪夜夜撸| 十八禁网站免费在线| 嫩草影院入口| 啦啦啦啦在线视频资源| 精品久久久久久久人妻蜜臀av| 高清午夜精品一区二区三区 | 久久亚洲精品不卡| 日韩欧美免费精品| 国产成人aa在线观看| 久久人妻av系列| 老熟妇乱子伦视频在线观看| 最好的美女福利视频网| 97超视频在线观看视频| 六月丁香七月| 成人亚洲精品av一区二区| 国产成人一区二区在线| 男人舔奶头视频| 床上黄色一级片| 国产亚洲精品久久久com| 国产精品久久电影中文字幕| 成人永久免费在线观看视频| 此物有八面人人有两片| 床上黄色一级片| 久久午夜亚洲精品久久| 乱码一卡2卡4卡精品| 日韩精品中文字幕看吧| 亚洲自拍偷在线| 中国国产av一级| 午夜激情福利司机影院| 美女被艹到高潮喷水动态| 午夜福利在线观看免费完整高清在 | 久久久久国产网址| 日韩欧美精品v在线| 乱人视频在线观看| 国产黄色视频一区二区在线观看 | 亚洲精品国产成人久久av| 午夜爱爱视频在线播放| 国产色婷婷99| 午夜福利在线观看免费完整高清在 | .国产精品久久| 亚洲欧美成人综合另类久久久 | 全区人妻精品视频| 免费av毛片视频| 午夜福利在线观看吧| 成人亚洲精品av一区二区| 亚洲最大成人中文| 午夜福利18| 少妇裸体淫交视频免费看高清| 夜夜夜夜夜久久久久| 久久久欧美国产精品| 97碰自拍视频| 国产一区二区亚洲精品在线观看| 国产人妻一区二区三区在| 精品久久久噜噜| 日本黄色视频三级网站网址| 色吧在线观看| 久久久久国内视频| 国产精品永久免费网站| 三级经典国产精品| 久久精品国产亚洲av香蕉五月| 欧美成人a在线观看| 蜜桃久久精品国产亚洲av| 白带黄色成豆腐渣| 热99在线观看视频| 午夜福利在线观看吧| 尤物成人国产欧美一区二区三区| 变态另类成人亚洲欧美熟女| 亚洲美女视频黄频| 国产成人a∨麻豆精品| 色尼玛亚洲综合影院| 欧美日韩综合久久久久久| 国产精品一及| 毛片女人毛片| 青春草视频在线免费观看| 亚洲一区二区三区色噜噜| 久久人人爽人人爽人人片va| 国产精品嫩草影院av在线观看| 联通29元200g的流量卡| 亚洲成人久久性| 久久久精品94久久精品| 久久久久性生活片| 国产成人一区二区在线| 91av网一区二区| 卡戴珊不雅视频在线播放| 亚洲国产精品国产精品| 免费观看在线日韩| 亚洲内射少妇av| 国产精品美女特级片免费视频播放器| 赤兔流量卡办理| 日本与韩国留学比较| 日本a在线网址| 一卡2卡三卡四卡精品乱码亚洲| 色综合色国产| 香蕉av资源在线| 1024手机看黄色片| 99精品在免费线老司机午夜| 亚洲激情五月婷婷啪啪| a级毛片a级免费在线| 女人被狂操c到高潮| 99久久九九国产精品国产免费| 国产蜜桃级精品一区二区三区| 亚洲婷婷狠狠爱综合网| 亚洲人成网站高清观看| 久久久久久九九精品二区国产| 中文字幕熟女人妻在线| 久久草成人影院| 人人妻人人澡人人爽人人夜夜 | 日本欧美国产在线视频| 午夜精品一区二区三区免费看| 国产免费一级a男人的天堂| 观看美女的网站| 久久久久精品国产欧美久久久| 成年女人看的毛片在线观看| 女生性感内裤真人,穿戴方法视频| 日本撒尿小便嘘嘘汇集6| 欧美人与善性xxx| 久久这里只有精品中国| 久久九九热精品免费| 少妇的逼水好多| 亚洲自拍偷在线| 亚洲高清免费不卡视频| 国内精品久久久久精免费| 人人妻,人人澡人人爽秒播| 