何標(biāo),廉果
(襄陽(yáng)市中心醫(yī)院 藥學(xué)部,湖北 襄陽(yáng) 441021)
?
槲皮黃酮對(duì)AMPK/NF-κB信號(hào)通路介導(dǎo)IL-6表達(dá)的影響
何標(biāo),廉果
(襄陽(yáng)市中心醫(yī)院 藥學(xué)部,湖北 襄陽(yáng) 441021)
目的 探討槲皮黃酮介導(dǎo)AMPK/NF-κB信號(hào)通路對(duì)IL-6炎癥因子表達(dá)的影響。方法 RAW264.7細(xì)胞體外培養(yǎng),采用LPS不同濃度及時(shí)間點(diǎn)誘導(dǎo)炎癥模型,ELISA法檢測(cè)IL-6含量;CCK8試驗(yàn)檢測(cè)槲皮黃酮和LPS(1 ng/mL)對(duì)RAW264.7細(xì)胞抑制率的影響;槲皮黃酮處理細(xì)胞1 h后,加入LPS(1 ng/mL)培養(yǎng)48 h,ELISA法檢測(cè)IL-6含量;將細(xì)胞分為5組后,ELISA法檢測(cè)IL-6表達(dá)水平;Western blot檢測(cè)細(xì)胞核中NF-κB蛋白的表達(dá)水平。結(jié)果 LPS處理細(xì)胞后,分泌IL-6的量明顯高于對(duì)照組細(xì)胞;CCK8實(shí)驗(yàn)表明槲皮黃酮和LPS對(duì)細(xì)胞的抑制作用較弱;槲皮黃酮處理后的細(xì)胞分泌IL-6的能力減弱;LPS+AMPK激活劑組、LPS+槲皮黃酮組、LPS+槲皮黃酮+AMPK激活劑組相對(duì)于LPS細(xì)胞組中IL-6的分泌受到抑制,并且細(xì)胞核內(nèi)NF-κB的表達(dá)水平降低。結(jié)論 槲皮黃酮通過(guò)刺激AMPK含量來(lái)抑制NF-κB向細(xì)胞核的轉(zhuǎn)移,導(dǎo)致細(xì)胞核內(nèi)NF-κB表達(dá)降低而起到抑制炎癥因子IL-6的分泌。
槲皮黃酮; 炎癥因子; 信號(hào)通路
槲皮黃酮(quercetin)是一類黃酮類化合物,具有顯著的抗氧化和抗炎癥活性,能夠治療多種疾病,如神經(jīng)退行性疾病、腫瘤、糖尿病及肥胖癥等[1-5]。許多疾病的發(fā)生均與炎癥反應(yīng)相關(guān),若能對(duì)炎癥反應(yīng)進(jìn)行抑制,可有效改善某些疾病。有關(guān)研究表明腺苷酸活化蛋白激酶(AMPK)可介導(dǎo)炎癥反應(yīng)的發(fā)生[6-8],還參與細(xì)胞內(nèi)的代謝和能量的平衡[9]。NF-κB是一種核轉(zhuǎn)錄因子,介導(dǎo)細(xì)胞核內(nèi)許多蛋白因子的轉(zhuǎn)錄,包括調(diào)控炎癥因子的轉(zhuǎn)錄水平。有關(guān)研究報(bào)道,p-AMPK可以通過(guò)抑制NF-κB向細(xì)胞核內(nèi)的轉(zhuǎn)移,從而阻止促炎性細(xì)胞因子的產(chǎn)生[10-12]。因此,核因子NF-κB為AMPK的下游作用蛋白。槲皮黃酮的抗炎癥活性是否通過(guò)AMPK/NF-κB信號(hào)通路來(lái)影響炎癥因子的表達(dá)水平未得到證實(shí)。本實(shí)驗(yàn)通過(guò)細(xì)菌脂多糖(lipopolysaccharides,LPS)誘導(dǎo)RAW264.7細(xì)胞炎癥模型,探討槲皮黃酮調(diào)控炎癥反應(yīng)的分子機(jī)制,為槲皮黃酮的臨床應(yīng)用提供理論依據(jù)。
1.1 材料
槲皮黃酮(Sigma,CAS No.117-39-5,質(zhì)量分?jǐn)?shù)≥99%);AICAR(AMPK激活劑,美國(guó),純度≥99%);LPS(Sigma公司);DMEM培養(yǎng)基(Gibcol公司);胎牛血清(FBS,Gibcol公司);GAPDH抗體、p-AMPK抗體、LaminB、NF-κB抗體(GeneTex,USA);ELISA試劑盒(BOSTER公司);RAW264.7細(xì)胞(南京科佰生物科技有限公司)。
1.2 主要儀器
Spectra max plus 384型酶標(biāo)儀(Molecular Devices公司);Odyssey近紅外掃描儀(LI-COR Biosciences)。
