劉 姣,劉長發(fā),李盛德,李 晉,陶 韋,李璐瑤,馬悅欣,*
1 農(nóng)業(yè)部海洋水產(chǎn)增養(yǎng)殖學(xué)重點開放實驗室, 大連 116023 2 遼寧省高校近岸海洋環(huán)境科學(xué)與技術(shù)重點實驗室, 大連 116023 3 大連海洋大學(xué)理學(xué)院, 大連 116023 4 盤錦海洋與水產(chǎn)研究所, 盤錦 124010
翅堿蓬對鹽沼沉積物微生物生物量及β-氨氧化細(xì)菌群落的影響
——以雙臺河口為例
劉 姣1,劉長發(fā)2,李盛德3,李 晉4,陶 韋2,李璐瑤1,馬悅欣1,*
1 農(nóng)業(yè)部海洋水產(chǎn)增養(yǎng)殖學(xué)重點開放實驗室, 大連 116023 2 遼寧省高校近岸海洋環(huán)境科學(xué)與技術(shù)重點實驗室, 大連 116023 3 大連海洋大學(xué)理學(xué)院, 大連 116023 4 盤錦海洋與水產(chǎn)研究所, 盤錦 124010
為了解翅堿蓬植被對鹽沼沉積物微生物的影響,于2013年7月、8月、9月和11月對雙臺河口裸灘和翅堿蓬植被沉積物(10—15 cm)微生物生物量碳(MBC)、微生物生物量氮(MBN)、16S rRNA基因豐度、潛在硝化速率、β-氨氧化細(xì)菌(β-AOB)豐度及群落進(jìn)行了調(diào)查。結(jié)果表明,不同采樣日期裸灘沉積物MBC、翅堿蓬沉積物β-AOBamoA豐度和兩種生境潛在硝化速率沒有顯著差異;而翅堿蓬沉積物MBC、裸灘沉積物β-AOBamoA豐度、兩種生境MBN和16S rRNA基因豐度呈現(xiàn)時間波動。當(dāng)所有采樣日期的數(shù)據(jù)結(jié)合分析時,翅堿蓬植被顯著影響沉積物MBC、MBN、細(xì)菌16S rRNA基因豐度、潛在硝化速率和β-AOBamoA豐度。從裸灘和翅堿蓬沉積物獲得的β-AOB序列屬于Nitrosospira和Nitrosomonas,翅堿蓬植被對β-AOB群落結(jié)構(gòu)和多樣性均有一定的影響。研究結(jié)果有助于了解翅堿蓬濕地中微生物的作用,為鹽沼生境的生態(tài)修復(fù)技術(shù)提供參考。
翅堿蓬;微生物生物量; 16S rRNA基因豐度;硝化作用;β-AOB
鹽沼在營養(yǎng)轉(zhuǎn)化和滯留中起重要作用。這些生態(tài)系統(tǒng)的特點是具有由根貢獻(xiàn)大量碳的高凈初級生產(chǎn)力[1- 2]??偺紡闹参锔D(zhuǎn)移到沉積物,包括滲出液、分泌物、溶解產(chǎn)物和粘液,影響根附近土壤微生物群落,影響主要的營養(yǎng)供應(yīng)和改變沉積物的理化性質(zhì)[3]。這些有機(jī)質(zhì)的輸入支持密集的微生物群落,鹽沼植被沉積物微生物集合體的豐度和活力顯示植物專一的屬性[4]。
Ria de Aveiro鹽沼沉積物上不同鹽生植物種類調(diào)節(jié)細(xì)菌群落的豐度、垂直分布和組成。沉積物與植物物種相互作用的物理性質(zhì)(深度、水分含量、粒徑分布)調(diào)節(jié)細(xì)菌總細(xì)胞豐度[5]。Empordà和Doana濕地挺水性植物影響其根際細(xì)菌16S rRNA基因豐度[6]。遼河三角洲濕地不同植被類型土壤微生物中細(xì)菌、放線菌和真菌三大類微生物數(shù)量以及土壤微生物生物量碳(MBC)分布都表現(xiàn)為表層(0—10 cm)大于其它兩層(10—20 cm和20—30 cm)。包括翅堿蓬在內(nèi)的八種植被類型土壤中三大類微生物數(shù)量以及土壤MBC不同,其中翅堿蓬土壤中放線菌、真菌和MBC含量相對較低[7]。
硝化作用,硝化細(xì)菌順序氧化氨為亞硝酸鹽和硝酸鹽,在河口和大陸架沉積物它鏈接有機(jī)氮化物的礦化作用和其最終通過反硝化作用或厭氧氨氧化以氣態(tài)產(chǎn)物去除[8]。在位于Savannah的Skidaway島的鹽沼生態(tài)系統(tǒng)研究設(shè)施中高互花米草Spartinaalterniora沉積物潛在硝化速率比矮互花米草沉積物的高10倍,而無植被沉積物的潛在硝化速率位于兩者之間[9]。Lucio del Cangrejo鹽沼蘆葦Phragmitesaustralis根際潛在硝化速率與無植被沉積物有顯著差異[6]。硝化細(xì)菌由系統(tǒng)發(fā)育和生理上不同氨氧化細(xì)菌(AOB)和亞硝酸氧化細(xì)菌組成。其中由AOB催化的氨氧化是硝化作用的限制性步驟,因此前人對鹽沼硝化細(xì)菌的研究主要針對AOB進(jìn)行[6,9- 10]。高互花米草沉積物AOB氨單加氧酶基因(amoA)豐度比矮互花米草沉積物的高1—2個數(shù)量級,也比無植被沉積物的高[9]。Wequetequock-Pawcatuck鹽沼高互花米草和狐米草Spartinapatens沉積物β-AOBamoA豐度顯著高于矮互花米草[10]。Trias等2012研究表明,Empordà和Doana濕地挺水性植物影響其根際AOB豐度[6]。植被類型不同程度地影響濕地沉積物AOB群落結(jié)構(gòu)和多樣性[11- 13]。
