尹 展,孫晨華
(中國電子科技集團(tuán)公司第五十四研究所,河北 石家莊050081)
?
多波束衛(wèi)星移動(dòng)通信系統(tǒng)的同頻干擾研究
尹展,孫晨華
(中國電子科技集團(tuán)公司第五十四研究所,河北 石家莊050081)
摘要:針對多波束衛(wèi)星移動(dòng)通信系統(tǒng)的特點(diǎn),分析了多波束衛(wèi)星移動(dòng)通信系統(tǒng)與地面蜂窩系統(tǒng)同頻干擾計(jì)算方法的差異性,考慮了接收終端和波束中心衛(wèi)星天線方向夾角帶來的增益量的衰減,提出了適用于該系統(tǒng)的同頻干擾算法,建立了適合于本系統(tǒng)的同頻干擾分析模型。計(jì)算得到的載干比可以作為資源規(guī)劃的反饋參考,為資源規(guī)劃做出指導(dǎo),滿足更高的通信質(zhì)量要求。
關(guān)鍵詞:同頻干擾;頻率復(fù)用;多波束;載波規(guī)劃
0引言
目前,對于地面蜂窩系統(tǒng)同頻干擾的探討已經(jīng)相對成熟,但是針對多波束衛(wèi)星移動(dòng)通信系統(tǒng)同頻干擾的研究還很匱乏。雖然多波束衛(wèi)星移動(dòng)通信系統(tǒng)與地面蜂窩系統(tǒng)有很多相似之處,但是衛(wèi)星系統(tǒng)的干擾情況與接收終端和波束中心到衛(wèi)星天線方向夾角有關(guān),而地面蜂窩系統(tǒng)只考慮了復(fù)用距離[1],顯然照搬地面蜂窩系統(tǒng)同頻干擾算法是不可行的。
同頻干擾是由于系統(tǒng)采用同頻復(fù)用引起的,所謂同頻復(fù)用就是指在相隔一定物理距離的2個(gè)波束內(nèi)使用相同的頻率,這樣做大大提高了頻譜的使用率,極大地?cái)U(kuò)充了通信網(wǎng)的容量,但同時(shí)也帶來了相應(yīng)的問題,相隔一定物理距離的波束內(nèi)頻率相同的載波相互干擾,給用戶造成了很大的困擾[2]。
本文結(jié)合多波束衛(wèi)星移動(dòng)通信系統(tǒng)的特點(diǎn),提出適用于該系統(tǒng)的同頻干擾算法,提高了干擾計(jì)算的準(zhǔn)確度和可信度。
1干擾分析模型
在考慮同頻干擾時(shí),終端接收信號的下行載干比(C/I)是一個(gè)重要的指標(biāo)[3]。下面通過建立干擾分析模型來計(jì)算終端接收信號的下行載干比。
構(gòu)建干擾分析模型的主要功能是確定每個(gè)波束內(nèi)的載波后,計(jì)算波束內(nèi)每條載波的同頻干擾值,并據(jù)此判斷該波束內(nèi)載波配置是否滿足載干比要求。
多波束衛(wèi)星移動(dòng)通信系統(tǒng)同頻干擾分析方法與地面蜂窩系統(tǒng)同頻干擾分析方法有些不同,主要體現(xiàn)在2個(gè)方面:① 多波束衛(wèi)星移動(dòng)通信系統(tǒng)中同頻干擾的大小不與距離的冪次方成正比,而與接收終端和波束中心到衛(wèi)星天線方向夾角密切相關(guān);② 蜂窩系統(tǒng)每個(gè)小區(qū)有一個(gè)相同發(fā)射功率的基站作為中繼[4-7],多波束衛(wèi)星通信系統(tǒng)中使用衛(wèi)星作為中繼,所以蜂窩系統(tǒng)中信號的傳播路徑是從小區(qū)中心基站到移動(dòng)臺[8],而在多波束衛(wèi)星移動(dòng)通信系統(tǒng)中,信號的傳播路徑是由衛(wèi)星發(fā)射天線到終端,并不是從波束中心到終端。
下面將通過3步來建立多波束衛(wèi)星移動(dòng)通信系統(tǒng)同頻干擾分析模型:第①步,求解任意兩點(diǎn)衛(wèi)星天線方向夾角;第②步,建立任意波束的衛(wèi)星天線方向圖;第③步,求解同頻干擾功率和載波功率。
1.1衛(wèi)星天線方向夾角