少妇裸体淫交视频免费看高清| 欧美高清性xxxxhd video| 精品不卡国产一区二区三区| 国产精品,欧美在线| 国产美女午夜福利| 日韩国内少妇激情av| 在线观看一区二区三区| 午夜免费激情av| 波多野结衣巨乳人妻| 欧美日韩在线观看h| 久久天躁狠狠躁夜夜2o2o| 成人综合一区亚洲| 最好的美女福利视频网| 99久久无色码亚洲精品果冻| 淫妇啪啪啪对白视频| 蜜臀久久99精品久久宅男| 久久韩国三级中文字幕| 99热这里只有是精品50| av天堂在线播放| 免费人成视频x8x8入口观看| 最近最新中文字幕大全电影3| 嫩草影视91久久| 亚洲欧美日韩卡通动漫| 最近最新中文字幕大全电影3| 又粗又爽又猛毛片免费看| 国产高清有码在线观看视频| 十八禁国产超污无遮挡网站| 国产乱人视频| 亚洲国产精品成人综合色| 十八禁国产超污无遮挡网站| 日日啪夜夜撸| 天天躁日日操中文字幕| 可以在线观看毛片的网站| 日韩欧美精品v在线| 亚洲精品国产av成人精品 | 色综合站精品国产| 亚洲人成网站在线播| 国内精品美女久久久久久| 免费大片18禁| 国产大屁股一区二区在线视频| 久久热精品热| 亚洲国产精品成人综合色| 日韩大尺度精品在线看网址| 亚洲国产精品sss在线观看| 免费观看的影片在线观看| 亚洲成av人片在线播放无| 免费av毛片视频| 少妇熟女欧美另类| 黄色日韩在线| a级毛片免费高清观看在线播放| 亚洲精品乱码久久久v下载方式| ponron亚洲| 国产精品久久久久久av不卡| 午夜精品一区二区三区免费看| 国产 一区精品| 1024手机看黄色片| 少妇熟女aⅴ在线视频| 亚洲av成人av| 亚洲av不卡在线观看| 国产精品一区二区性色av| 狠狠狠狠99中文字幕| 淫妇啪啪啪对白视频| 精华霜和精华液先用哪个| 国产片特级美女逼逼视频| 国产精品一区二区三区四区免费观看 | 久久久久国内视频| 91在线观看av| 免费不卡的大黄色大毛片视频在线观看 | 亚洲精品久久国产高清桃花| 国产精品不卡视频一区二区| 丰满人妻一区二区三区视频av| 国产亚洲欧美98| 国内精品美女久久久久久| 69人妻影院| 亚洲丝袜综合中文字幕| 婷婷六月久久综合丁香| 久久久久性生活片| 成年女人看的毛片在线观看| 亚洲七黄色美女视频| 日日摸夜夜添夜夜添小说| 久久99热这里只有精品18| 国产亚洲欧美98| av在线蜜桃| av卡一久久| 91狼人影院| 欧美精品国产亚洲| 日本三级黄在线观看| 2021天堂中文幕一二区在线观| 国产精华一区二区三区| 特级一级黄色大片| 国产精品三级大全| 99久久成人亚洲精品观看| 欧美日韩在线观看h| 99久国产av精品国产电影| 白带黄色成豆腐渣| 乱人视频在线观看| 大又大粗又爽又黄少妇毛片口| 日日摸夜夜添夜夜添小说| 国产蜜桃级精品一区二区三区| 日本黄色片子视频| 国产精品综合久久久久久久免费| 六月丁香七月| 国产免费男女视频| 国产一区二区亚洲精品在线观看| 天堂影院成人在线观看| 村上凉子中文字幕在线| 精品人妻熟女av久视频| 国产老妇女一区| av视频在线观看入口| 国产精品人妻久久久久久| 亚洲国产欧洲综合997久久,| 老司机福利观看| 99国产极品粉嫩在线观看| 老司机影院成人| 女同久久另类99精品国产91| 成人午夜高清在线视频| 国产亚洲精品av在线| 国产黄a三级三级三级人| 老师上课跳d突然被开到最大视频| eeuss影院久久| 