雙臺河口濱海潮灘濕地位于遼寧省盤錦市遼東灣北部,已被列入國際重要濕地名錄,擁有大面積的淺海海域、翅堿蓬灘涂、蘆葦田和水稻田,是我國高緯度地區(qū)最大的濱海河口濕地。目前對遼河口(主要范圍位于雙臺河口國家級自然保護(hù)區(qū))蘆葦濕地沉積物硝化作用、AOB數(shù)量和群落研究表明,蘆葦根際效應(yīng)對硝化作用有促進(jìn)作用[14]。AOB多樣性指數(shù)時空分布存在較大差異,鹽分、總氮和有機(jī)質(zhì)含量是AOB數(shù)量時空分布的重要影響因素[15]。不同鹽度脅迫下AOB數(shù)量和群落結(jié)差異較大[16]。但翅堿蓬Suaedaheteroptera對鹽沼微生物生物量及β-氨氧化細(xì)菌群落的影響尚未見報道。本試驗以雙臺河口為例,研究翅堿蓬對鹽沼沉積物微生物生物量、16S rRNA基因豐度、潛在硝化速率、β-AOB豐度和群落結(jié)構(gòu)的影響,為該生境的生態(tài)修復(fù)技術(shù)提供參考。
1.1 樣品采集
于2013年7月4日、8月14日、9月26日和11月22日,在雙臺河口潮灘濕地選取3個翅堿蓬生長良好,密度均勻的采樣站位,S1(40°55.821′N,121°46.764′E)、S2(40°55.409′N,121°46.886′E)和S3(40°55.573′N,121°46.796′E)(圖1),采集各站位10—15 cm沉積物樣品,并在S1和S2附近選取無植被覆蓋的裸灘區(qū)域,采集同樣深度的沉積物樣品。采集的樣品置于滅菌的自封袋內(nèi),低溫保存帶回實驗室。
圖1 采樣站位地理位置圖Fig.1 Location of sampling sites
1.2 樣品測定
1.2.1 MBC和微生物生物量氮(MBN)測定
沉積物MBC和MBN測定采用熏蒸提取法[17],其中熏蒸處理為25℃真空條件下培養(yǎng)24 h,提取過程所用浸提液為0.5 mol/L K2SO4溶液(土液比1:2.5)。浸提液中總有機(jī)碳的測定采用總有機(jī)碳測定儀(TOC VCPH,日本島津)進(jìn)行。MBC(mg/kg濕土)和MBN(mg/kg濕土)分別由下式求得:
MBC=EC/kEC
MBN=mEnin-N
式中,Ec為熏蒸與未熏蒸沉積物總有機(jī)碳的差值,kEC為轉(zhuǎn)化系數(shù),取0.45;Enin-N為熏蒸與未熏蒸沉積物的茚三酮反應(yīng)態(tài)氮的差值,m為轉(zhuǎn)化系數(shù),取值5.0
1.2.2 細(xì)菌16S rRNA基因豐度的定量
利用實時熒光定量PCR(qPCR) 測定沉積物細(xì)菌16S rRNA基因豐度。使用試劑盒[基因組DNA快速抽提試劑盒(土壤),生工生物工程(上海)股份有限公司]提取沉積物總DNA,由生工生物工程(上海)股份有限公司使用細(xì)菌16S rRNA基因通用引物對F357/R518[18]進(jìn)行PCR擴(kuò)增,將純化后的PCR產(chǎn)物克隆到大腸桿菌質(zhì)粒中,用藍(lán)白平板斑篩選出陽性克隆子,經(jīng)過夜培養(yǎng)后提取出質(zhì)粒DNA,作為質(zhì)粒標(biāo)準(zhǔn)品。質(zhì)粒標(biāo)準(zhǔn)品的原始濃度為1.34×109copies/μL,對質(zhì)粒標(biāo)準(zhǔn)品進(jìn)行梯度稀釋并擴(kuò)增,20 μL反應(yīng)體系含Green- 2-Go qPCR mastermix (2×) 10 μL,引物(10 μmol/L)各0.5 μL,模板DNA 2 μL,ddH2O 7 μL。擴(kuò)增程序為95℃酶活化10 min,95℃變性15 s,60℃退火60 s,40個循環(huán)。擴(kuò)增結(jié)束后根據(jù)各稀釋度的已知起始拷貝數(shù)及相應(yīng)Ct值作標(biāo)準(zhǔn)曲線。以沉積物DNA樣品為模板進(jìn)行PCR擴(kuò)增,擴(kuò)增條件與標(biāo)準(zhǔn)品相同,根據(jù)標(biāo)準(zhǔn)曲線計算樣品基因拷貝數(shù)。以每克濕土中所含有的16S rRNA基因拷貝數(shù)表示沉積物中細(xì)菌16S rRNA基因豐度。
1.2.3 潛在硝化速率測定
1.2.4β-AOB豐度定量
采用引物對為amoA- 1F/amoA- 2R[19]qPCR對β-AOBamoA拷貝數(shù)進(jìn)行測定,以每克濕土中所含有的amoA拷貝數(shù)表示沉積物中β-AOB豐度,方法同1.2.2。
1.2.5β-AOB群落結(jié)構(gòu)分析
采用DGGE對沉積物β-AOB的群落結(jié)構(gòu)進(jìn)行分析,用β-AOB的16S rRNA引物進(jìn)行巢式PCR擴(kuò)增,第1次PCR擴(kuò)增所用引物對為βAMOf/βAMOr[20]。50 μL反應(yīng)體系含10×PCR buffer 5 μL,dNTP(2.5 mmol/L) 4 μL,MgCl2(25 mmol/L) 3 μL,引物(10 mmol/L)各2 μL,Taq酶(5 U/μL) 0.5 μL,DNA模板 3 μL,ddH2O補(bǔ)足50 μL。擴(kuò)增程序為94℃預(yù)變性5 min;94℃變性30 s,55℃退火30 s,72℃延伸90 s,30個循環(huán);72℃延伸5 min。第二次PCR擴(kuò)增上游引物為CTO189f-A/B-GC和CTO189f-C-GC,下游引物為CTO654r[21]。