2.1 細(xì)胞培養(yǎng)
RAW264.7細(xì)胞(小鼠單核/巨噬細(xì)胞)用高糖培養(yǎng)基(DMEM)培養(yǎng),成分包括10%FBS、1%A-A(青霉素-鏈霉素),于5%(φ)CO2、37 ℃培養(yǎng)箱中培養(yǎng),待細(xì)胞長(zhǎng)到80%~90%時(shí)便可用于傳代培養(yǎng)。傳代時(shí)先棄去舊培養(yǎng)基,用PBS清洗細(xì)胞2次,再加入胰酶消化細(xì)胞,待細(xì)胞變圓后加入新鮮培養(yǎng)基終止消化,離心倒掉上清,重懸細(xì)胞,并以1∶2比例進(jìn)行傳代。
2.2 LPS誘導(dǎo)RAW264.7細(xì)胞分泌IL-6的研究
2.2.1 不同濃度LPS對(duì)IL-6分泌影響的研究 將RAW264.7細(xì)胞重懸后,以4×106個(gè)/孔細(xì)胞數(shù)接種于6孔板中,待細(xì)胞貼壁生長(zhǎng)到80%~90%時(shí)后,每孔加入不同濃度的LPS(0.1、1、10、50 ng/mL)處理細(xì)胞,另設(shè)空白對(duì)照組,在5%CO2、37 ℃培養(yǎng)箱中繼續(xù)培養(yǎng)24 h,然后收集培養(yǎng)基,采用ELISA試劑盒檢測(cè)IL-6的分泌水平。
2.2.2 不同時(shí)間點(diǎn)LPS對(duì)IL-6分泌的影響 將RAW264.7細(xì)胞重懸后,以4×106個(gè)/孔細(xì)胞數(shù)接種于6孔板中,待細(xì)胞貼壁生長(zhǎng)到80%~90%時(shí)后,每孔加入1 ng/mL的LPS,在5%CO2、37 ℃培養(yǎng)箱中分別培養(yǎng)3、6、12、24、48 h,然后收集細(xì)胞培養(yǎng)基,采用ELISA試劑盒檢測(cè)IL-6的分泌水平,并在不同時(shí)間點(diǎn)設(shè)置空白對(duì)照。
2.3 槲皮黃酮、LPS對(duì)細(xì)胞的毒性實(shí)驗(yàn)
將RAW264.7細(xì)胞重懸后,以1×106個(gè)/孔細(xì)胞數(shù)接種于96孔板中,待細(xì)胞貼壁生長(zhǎng)到80%~90%時(shí),棄去舊培養(yǎng)基,每孔加入含槲皮黃酮(10、40、80 μg/mL)和LPS(1 ng/mL)的新鮮培養(yǎng)基,設(shè)3個(gè)復(fù)孔,于5%CO2、37 ℃培養(yǎng)箱中繼續(xù)培養(yǎng)24 h,然后吸去舊培養(yǎng)基,每孔加入含10 μL CCK8試劑新鮮培養(yǎng)基100 μL,繼續(xù)培養(yǎng)1 h后取出置于酶標(biāo)儀中,于450 nm處測(cè)定吸光度值(A值)。
2.4 槲皮黃酮對(duì)細(xì)胞分泌IL-6的影響
將RAW264.7細(xì)胞重懸后,以4×106個(gè)/孔細(xì)胞數(shù)接種于6孔板中,將細(xì)胞分為對(duì)照組、LPS組、槲皮黃酮(10、40、80 μg/mL)組,待細(xì)胞貼壁生長(zhǎng)到80%~90%時(shí)后,用槲皮黃酮處理細(xì)胞1 h后加入LPS(1 ng/mL)干預(yù)細(xì)胞48 h,然后收集各孔的細(xì)胞上清液,用ELISA試劑盒檢測(cè)IL-6的分泌水平。
2.5 槲皮黃酮通過(guò)刺激AMPK影響IL-6的分泌
將RAW264.7細(xì)胞重懸后,以1×107個(gè)/孔細(xì)胞數(shù)接種于直徑為10 cm2的培養(yǎng)皿中,將細(xì)胞分為對(duì)照組、LPS組、LPS+AMPK激活劑組、LPS+槲皮黃酮組、LPS+槲皮黃酮+AMPK激活劑組。各組加入的槲皮黃酮濃度均為40 μg/mL,干預(yù)1 h后加入LPS(1 ng/mL)干預(yù)細(xì)胞24 h,然后再用AMPK激活劑(AICAR,2 μmol/L)處理細(xì)胞,24 h后收集細(xì)胞上清液及細(xì)胞,采用ELISA試劑盒檢測(cè)上清中IL-6的含量。分別采用細(xì)胞質(zhì)或細(xì)胞核蛋白提取試劑盒提取質(zhì)(核)蛋白,于-80 ℃冰箱保存。