由于在計(jì)算波束間的同頻干擾時(shí),同頻干擾值的大小與路徑傳播衰減密切相關(guān),而在多波束衛(wèi)星移動(dòng)通信系統(tǒng)中,路徑傳播損耗的大小不與傳播距離的冪次方成正比,而是與接收終端和波束中心到衛(wèi)星天線方向夾角有關(guān)系,所以首先要確定接收終端和波束中心之間的衛(wèi)星天線方向夾角。
首先要已知接收終端、波束中心的經(jīng)緯度和衛(wèi)星的位置,然后建立以下模型分析接收終端和波束中心天線方向夾角。
如圖1所示,假設(shè)衛(wèi)星的位置為λ1E,由于研究的是GEO衛(wèi)星,衛(wèi)星星下點(diǎn)A的經(jīng)緯度即為(λ1E,0),假設(shè)波束中心B接收終端C的經(jīng)緯度分別為(λ2E,φ2N)和(λ3E,φ3N),星下點(diǎn)A與波束中心B的地心夾角為θ1,星下點(diǎn)A與接收終端C的地心夾角為θ2,波束中心和接收終端B、C的地心夾角為θ3,波束中心和接收終端的衛(wèi)星天線方向夾角為α,地球的半徑為R(km),衛(wèi)星的高度為H(km)。
圖1 衛(wèi)星天線方位夾角示意圖
利用A、B兩點(diǎn)經(jīng)緯度可以得到A、B兩點(diǎn)的地心夾角θ1,
同樣,利用A、C兩點(diǎn)經(jīng)緯度可以得到A、C兩點(diǎn)的地心夾角θ2,
利用B、C兩點(diǎn)經(jīng)緯度可以得到B、C兩點(diǎn)的地心夾角θ3,
在三角形BOD中,已知BO長為R,DO長為H+R,得出BD長度,
在三角形COD中,已知CO長為R,DO長為H+R,得出CD長度,
在三角形BOC中,已知BO長為R,CO長為R,得出BC直線長度,
在已知三邊長度之后,在三角形BCD中,可以得到BD與CD的夾角α,
因此,波束中心B與接收終端C的的衛(wèi)星天線方向夾角為α。
1.2衛(wèi)星天線方向圖
衛(wèi)星天線方向圖是得到載波功率衰減的重要工具,下面簡單利用天線原理的知識來闡述任意波束對應(yīng)的拋物面衛(wèi)星天線方向圖的求解過程。
計(jì)算拋物面輻射場有2種方法——面電流法和口徑場法,本文采用的是口徑場法。拋物面口徑,是由拋物面邊緣限定的垂直于軸線的圓平面,在求拋物面口徑場強(qiáng)分布時(shí),要應(yīng)用2條定量:一是幾何光學(xué)反射定律,另一是能量守恒定律。
用口徑場法計(jì)算的遠(yuǎn)區(qū)輻射場:
計(jì)算拋物面輻射場時(shí),主要關(guān)系方向圖主瓣和近副瓣,通常θ角不大,cosθ≈1[9],而且僅計(jì)入口徑場主極化分量,于是,拋物面天線輻射場:
式中,Gf(ξ,φ')為饋源方向函數(shù),當(dāng)饋源方向圖給定時(shí),將式中的變量(ξ,r')變換成(ρ,φ')。根據(jù)拋物面的幾何特性,從圖2可得:
圖2 半圓天線口徑示意圖
然后利用插值法,得到輻射場:
當(dāng)饋源為圓形波導(dǎo)輻射器饋源時(shí),焦徑比為0.333的拋物面天線,從上式計(jì)算得出衛(wèi)星天線方向圖,歸一化后如圖3所示。
圖3 拋物面衛(wèi)星天線方向圖
由圖3可知,衛(wèi)星天線方向夾角與天線增益并不是簡單對應(yīng)的角度越大(相距越遠(yuǎn))增益越小,在主瓣和旁瓣變換或旁瓣間變換的時(shí)候增益在一定角度內(nèi)反而會(huì)增大,這是與地面蜂窩系統(tǒng)最大的差異。
在得到一個(gè)波束的衛(wèi)星天線方向圖之后,可以認(rèn)為衛(wèi)星通信系統(tǒng)中所有波束的衛(wèi)星天線方向圖都相同[10]。
1.3干擾功率
在得到接收終端和波束中心衛(wèi)星天線方向夾角與衛(wèi)星天線方向圖之后,接下來計(jì)算同頻干擾功率,確定了終端類型和業(yè)務(wù)類型,用以下方式計(jì)算同頻干擾的功率,多波束衛(wèi)星同頻干擾示意圖如圖4所示。
圖4 多波束衛(wèi)星同頻干擾示意圖
1.3.1計(jì)算載波下行EIRPdc
載波下行EIRPdc為:
EIRPdc=EIRPs-BOoc。
式中,EIRPs為衛(wèi)星飽和EIRP,BOoc為每載波輸出補(bǔ)償,