50 μL反應(yīng)體系與第1次PCR相同。擴(kuò)增程序為94℃預(yù)變性5 min;94℃變性1 min,65℃退火1 min(每個循環(huán)降低0.5℃),72℃延伸1 min,20個循環(huán);94℃變性1 min,55℃退火1 min,72℃延伸1 min,10個循環(huán);72℃延伸10 min。將PCR產(chǎn)物上樣含45%—55%梯度變性劑的6%聚丙烯酰胺凝膠,在TAE中電泳16 h(溫度60℃,電壓70 V),然后用Genefinder核酸染料避光染色30 min,凝膠成像儀觀察。將優(yōu)勢條帶切下,洗脫,用不帶GC夾的相同引物進(jìn)行PCR再擴(kuò)增,產(chǎn)物送生工生物工程(上海)股份有限公司進(jìn)行測序。將DGGE條帶測序結(jié)果在GeneBank中進(jìn)行BLAST比對,找出最相似序列,用系統(tǒng)發(fā)育分析軟件包MEGA4.0進(jìn)行統(tǒng)計和聚類分析[22]。采用鄰接法(neighbor-joining method)構(gòu)建系統(tǒng)發(fā)育樹,并通過自舉分析(bootstrap)進(jìn)行置信度檢測,自舉數(shù)據(jù)集為1000次。采用Quantity One軟件對DGGE圖譜進(jìn)行分析,得到每個條帶的灰度值,計算β-AOB群落的香農(nóng)-維納指數(shù)(Shannon-Wiener)多樣性指數(shù)(H′),H′=-∑Pi×lnPi=-∑(ni/N)×ln(ni/N),Pi代表第i條帶的灰度占樣品總灰度的比率,ni代表第i條帶的灰度值,N代表該泳道的條帶總灰度值。
1.3 數(shù)據(jù)處理
用SPSS16.0軟件對不同采樣日期裸灘和翅堿蓬沉積物微生物生物量、16S rRNA基因豐度、潛在硝化速率和β-AOB豐度數(shù)據(jù)進(jìn)行單因素方差分析和Tukey多重比較,對同一采樣日期兩種生境數(shù)據(jù)進(jìn)行獨立樣本t檢驗,當(dāng)P< 0.05時存在顯著差異。
2.1 MBC和MBN
裸灘沉積物MBC隨時間沒有顯著差異,但翅堿蓬沉積物MBC呈現(xiàn)一定的時間動態(tài),8月和9月較7月顯著升高(P< 0.05,圖2);所有采樣月份翅堿蓬沉積物MBC顯著高于裸灘(P< 0.05,圖2)。裸灘沉積物MBN 8月最高,7月和11月較低(P< 0.05,圖3),翅堿蓬沉積物MBN 8和9月顯著高于7和11月(P< 0.05,圖3)。當(dāng)所有采樣日期的數(shù)據(jù)結(jié)合分析時,翅堿蓬沉積物MBN顯著高于裸灘(圖3,P< 0.05)。
圖2 沉積物微生物生物量碳Fig.2 Microbial biomass carbon in salt marsh sediments 裸灘(0)不同小寫字母表示不同采樣日期差異顯著(P < 0.05),翅堿蓬(A0)不同大寫字母表示不同采樣日期差異顯著( P < 0.05),星號表示同一采樣日期兩種生境差異顯著( P < 0.05)
圖3 沉積物微生物生物量氮Fig.3 Microbial biomass nitrogen in salt marsh sediments 裸灘(0)不同小寫字母表示不同采樣日期差異顯著(P < 0.05),翅堿蓬(A0)不同大寫字母表示不同采樣日期差異顯著( P < 0.05),星號表示同一采樣日期兩種生境差異顯著( P < 0.05)
2.2 細(xì)菌16S rRNA基因豐度
qPCR結(jié)果顯示,裸灘沉積物16S rRNA基因豐度范圍是2.22×109— 4.07×109拷貝/g (濕重),翅堿蓬沉積物16S rRNA基因豐度范圍是2.82×109— 5.57×109拷貝/g (濕重)(圖4)。兩種生境16S rRNA基因豐度隨時間變化趨勢基本一致,均是7月、8月和9月顯著高于11月(圖4,P< 0.05)。當(dāng)所有采樣日期的數(shù)據(jù)結(jié)合分析時,翅堿蓬植被顯著影響沉積物細(xì)菌16S rRNA基因豐度(圖4,P< 0.05)。
2.3 潛在硝化速率
裸灘沉積物潛在硝化速率波動范圍為0.42—0.59 mgN kg-1h-1;翅堿蓬沉積物潛在硝化速率波動范圍為0.59—0.99 mgN kg-1h-1(圖5)。兩種生境潛在硝化速率隨時間沒有顯著差異。當(dāng)所有采樣日期的數(shù)據(jù)結(jié)合分析時,翅堿蓬沉積物潛在硝化速率顯著高于裸灘(圖5,P< 0.05)。
2.4β-AOB豐度
實時熒光定量PCR結(jié)果表明,裸灘沉積物β-AOBamoA豐度范圍是3.14×105—4.78×105拷貝/g(濕重),8月顯著高于9月和11月(圖6,P< 0.05);翅堿蓬地點的豐度范圍是5.46×105—7.45 ×105拷貝/g (濕重),7月和8月略高于9月和11月,但并無顯著差異(圖6)。當(dāng)所有采樣日期的數(shù)據(jù)結(jié)合分析時,翅堿蓬沉積物β-AOBamoA豐度顯著高于裸灘(圖6,P< 0.05)。
圖4 沉積物16S rRNA基因豐度Fig.4 Abundance of 16S rRNA gene in salt marsh sediments
圖5 沉積物潛在硝化速率Fig.5 Potential nitrification rate in salt marsh sediments