2.6 槲皮黃酮對(duì)p-AMPK(胞質(zhì))NF-κB(胞核)蛋白表達(dá)的影響
采用BCA試劑盒測(cè)定蛋白濃度,采用Western blot技術(shù)檢測(cè)蛋白表達(dá)水平,每孔上樣50 μg蛋白質(zhì)進(jìn)行凝膠電泳,電泳完成后將蛋白轉(zhuǎn)移至PVDF膜,然后一抗孵育過(guò)夜,洗膜3次后二抗孵育1 h,利用Odyssey近紅外掃描儀對(duì)GAPDH、p-AMPK、LaminB、NF-κB表達(dá)水平進(jìn)行檢測(cè)。
2.7 統(tǒng)計(jì)學(xué)處理
3.1LPS促進(jìn)RAW264.7細(xì)胞分泌IL-6
3.1.1 不同濃度LPS對(duì)IL-6分泌的影響 結(jié)果如圖1A所示,不同質(zhì)量濃度的LPS處理細(xì)胞后,均能促進(jìn)IL-6的分泌量,而LPS濃度為1ng/mL時(shí),RAW264.7細(xì)胞分泌的IL-6量最多,與空白對(duì)照組細(xì)胞比較差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。
3.1.2 不同時(shí)間點(diǎn)LPS對(duì)IL-6分泌的影響 結(jié)果如圖1B所示,當(dāng)LPS質(zhì)量濃度為1ng/mL時(shí),RAW264.7細(xì)胞分泌IL-6的量隨時(shí)間的延長(zhǎng)而不斷增加,與空白對(duì)照組細(xì)胞比較差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。
*****2040600150010005000150010005000****105010.10ρ(LPS)/(μg?mL-1)ρ(IL-6)/(pg?mL-1)ABt/hρ(IL-6)/(pg?mL-1)
與空白對(duì)照細(xì)胞比較:*P<0.05。
圖1 LPS在不同濃度及不同時(shí)間點(diǎn)對(duì)RAW264.7細(xì)胞分泌IL-6的影響(n=3)
Figure 1 Influence of LPS at different concentrations and times on the secretion of IL-6 in RAW264.7 cells (n=3)
3.2 槲皮黃酮、LPS對(duì)細(xì)胞存活率的影響
結(jié)果表明,即使是高濃度的槲皮黃酮(80 μg/mL)和LPS(1 ng/mL)對(duì)細(xì)胞的存活率無(wú)明顯抑制效應(yīng),此時(shí)細(xì)胞存活率為(95.66±1.12)%,與對(duì)照組細(xì)胞比較差異無(wú)統(tǒng)計(jì)學(xué)意義(P>0.05)。
3.3 槲皮黃酮對(duì)細(xì)胞分泌IL-6的影響
結(jié)果見圖2,與LPS組比較,槲皮黃酮(10、40、80 μg/mL)細(xì)胞組分泌的IL-6分別降低了45.8%、56.3%、61.4%,差異有統(tǒng)計(jì)學(xué)意義(P<0.05)。
150010005000**104080LPS0ρ(槲皮黃酮)/(ng?mL-1)ρ(IL-6)/(pg?mL-1)
與LPS組比較:P<0.05。
圖2 槲皮黃酮對(duì)LPS誘導(dǎo)的細(xì)胞IL-6分泌的影響
Figure 2 Influence of quercetin on the secretion of IL-6 in RAW264.7 cells stimulated by LPS
3.4 槲皮黃酮通過(guò)刺激AMPK影響IL-6的分泌
結(jié)果如圖3所示,LPS組細(xì)胞中IL-6的分泌量顯著高于對(duì)照組細(xì)胞,進(jìn)一步說(shuō)明細(xì)胞炎癥模型構(gòu)建成功;與LPS組比較,LPS+AMPK激活劑組、LPS+槲皮黃酮組、LPS+槲皮黃酮+AMPK激活劑組中細(xì)胞分泌的IL-6均顯著降低(P<0.05),說(shuō)明槲皮黃酮通過(guò)刺激AMPK來(lái)抑制IL-6的分泌。