BOoc=BOic+BOo-BOi。
式中,BOic為每載波輸入補(bǔ)償,BOo為轉(zhuǎn)發(fā)器輸出補(bǔ)償,BOi為轉(zhuǎn)發(fā)器輸入補(bǔ)償,
BOic=10lgV+BOi。
式中,V為系統(tǒng)容量。
因此,載波下行EIRPdc可表示為:
EIRPdc=EIRPs-10lgV-BOo。
1.3.2計(jì)算同頻干擾功率
衛(wèi)星發(fā)射信號落入本波束的載波功率為:
C=EIRPdc-LFD-La,
式中,LFD為下行自由空間傳播損耗,La為大氣吸收損耗。
根據(jù)衛(wèi)星波束復(fù)用關(guān)系、衛(wèi)星天線方向圖和衛(wèi)星天線方向夾角計(jì)算復(fù)用波束落入本波束的干擾功率Ii(i=1,2,…,M-1,M為波束復(fù)用的次數(shù))。假設(shè)接收終端與復(fù)用波束中心之間的衛(wèi)星天線方向夾角為αi(i=1,2,…,M-1),αi對應(yīng)的歸一化后的衛(wèi)星天線方向圖中的衰減量為ωαi,那么復(fù)用波束i對應(yīng)的同頻干擾值為:
Ii=C-ωαi。
注:假如第i個(gè)復(fù)用波束中沒有使用該頻點(diǎn)的終端在工作,那么Ii=0。
那么總的同頻干擾功率為:
至此,對某頻點(diǎn)的載干比就可以用下式表示:
2評判標(biāo)準(zhǔn)
在計(jì)算得到波束中頻點(diǎn)的載干比(C/I)之后,則需要一個(gè)評判標(biāo)準(zhǔn)來確定該載干比是否能夠滿足通信要求。載干比的計(jì)算是為了評判載波規(guī)劃的結(jié)果是否能夠滿足衛(wèi)星移動(dòng)通信要求,如果載干比過低,即有用信號太小,干擾信號太大的情況下,則需要重新考慮載波規(guī)劃。
首先,對于數(shù)字地面蜂窩系統(tǒng)的評判標(biāo)準(zhǔn),我國的GSM系統(tǒng)、美國的IS-54系統(tǒng)和日本的PDC系統(tǒng)為了保證絕大多數(shù)地區(qū)和絕大部分時(shí)間的通信質(zhì)量,都要求載干比不得<9 dB,即C/I≥9dB[11-13]。
考慮到衛(wèi)星移動(dòng)通信系統(tǒng)復(fù)雜的鏈路情況以及更高的通信要求,一般認(rèn)為衛(wèi)星移動(dòng)通信系統(tǒng)中載干比不得小于13 dB,即C/I≥13dB[14,15]。
3仿真驗(yàn)證
仿真試驗(yàn)中載波分配完成后,得到波束1的前20個(gè)頻點(diǎn)的載干比的情況如圖5所示。
圖5 波束1載干比(C/I)
從圖5中可以看到,有些頻點(diǎn)的C/I滿足通信要求>13 dB,而某些頻點(diǎn)的C/I不能滿足>13 dB的要求,這就需要對規(guī)劃結(jié)果進(jìn)行調(diào)整,以使得該頻點(diǎn)的載干比能滿足通信要求,例如8號頻點(diǎn)載干比明顯<13 dB,則需要對8號頻點(diǎn)進(jìn)行調(diào)整。
4結(jié)束語
同頻干擾是頻率復(fù)用系統(tǒng)中不可忽視的一個(gè)問題,合理規(guī)劃載波分配方案是解決同頻干擾問題的重要手段,而同頻干擾分析模型是評判載波規(guī)劃方案優(yōu)劣的重要依據(jù)。在分析了多波束衛(wèi)星移動(dòng)通信系統(tǒng)與地面蜂窩系統(tǒng)的區(qū)別之后,建立了適合于本系統(tǒng)的同頻干擾分析模型,并在系統(tǒng)的載波規(guī)劃方案確定后對每個(gè)頻點(diǎn)的載干比進(jìn)行了仿真,證明了干擾分析模型的正確性和有效性,這就為下一次的載波規(guī)劃提供了指導(dǎo)和借鑒。
參考文獻(xiàn)
[1]張業(yè)榮,竺南直,程勇.蜂窩移動(dòng)通信網(wǎng)絡(luò)規(guī)劃與優(yōu)化[M].北京:電子工業(yè)出版社,2008.