圖6 沉積物β-AOB amoA 豐度Fig.6 Abundance of β-AOB amoA in salt marsh sediments
2.5β-AOB群落結(jié)構(gòu)分析
圖7 巢式PCR擴(kuò)增CTO片段的DGGE指紋圖譜Fig.7 DGGE profile of nested PCR-amplified CTO fragments0-裸灘沉積物,A0-翅堿蓬沉積物
沉積物的DGGE結(jié)果見圖7,裸灘沉積物DGGE條帶數(shù)目為3—5條,翅堿蓬沉積物為3—8條,兩種生境β-AOB優(yōu)勢種群組成有一定差異,條帶7—4、8—3、9—2、9—6、9—7、11—5、11—6和11—7是有植被沉積物特異性條帶。總計對25條DGGE優(yōu)勢條帶序列((Genebank登錄號:KT259283—KT259305,)進(jìn)行BLAST分析,將不同月份獲得的相似性較高的序列合并構(gòu)建系統(tǒng)發(fā)育樹(圖8)。結(jié)果表明,7月2條帶(7—3和7—4)顯示與亞硝化螺菌屬Nitrosospira成員的較高的相似性(98—99%),8月、9月和11月6條帶(8—4、9—1、9—3、9—6、9—8和11—2)與未培養(yǎng)亞硝化單胞菌屬Nitrosomonas sp.克隆相似性97—99%。其中條帶9—6與來源于葡萄牙Douro河河口沉積物尚未培養(yǎng)Nitrosomonassp.克隆MZS—2相似性97%[23]。兩種生境細(xì)菌群落的香農(nóng)維納多樣性指數(shù)見表1,除了8月份,翅堿蓬沉積物細(xì)菌群落多樣性較高。
圖8 沉積物β-AOB DGGE序列的系統(tǒng)發(fā)育樹Fig. 8 Phylogenetic tree of β-AOB derived from the sequences of the excised DGGE bands in salt sediments
采樣日期Samplingdate裸灘沉積物(0)Baremudflatsediment翅堿蓬沉積物(A0)Suaedaheteropterasediment7月July0.830.998月August1.601.099月September1.431.8411月November1.351.83
濕地土壤的微生物生物量碳氮受植被類型的影響,如黃河故道濕地的堿蓬灘地和蘆葦沼澤[24]及扎龍濕地蘆葦生境和草甸生境的MBC和MBN[25],遼河三角洲不同植被類型土壤(檉柳、草地、蘆葦、玉米、森林、堿蓬、翅堿蓬和翅蘆葦)的MBC含量均不相同[7]。本研究中翅堿蓬生長區(qū)沉積物MBC和MBN顯著高于裸灘,說明植物對MBC和MBN有利。翅堿蓬濕地MBC時間變化趨勢與盤錦蘆葦濕地MBC的基本一致[26]。翅堿蓬沉積物MBC和MBN 7月份較低,8月和9月顯著升高,可能與其生長有關(guān),翅堿蓬6—7月份生長最快,需要從土壤中攝取大量營養(yǎng)物質(zhì),在一定程度上形成了與微生物間的營養(yǎng)需求競爭,致使微生物可獲得營養(yǎng)量降低,限制了微生物的生長和繁殖,8月上旬生長緩慢,8月中下旬開花,此時大量植物根系活動能力增強(qiáng),使得土壤有機(jī)質(zhì)礦化作用增大,土壤養(yǎng)分充足,根系分泌物豐富,土壤微生物生物量較高。
前人研究表明,qPCR可用于測定海灣和沿海瀉湖沉積物樣品的細(xì)菌16S rRNA基因豐度[27- 28]。Empordà 和Doana濕地挺水性植物(蘆葦,川蔓藻Ruppiamaritima,流蘇菜莨Ruppiacirrhosa和雙穗雀稗Paspalumdistichum)根際細(xì)菌16S rRNA基因豐度高于無植被沉積物[6]。本研究中翅堿蓬沉積物中細(xì)菌16S rRNA基因豐度顯著高于裸灘,九龍江河口濕地有類似結(jié)果,紅樹林沉積物的16S基因豐度顯著高于裸灘[13],說明植物可促進(jìn)細(xì)菌的生長。本試驗裸灘沉積物細(xì)菌16S rRNA基因豐度范圍與Shinji和Nakaumi湖表層沉積物的細(xì)菌16S rRNA基因豐度范圍一致[28],但高于九龍江河口濕地裸灘(30 cm)沉積物[13],低于膠州灣表層(0—5 cm)沉積物和九龍江河口紅樹林自然保護(hù)區(qū)裸灘(0—5 cm和5—20 cm)沉積物[27,29],其原因之一可能是采樣深度的不同,沉積物深度不同,總碳(TC)、總氮(TN)和TC/TN不同,細(xì)菌16S rRNA基因豐度不同[29]。
Dollhopf等[9]發(fā)現(xiàn)高互花米草沉積物的潛在硝化速率高于裸灘。本研究有類似的結(jié)果,翅堿蓬沉積物潛在硝化速率高于裸灘。因為植物根系有助于沉積物充氧[30],可能有助于促進(jìn)硝化作用[31]。Empordà濕地Basses d′en Coll寡鹽瀉湖和Doana國家公園Lucio del Cangrejo 鹽沼蘆葦根際潛在硝化速率顯著高于無植被沉積物[6]。本試驗翅堿蓬沉積物的潛在硝化速率高于Wequetequock-Pawcatuck鹽沼互花米草及狐米草沉積物(0—2 cm)的潛在硝化速率[10];裸灘沉積物的潛在硝化速率與珠江口表層沉積物的相同[32]。