***10008006004002000ρ(IL-6)/(pg?mL-1)12345
1.對(duì)照組; 2. LPS組; 3. LPS+AMPK激活劑組; 4. LPS+槲皮黃酮組; 5. LPS+槲皮黃酮+AMPK激活劑組;
與LPS組比較:*P<0.05。
圖3 槲皮黃酮通過(guò)介導(dǎo)AMPK抑制IL-6的分泌
Figure 3 Inhibition of quercetin on IL-6 secretion in RAW 264.7 cells via AMPK
3.5 槲皮黃酮對(duì)p-AMPK(胞質(zhì))NF-κB(胞核)蛋白表達(dá)的影響
GAPDH、p-AMPK、LaminB、NF-κB表達(dá)水平檢測(cè)結(jié)果如圖4所示,LPS+AMPK激活劑組、LPS+槲皮黃酮組、LPS+槲皮黃酮+AMPK激活劑組細(xì)胞中p-AMPK表達(dá)水平相對(duì)于LPS組顯著降低,而核蛋白NF-κB的表達(dá)水平相對(duì)于LPS組顯著升高,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。
12345123451.00.80.60.40.20p-AMPKGAPDHNF-κBLaminBBCAp-AMPK/GAPDHNF-κB/LaminB12345******
1.對(duì)照組; 2. LPS組; 3. LPS+AMPK激活劑組; 4. LPS+槲皮黃酮組; 5. LPS+槲皮黃酮+AMPK激活劑組;
與LPS組比較:*P<0.05。
圖4 槲皮黃酮對(duì)細(xì)胞中p-AMPK和NF-κB蛋白表達(dá)的影響(n=3)
Figure 4 Effect of quercetin on the expression of p-AMPK and NF-κB proteins in RAW264.7 cells (n=3)
RAW264.7細(xì)胞為小鼠巨噬細(xì)胞,屬于免疫細(xì)胞,主要參與非特異性和特異性免疫反應(yīng),其分泌的炎癥因子是導(dǎo)致疾病發(fā)生的關(guān)鍵[13-14]。研究發(fā)現(xiàn)經(jīng)典活化巨噬細(xì)胞可大量分泌促炎因子,如TNF-α、IL-1、IL-6等,而替代活化巨噬細(xì)胞則大量分泌抵抗素樣分子蛋白家族及殼多糖酶等[15]。
LPS是革蘭陰性菌外膜主要成分,對(duì)宿主具有毒害,其釋放入血液中達(dá)到一定程度會(huì)產(chǎn)生內(nèi)毒素血癥。研究表明LPS可以通過(guò)與Toll樣受體(TLR4)結(jié)合激活炎癥信號(hào)通路,包括核因子NF-κB從細(xì)胞質(zhì)向細(xì)胞核內(nèi)的轉(zhuǎn)移,然后與目的基因的啟動(dòng)子結(jié)合,促進(jìn)炎癥因子TNF-α、IL-1、IL-6等的表達(dá),導(dǎo)致炎癥反應(yīng)的發(fā)生[16]。當(dāng)LPS被TLR4受體識(shí)別后,與接頭分子MyD88結(jié)合,而活化IRAK后與腫瘤壞死因子受體相關(guān)因子-6(TRAF6)結(jié)合誘導(dǎo)其活化,再通過(guò)一系列級(jí)聯(lián)反應(yīng),促使NF-κB向細(xì)胞核內(nèi)的轉(zhuǎn)移,刺激炎癥因子的表達(dá)。因此,本實(shí)驗(yàn)采用LPS刺激RAW264.7細(xì)胞來(lái)建立炎癥細(xì)胞模型,為后續(xù)實(shí)驗(yàn)研究槲皮黃酮抗炎癥活性的分子機(jī)制奠定了基礎(chǔ)。