[2]Liu Fang,Wang Ying,Zhang Ke.Spot Beam Handover Trigger and Channel Allocation Scheme in GEO Mobile Satellite Communication[J].High Technology Letters,2011,17(2):146-152.
[3]韓斌杰,杜新顏,張建斌.GSM原理及其網(wǎng)絡(luò)優(yōu)化[M].北京:機(jī)械工業(yè)出版社,2008.
[4]柯文淵.GSM網(wǎng)絡(luò)中同鄰頻干擾分析優(yōu)化的方法研究與系統(tǒng)實(shí)現(xiàn)[D].北京:北京郵電大學(xué),2011:18-22.
[5]紀(jì)謝平,徐家品.基于中繼抑制蜂窩網(wǎng)絡(luò)同頻網(wǎng)絡(luò)干擾的方案[J].無線電工程,2015,45(4):20-24.
[6]王和,劉光斌,程俊仁,等.衛(wèi)星導(dǎo)航接收機(jī)抗干擾測試評估方法研究[J].無線電工程,2014,44(3):5-7.
[7]陳強(qiáng).衛(wèi)星導(dǎo)航接收機(jī)的抗干擾技術(shù)分析[J].無線電工程,2011,41(11):34-36,64.
[8]吳志彪.移動(dòng)通信網(wǎng)絡(luò)中無線資源管理技術(shù)的研究[D].南京:東南大學(xué),2006:21-25.
[9]魏文元,宮德明.天線原理[M].北京:國防工業(yè)出版社,1985.
[10]Grandhi S A,Goodman D J.Resource Allocation for Cellular Radio Systems[J].IEEE Trans.1997,46(3):581-587.
[11]吳詩其,胡劍浩,吳曉文.衛(wèi)星移動(dòng)通信新技術(shù)[M].北京:國防工業(yè)出版社,2001.
[12]陳振國.衛(wèi)星通信系統(tǒng)與技術(shù)[M].北京:北京郵電大學(xué)出版社,2003.
[13]郭梯云.移動(dòng)通信[M].西安:西安電子科技大學(xué)出版社,2000.
[14]汪春霆,張俊祥,潘申富,等.衛(wèi)星通信系統(tǒng)[M].北京:國防工業(yè)出版社,2012.
[15]楊巧麗,陸銳敏,馬刈非.GEO多波束衛(wèi)星通信網(wǎng)絡(luò)關(guān)鍵技術(shù)研究[J].通信技術(shù),2009,5(42):158-160.
Research of Co-frequency Interference in Multi-beam Satellite Mobile Communication System
YIN Zhan,SUN Chen-hua
(The 54th Research Institute of CETC,Shijiazhuang Hebei 050081,China)
Abstract:Based on the characteristics of multi-beam satellite mobile communication system,the paper analyzes the difference between theco-frequency interference calculation methods of multi-beam satellite mobile communication system and cellular system.The gain attenuation brought by the angle formed by the receiving terminal and the beam center with the satellite antenna is taken into account.A co-frequency interference algorithm and aco-frequency interference analysis model adapted to the satellite system are introduced.The carrier-to-interference ratio can be used as a reference of carrier optimization to satisfy higher requirement of communication quality.
Key words:co-frequency interference; frequency reuse; multi-beam; carrier planning
中圖分類號:TN927
文獻(xiàn)標(biāo)識碼:A
文章編號:1003-3114(2016)02-23-4
作者簡介:尹展(1990—),男,碩士研究生,主要研究方向:衛(wèi)星移動(dòng)通信。孫晨華(1964—),女,研究員,主要研究方向:衛(wèi)星通信系統(tǒng)及總體技術(shù)。
收稿日期:2016-11-03 國家部委基金資助項(xiàng)目
doi:10.3969/j.issn.1003-3114.2016.02.06
引用格式:尹展,孫晨華.多波束衛(wèi)星移動(dòng)通信系統(tǒng)的同頻干擾研究[J].無線電通信技術(shù),2016,42(2):23-26