植被的類型影響濕地沉積物中β-AOBamoA基因的豐度,Wequetequock-Pawcatuck鹽沼互花米草及狐米草沉積物(0—2 cm)的β-AOBamoA豐度有明顯差異[10]。Trias等[6]研究表明,與無植被沉積物比較,Empordà 和Doana濕地挺水性植物(蘆葦,川蔓藻,流蘇菜莨和雙穗雀稗)根際AOB豐度增加。Zhang等[29]研究表明,互花米草的入侵影響九龍江河口沉積物(0—5 cm)amoA豐度。珠江河口紅樹林和蘆葦表層濕地沉積物AOB(最大或然數(shù)法)數(shù)量高于裸地沉積物[32]。本研究翅堿蓬植被顯著影響沉積物β-AOBamoA豐度,表明植物有利于AOB的生存。本研究區(qū)β-AOBamoA豐度范圍與用qPCR測定的其它河口或鹽沼表層(0—5 cm)沉積物的β-AOBamoA豐度范圍一致[8,10,33- 37],高于萊州灣河口潮灘表層(0—5 cm)沉積物的β-AOBamoA豐度[38],但低于污染程度較為嚴(yán)重的香港米埔自然保護(hù)區(qū)河口泥灘沉積物(0—15 cm)的β-AOBamoA豐度[39- 40]。
沉積物潛在硝化速率與β-AOBamoA豐度是否顯著相關(guān),不同學(xué)者研究結(jié)果并不一致。有的鹽沼沉積物[9]和河口沉積物[35,41]潛在硝化速率與β-AOBamoA豐度呈顯著正相關(guān)關(guān)系。Wequetequock-Pawcatuck鹽沼不同植物生長區(qū)沉積物潛在硝化速率與β-AOBamoA豐度相關(guān)關(guān)系不同,只有高互花米草沉積物兩者顯著相關(guān),矮互花米草和狐米草沉積物兩者之間不相關(guān)[10]。其他河口沉積物[34,42]潛在硝化速率與β-AOBamoA豐度之間沒有相關(guān)性。本研究中翅堿蓬沉積物和裸灘沉積物兩者之間也沒有顯著相關(guān)關(guān)系(翅堿蓬沉積物r=0.148,P=0.647;裸灘r=-0.085,P=0.841)。實際上考慮到潛在硝化速率不代表原位速率和因此不能夠準(zhǔn)確反映出硝化種群存在是很重要的。也許是潛在速率試驗期間的條件(如氧氣、銨或鹽度)不是對所有硝化細(xì)菌都是最適的。在未來的研究中,除了豐度之外,測量基因表達(dá)可能有助于更好地量化起作用的種群[10]。
關(guān)于植被對濕地沉積物β-AOB群落的影響,不同學(xué)者針對不同植被得出的結(jié)論并不一致?;セ撞萑肭謱琵埥涌诔练e物(0—5 cm和5—20 cm)β-AOB群落組成沒有影響[29]。在Scheldt河口潮汐淡水沼澤植物對沉積物(0,5,10,20 cm)β-AOB類群影響較小[11]。Li等[12]研究表明,紅樹林樹木強(qiáng)烈影響米埔自然保護(hù)區(qū)濕地沉積物(1—2 cm,20—21 cm)β-AOB群落多樣性。九龍江河口濕地裸灘沉積物(30 cm)β-AOB多樣性高于紅樹林沉積物[13]。從九龍江河口裸灘沉積物獲得序列屬于Nitrosospira,而紅樹林沉積物超過75%的所有細(xì)菌amoA序列和所有優(yōu)勢amoA序列屬于Nitrosomonas[13]。Wequetequock-Pawcatuck鹽沼(0—2 cm)不同植被類型(互花米草及狐米草沉積物)沉積物的β-AOBamoA克隆文庫獲得的序列屬于Nitrosospira[10]。本實驗從裸灘和翅堿蓬沉積物獲得的序列屬于Nitrosospira和Nitrosomonas,翅堿蓬植被對β-AOB群落組成和多樣性均有一定的影響。
不同采樣日期裸灘沉積物MBC、翅堿蓬地點的β-AOBamoA豐度和兩種生境潛在硝化速率沒有顯著差異;翅堿蓬沉積物MBC、裸灘沉積物的β-AOBamoA豐度和兩種生境MBN及細(xì)菌16S rRNA基因豐度呈現(xiàn)時間變化。結(jié)合所有采樣日期的數(shù)據(jù)分析表明,翅堿蓬植被顯著影響沉積物MBC、MBN、細(xì)菌16S rRNA基因豐度、潛在硝化速率和β-AOBamoA豐度;植物對β-AOB 群落組成和多樣性均有一定的影響。
[1] Schubauer J P, Hopkinson C S. Above- and belowground emergent macrophyte production and turnover in a coastal marsh ecosystem, Georgia. Limnology and Oceanography, 1984, 29(5): 1052- 1065.
[2] Mendon?a A, Duarte A C, Santos E B H. Spectroscopic properties of sedimentary humic acids from a salt marsh (Ria de Aveiro, Portugal): comparison of sediments colonized byHalimioneportulacoides(L.) Aellen and non-vegetated sediments. Biogeochemistry, 2004, 69(2): 159- 174.
[3] Singh B K, Millard P, Whiteley A S, Murrell J C. Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends in Microbiology, 2004, 12(8): 386- 393.