大量研究表明,大量的中藥成分對(duì)免疫系統(tǒng)具有較好的調(diào)節(jié)作用,但其作用的分子機(jī)制研究較少。槲皮黃酮是一種黃酮類物質(zhì),具有較好的抗炎活性作用,而其對(duì)NF-κB信號(hào)通路是否有影響的研究未見相關(guān)報(bào)道。因此,本實(shí)驗(yàn)通過(guò)建立細(xì)胞炎癥模型探討了槲皮黃酮抗炎活性的作用機(jī)制。筆者首先通過(guò)尋找LPS的最佳給藥劑量和給藥時(shí)間來(lái)誘導(dǎo)RAW264.7細(xì)胞炎癥模型;再通過(guò)CCK8實(shí)驗(yàn)證實(shí)了槲皮黃酮和LPS均對(duì)RAW264.7細(xì)胞的存活率無(wú)明顯抑制作用。本實(shí)驗(yàn)結(jié)果表明:與LPS組比較,LPS+AMPK激活劑組、LPS+槲皮黃酮組、LPS+槲皮黃酮+AMPK激活劑組中細(xì)胞分泌的IL-6均顯著降低(P<0.05),說(shuō)明槲皮黃酮通過(guò)刺激AMPK來(lái)抑制IL-6的分泌;LPS+AMPK激活劑組、LPS+槲皮黃酮組、LPS+槲皮黃酮+AMPK激活劑組細(xì)胞中p-AMPK表達(dá)水平相對(duì)于LPS組顯著升高,而核蛋白NF-κB的表達(dá)水平相對(duì)于LPS組顯著降低,差異均有統(tǒng)計(jì)學(xué)意義(P<0.05)。說(shuō)明槲皮黃酮可以刺激AMPK的磷酸化水平,抑制NF-κB向細(xì)胞核內(nèi)的轉(zhuǎn)移,降低炎癥因子IL-6的表達(dá)。
綜上所述,槲皮黃酮的抗炎癥活性可能是通過(guò)作用于AMPK/NF-κB信號(hào)通路來(lái)達(dá)到抗炎的效果,而槲皮黃酮是否存在其他的抗炎機(jī)制,尚需進(jìn)一步研究。
[1] COMALADA M,CAMUESCO D,SIERRA S,et al.Invivoquercitrin antiinflammatory effect involves release of quercetin,which inhibits inflammation through down-regulation of the NF-κB pathway[J]. Eur J Immunol,2005,35(2):584-592.
[2] DOK-GO H,LEE K H,KIM H J,et al. Neuroprotective effects of antioxidative flavonoids,quercetin,(+)- dihydroquercetin and quercetin 3-methyl ether,isolated from opuntia ficus-indica var saboten[J]. Brain Res,2003,965(23):130-136.
[3] LU J,PAPP LV,FANG J,et al. Inhibition of mammalian thioredoxin reductase by some flavonoids:implications for myricetin and quercetin anticancer activity[J]. Cancer Res,2006,66(3):4410-4418.
[4] LU J,ZHENG Y L,LUO L,et al. Quercetin reverses d-galactose induced neurotoxicity in mouse brain[J]. Behav Brain Res,2006,171(9):251-260.
[5] KEMPURAJ D,CASTELLANI M,PETRARCA C,et al. Inhibitory effect of quercetin on tryptase and interleukin-6 release,and histidine decarboxylase mRNA transcription by human mast cell-1 cell line[J]. Clin Exp Med,2006,6(12):150-156.
[6] AHN J,LEE H,KIM S,et al. The anti-obesity effect of quercetin is mediated by the AMPK and MAPK signaling pathways[J]. Biochem Biophys Res Commun,2008,373(5):545-549.