成年免费大片在线观看| 日产精品乱码卡一卡2卡三| 能在线免费观看的黄片| 亚洲人成网站在线播放欧美日韩| 亚洲熟妇熟女久久| 久久久a久久爽久久v久久| 亚洲欧美成人综合另类久久久 | 草草在线视频免费看| 免费看日本二区| 18禁黄网站禁片免费观看直播| 99热全是精品| 色哟哟哟哟哟哟| 午夜免费激情av| 人人妻人人澡人人爽人人夜夜 | 精品久久国产蜜桃| 99热这里只有是精品50| 亚洲综合色惰| 九九爱精品视频在线观看| 成人三级黄色视频| 夜夜夜夜夜久久久久| 男女啪啪激烈高潮av片| 99在线视频只有这里精品首页| av.在线天堂| 性色avwww在线观看| 三级经典国产精品| 一区二区三区四区激情视频 | 熟妇人妻久久中文字幕3abv| 成年女人永久免费观看视频| 国内精品久久久久精免费| 在线免费观看的www视频| 久久精品国产鲁丝片午夜精品| 欧美bdsm另类| 欧美成人免费av一区二区三区| 亚洲欧美日韩无卡精品| 麻豆精品久久久久久蜜桃| 日韩av不卡免费在线播放| 午夜爱爱视频在线播放| 成人av一区二区三区在线看| 精品欧美国产一区二区三| 精品熟女少妇av免费看| 一本久久中文字幕| 国产亚洲精品久久久久久毛片| 欧美xxxx黑人xx丫x性爽| 婷婷精品国产亚洲av| 一个人观看的视频www高清免费观看| 久久久久国产网址| av在线播放精品| 久久久久国产网址| 一区二区三区四区激情视频 | 精品少妇黑人巨大在线播放 | 午夜久久久久精精品| 日韩欧美一区二区三区在线观看| 男人狂女人下面高潮的视频| 日本黄色视频三级网站网址| 亚洲欧美日韩卡通动漫| 天天一区二区日本电影三级| 国产一区亚洲一区在线观看| 免费看日本二区| 搡老岳熟女国产| 中出人妻视频一区二区| 美女免费视频网站| 人妻久久中文字幕网| 国产一区二区在线观看日韩| 成熟少妇高潮喷水视频| 欧美bdsm另类| 蜜桃久久精品国产亚洲av| 久久亚洲精品不卡| 日本在线视频免费播放| 久久久成人免费电影| 天堂影院成人在线观看| 我的女老师完整版在线观看| 老女人水多毛片| 精品午夜福利在线看| 免费观看精品视频网站| 床上黄色一级片| 波多野结衣巨乳人妻| or卡值多少钱| 亚洲,欧美,日韩| 午夜亚洲福利在线播放| 人妻制服诱惑在线中文字幕| 免费人成视频x8x8入口观看| 波野结衣二区三区在线| 久久天躁狠狠躁夜夜2o2o| 亚洲成人av在线免费| 男插女下体视频免费在线播放| 精品熟女少妇av免费看| 国产片特级美女逼逼视频| 日本免费一区二区三区高清不卡| 国产中年淑女户外野战色| 久久人人精品亚洲av| 久久草成人影院| 男人舔女人下体高潮全视频| 亚洲图色成人| 日韩三级伦理在线观看| 亚洲欧美日韩高清在线视频| 女生性感内裤真人,穿戴方法视频| 久久久久久久久中文| 美女xxoo啪啪120秒动态图| 日本熟妇午夜| 18禁在线无遮挡免费观看视频 | 午夜福利在线观看吧| 免费观看在线日韩| 国产人妻一区二区三区在| 久久久午夜欧美精品| 国产精品伦人一区二区| avwww免费| 观看免费一级毛片| 亚洲熟妇熟女久久| 在线播放无遮挡| 亚洲av第一区精品v没综合| 国语自产精品视频在线第100页| 亚洲va在线va天堂va国产| 12—13女人毛片做爰片一| 在线看三级毛片| 91av网一区二区| 久久精品国产鲁丝片午夜精品| 黑人高潮一二区| 久久久欧美国产精品| 69人妻影院| 国产老妇女一区|