[4] Burke D J, Hamerlynck E P, Hahn D. Interactions among plant species and microorganisms in salt marsh sediments. Applied and Environmental Microbiology, 2002, 68(3): 1157- 1164.
[5] Oliveira V, Santos A L, Aguiar C, Santos L, SalvadorC, Gomes N C M, Silva H, Rocha S M, Almeida A, Cunha. Prokaryotes in salt marsh sediments of Ria de Aveiro: Effects of halophyte vegetation on abundance and diversity. Estuarine, Coastal and Shelf Science, 2012, 110: 61- 68.
[6] Trias B, Ruiz-Rueda O, García-Lledó A, Vilar-Sanz A, López-Flores R, Quintana X D, Hallin S, Baeras L. Emergent macrophytes act selectively on ammonia-oxidizing bacteria and archaea. Applied and Environmental Microbiology, 2012, 78(17): 6352- 6356.
[7] 趙先麗, 周廣勝, 呂國紅. 遼河三角洲不同植被類型土壤微生物特征研究. 土壤通報, 2009, 40(6): 1266- 1269.
[8] Santoro A E, Francis C A, De Sieyes N R, Boehm A B. Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environmental Microbiology, 2008, 10(4): 1068- 1079.
[9] Dollhopf S L, Hyun J H, Smith A C, Adams H J, O′Brien S, Kostka J E. Quantification of ammonia-oxidizing bacteria and factors controlling nitrification in salt marsh sediments. Applied and Environmental Microbiology, 2005, 71(1): 240- 246.
[10] Moin N S, Nelson K A, Bush A, Bernhard A E. Distribution and diversity of archaeal and bacterial ammonia oxidizers in salt marsh sediments. Applied and Environmental Microbiology, 2009, 75(23): 7461- 7468.
[11] Laanbroek H J, Speksnijder A G C L. Niche separation of ammonia-oxidizing bacteria across a tidal freshwater marsh. Environmental Microbiology, 2008, 10(11): 3017- 3025.
[12] Li M, Cao H L, Hong Y G, Gu J D. Spatial distribution and abundances of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB) in mangrove sediments. Applied Microbiology and Biotechnology, 2011, 89(4): 1243- 1254.
[13] Luo Z X, Qiu Z Z, Wei Q S, Du Laing G, Zhao Y L, Yan C Z. Dynamics of ammonia-oxidizing archaea and bacteria in relation to nitrification along simulated dissolved oxygen gradient in sediment-water interface of the Jiulong river estuarine wetland, China. Environmental Earth Sciences, 2014, 72(7): 2225- 2237.
[14] 白潔, 陳春濤, 趙陽國, 田偉君, 董曉, 尹寧寧. 遼河口濕地沉積物硝化細(xì)菌及硝化作用研究. 環(huán)境科學(xué), 2010, 31(12): 3011- 3017.
[15] 白潔, 董曉, 趙陽國. 遼河口蘆葦濕地土壤氨氧化菌的時空變化. 中國環(huán)境科學(xué), 2011, 31(11): 1870- 1874.