[7] HWANG J T,KWON D Y,YOON S H.AMP-activated protein kinase:a potential target for the diseases prevention by natural occurring polyphenols[J]. New Biotechnol,2009,26(12):17-22.
[8] SUCHANKOVA G,NELSON L E,GERHART-HINES Z,et al. Concurrent regulation of AMP-activated protein kinase and SIRT1 in mammalian cells[J]. Biochem Biophys Res Commun,2009,378(21):836-841.
[9] HARDIE D G.AMPK:a key regulator of energy balance in the single cell and the whole organism[J]. Int J Obes,2008,32(8):S7-S12.
[10] CACICEDO J M,YAGIHASHIi N,KEANEY J J F,et al. AMPK inhibits fatty acid-induced increases in NF-[kappa]B transactivation in cultured human umbilical vein endothelial cells[J]. Biochem Biophys Res Commun,2004,324(14):1204-1209.
[11] PRASAD R,GIRI S,NATH N,et al. 5-Aminoimidazole-4-carboxamide-1-beta-4-ribofuranoside attenuates experimental autoimmune encephalomyelitis via modulation of endothelial-monocyte interaction[J]. J Neurosci Res,2006,84(14):614-625.
[12] GIRI S,NATH N,SMITH B,et al. 5-aminoimidazole-4-carboxamide-1-{beta}-4-ribofuranoside inhibits proinflam-matory response in glial cells:a possible role of AMP-activated protein kinase[J]. J Neurosci,2004,24(16):479-487.
[13] PANT S,DESHMUKH A,GURUMURTHY G S,et al. Inflammation and atherosclerosis-revisited[J]. J Car Pharm Thera,2014,19(2):170-178.
[14] WALLERT M,SCHMOLZ L,KOEBERLE A,et al. alpha-Tocopherol long-chain metabolite alpha-13′-COOH affects the inflammatory response of lipopolysaccharide-activated murine RAW264.7 macrophages[J]. Mol Nut F Res,2015,59(8):1524-1534.
[15] 劉敏,聶漢祥,楊巧玉,等.哮喘小鼠肺間質(zhì)巨噬細(xì)胞的表型特征分析[J].武漢大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2014,35(3):357-361.
[16] BEUTLER B.TLR4 as the mammalian endotoxin sensor[J]. Cur Topic Microb Immunol,2002,270(12):109-120.
(責(zé)任編輯:幸建華)
Influence of quercetin on the expression of IL-6 by AMPK/NF-κB signaling pathway
HE Biao,LIAN Guo
(DepartmentofMedicine,XiangyangCentralHospital,Xiangyang441021,China)
Objective To investigate the influence of quercetin on the secretion of IL-6 by AMPK/NF-κB signaling pathway. Methods RAW264.7 cells were treated with lipopolysaccharide (LPS) at different concentrations and times,and the content of IL-6 was measured using ELISA.The viability of RAW264.7 cells treated with LPS and quercetin were detected by CCK8 assay and IL-6 levels were analyzed by ELISA.The activity of NF-κB was determined by western blot. Results The levels of IL-6 were increased in RAW264.7 cells after LPS challenge.There was no difference between quercetin and LPS on the viability of RAW264.7 cells.Treatment with quercetin inhibited the secretion of IL-6 in a dose-dependent manner.The levels of IL-6 and NF-κB activity were decreased in LPS-stimulated RAW264.7 cells when preconditioned with AMPK activator,quercetin or quercetin with AMPK activator. Conclusion Quercetin may inhibit IL-6 secretion in RAW264.7 cells by upregulation of AMPK activity,which decreases nuclear translocation of NF-κB.
quercetin; inflammatory factor; signaling pathway
2016-05-27
何標(biāo)(1981—),男,主管藥師,主要從事中藥藥理學(xué)研究,Email:384642983@qq.com;通信作者:廉果(1983—),女,主管藥師,主要從事中藥藥理學(xué)研究,Email:362145782@qq.com。
時(shí)間:2016-09-30 10:14
http://www.cnki.net/kcms/detail/44.1413.R.20160930.1014.003.html
R285
A
1006-8783(2016)05-0634-05
10.16809/j.cnki.1006-8783.2016052701
廣東藥科大學(xué)學(xué)報(bào)2016年5期