[16] 鐘麗華, 董曉, 白潔, 王妍, 趙陽國. 遼河口蘆葦濕地氨氧化菌群落結(jié)構(gòu)與土壤鹽分的關(guān)系. 中國海洋大學(xué)學(xué)報, 2013, 43(4): 94- 99.
[17] 吳金水, 林啟美, 黃巧云, 肖和艾. 土壤微生物生物量測定方法及其應(yīng)用. 北京: 氣象出版社, 2006: 54- 74.
[18] Muyzer G, de Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 1993, 59(3): 695- 700.
[19] Rotthauwe J H, Witzel K P, Liesack W. The ammonia monooxygenase structural geneamoAas a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Applied and Environmental Microbiology, 1997, 63(12): 4704- 4712.
[20] McCaig A E, Embley T M, Prosser J I. Molecular analysis of enrichment cultures of marine ammonia oxidisers. FEMS Microbiology Letters, 1994, 120(3): 363- 367.
[21] Kowalchuk G A, Stephen J R, De Boer W, Prosser J I, Embley T M, Woldendorp J W. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Applied and Environmental Microbiology, 1997, 63(4): 1489- 1497.
[22] Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) Software Version 4. 0. Molecular Biology and Evolution, 2007, 24(8): 1596- 1599.
[23] Magalh?es C, Bano N, Wiebe W J, Hollibaugh J T, Bordalo A A. Composition and activity of beta-Proteobacteria ammonia-oxidizing communities associated with intertidal rocky biofilms and sediments of the Douro River estuary, Portugal. Journal of Applied Microbiology, 2007, 103(4): 1239- 1250.
[24] 朱新玉. 黃河故道濕地土壤質(zhì)量因子與景觀類型的耦合關(guān)系. 資源科學(xué), 2015, 37(1): 85- 93.
[25] 張靜, 馬玲, 丁新華, 陳旭日, 馬偉. 扎龍濕地不同生境土壤微生物生物量碳氮的季節(jié)變化. 生態(tài)學(xué)報, 2014, 34(13): 3712- 3719.
[26] 趙先麗, 周廣勝, 周莉, 呂國紅, 賈慶宇, 謝艷兵. 盤錦蘆葦濕地土壤微生物生物量C的季節(jié)動態(tài). 土壤通報, 2008, 39(1): 43- 46.
[27] Dang H Y, Li J, Chen R P, Wang L, Guo L Z, Zhang Z N, Klotz M G. Diversity, abundance, and spatial distribution of sediment ammonia-oxidizing betaproteobacteria in response to environmental gradients and coastal eutrophication in Jiaozhou Bay, China. Applied and Environmental Microbiology, 2010, 76(14): 4691- 4702.
[28] Tsuboi S, Amemiya T, Seto K, Itoh K, Rajendran N. The ecological roles of bacterial populations in the surface sediments of coastal lagoon environments in Japan as revealed by quantification and qualification of 16S rDNA. World Journal of Microbiology and Biotechnology, 2013, 29(5): 759- 774.
[29] Zhang Q F, Peng J J, Chen Q, Li X F, Xu C Y, Yin H B, Yu S. Impacts ofSpartinaalterniflorainvasion on abundance and composition of ammonia oxidizers in estuarine sediment. Journal of Soils and Sediments, 2011, 11(6): 1020- 1031.
[30] Mendelssohn I A, McKee K L, Patrick W H Jr. Oxygen deficiency inSpartinaalternifloraroots: metabolic adaptation to anoxia. Science, 1981, 214(4519): 439- 441.
[31] An S, Joye S B. Enhancement of coupled nitrification-denitrification by benthic photosynthesis in shallow estuarine sediments. Limnology and Oceanography, 2001, 46(1): 62- 74.
[32] 王玉萍, 王立立, 李取生, 葉妹. 珠江河口濕地沉積物硝化作用強(qiáng)度及影響因素研究. 生態(tài)科學(xué), 2012, 31(3): 330- 334.
[33] Mosier A C, Francis C A. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environmental Microbiology, 2008, 10(11): 3002- 3016.
[34] Zheng Y L, Hou L J, Newell S, Liu M, Zhou J L, Zhao H, You L L, Cheng X L. Community dynamics and activity of ammonia-oxidizing prokaryotes in intertidal sediments of the Yangtze estuary. Applied and Environmental Microbiology, 2014, 80(1): 408- 419.
[35] Bernhard A E, Tucker J, Giblin A E, Stahl D A. Functionally distinct communities of ammonia-oxidizing bacteria along an estuarine salinity gradient. Environmental Microbiology, 2007, 9(6): 1439- 1447.
[36] Cao H L, Hong Y G, Li M, Gu J D. Diversity and abundance of ammonia-oxidizing prokaryotes in sediments from the coastal Pearl River estuary to the South China Sea. Antonie van Leeuwenhoek, 2011, 100(4): 545- 556.
[37] Jin T, Zhang T, Ye L, Lee O O, Wong Y H, Qian P Y. Diversity and quantity of ammonia-oxidizing archaea and bacteria in sediment of the Pearl River Estuary, China. Applied Microbiology and Biotechnology, 2011, 90(3): 1137- 1145.
[38] Zhang X L, Agogué H, Dupuy C, Gong J. Relative abundance of ammonia oxidizers, denitrifiers, and anammox bacteria in sediments of hyper-nutrified estuarine tidal flats and in relation to environmental conditions. Clean-Soil, Air, Water, 2014, 42(6): 815- 823.
[39] Cao H L, Li M, Hong Y G, Gu J D. Diversity and abundance of ammonia-oxidizing archaea and bacteria in polluted mangrove sediment. Systematic and Applied Microbiology, 2011, 34(7): 513- 523.
[40] Wang Y F, Feng Y Y, Ma X J, Gu J D. Seasonal dynamics of ammonia/ammonium-oxidizing prokaryotes in oxic and anoxic wetland sediments of subtropical coastal mangrove. Applied Microbiology and Biotechnology, 2013, 97(17): 7919- 7934.
[41] Bernhard A E, Landry Z C, Blevins A, de la Torre J R, Giblin A E, Stahl D A. Abundance of ammonia-oxidizing archaea and bacteria along an estuarine salinity gradient in relation to potential nitrification rates. Applied and Environmental Microbiology, 2010, 76(4): 1285- 1289.
[42] Caffrey J M, Bano N, Kalanetra K, Hollibaugh J T. Ammonia oxidation and ammonia-oxidizing bacteria and archaea from estuaries with differing histories of hypoxia. The ISME Journal, 2007, 1(7): 660- 662.
Effects ofSuaedaheteropteraon microbial biomass and the community structure ofβ-ammonia-oxidizing bacteria in salt marsh sediments: The case of the Shuangtai estuary
LIU Jiao1, LIU Changfa2, LI Shengde3, LI jin4, TAO Wei2, LI Luyao1, MA Yuexin1,*
1KeyLaboratoryofMariculture&StockEnhancementinNorthChina′sSeaofMinistryofAgriculture,DalianOceanUniversity,Dalian116023,China2KeyLaboratoryofMarineEnvironmentalResearchofLiaoningHigherEducation,Dalian116023,China3SchoolofScience,DalianOceanUniversity,Dalian116023,China4InstituteofOceanandFisheriesofPanjin,Panjin124010,China
The goal of this study was to examine the impacts of sedimentary colonization bySuaedaheteropteraon benthic microbial biomass carbon (MBC), microbial biomass nitrogen (MBN), 16S rRNA gene abundance, potential nitrification rate, and the richness and community structure ofβ-ammonia-oxidizing bacteria (β-AOB) in a salt marsh located in Shuangtai, China. Sediment samples (10—15 cm) were collected from a site colonized byS.heteropteraand from an adjacent unvegetated mudflat in July, August, September, and November of 2013. No significant differences in MBC were detected in unvegetated sediment among the various sampling dates, whereas MBC in vegetated sediment increased significantly in August and September compared with July (P﹤0.05); overall, MBC in vegetated sediment was significantly higher than in unvegetated sediment (P﹤0.05). A similar temporal trend was detected for MBN in the two sites, with higher values recorded in August than in July and November (P﹤0.05); in addition, MBN in vegetated sediment increased significantly in July, August, and September compared with MBN in unvegetated sediment (P﹤0.05). Bacterial 16S rRNA gene abundance, measured using a real-time quantitative PCR technique, was significantly higher in both habitats in July, August, and September than in November (P﹤0.05), and was significantly higher in vegetated sediment in August, September, and November than in unvegetated sediment (P﹤0.05). No significant differences in potential nitrification rates were detected within the two habitats for any of the sampling dates, but potential nitrification rate increased significantly in vegetated sediment in August and September compared with unvegetated sediment (P﹤0.05). The abundance ofβ-AOB ammonia monooxygenase subunit A gene (amoA) in unvegetated sediment was significantly higher in August than in September and November (P﹤0.05), but no difference was detected in the abundance ofβ-AOBamoAin vegetated sediment among the different sampling dates. However,β-AOBamoAabundance in vegetated sediment was significantly higher than in unvegetated sediment at all sampling dates (P﹤0.05), with the exception of September. When data from all sampling dates were combined, MBN, 16S rRNA gene abundance, potential nitrification rate and abundance ofβ-AOBamoAwere significantly higher in vegetated sediment than in unvegetated sediment (P﹤0.05). The community structure ofβ-AOB was analyzed using the denaturing gradient gel electrophoresis (DGGE) technique. Sequences affiliated with species ofNitrosospiraandNitrosomonaswere recovered from the two habitats. Colonization byS.heteropterainfluenced the community structure and diversity ofβ-AOB. These results add to our understanding of the role microorganisms play in sediment dominated byS.heteropteraand provide a reference for the ecological restoration of salt marshes.
Suaedaheteroptera; microbial biomass; 16S rRNA gene abundance; nitrification;β-AOB
國家自然科學(xué)基金資助項目(41171389);國家海洋公益性行業(yè)科研專項資助項目(201305043);遼寧省高等學(xué)校優(yōu)秀科技人才支持計劃資助項目(LR2013035)
2015- 05- 07;
日期:2016- 04- 12
10.5846/stxb201505070946
*通訊作者Corresponding author.E-mail:mayuexin@dlou.edu.cn
劉姣,劉長發(fā),李盛德,李晉,陶韋,李璐瑤,馬悅欣.翅堿蓬對鹽沼沉積物微生物生物量及β-氨氧化細(xì)菌群落的影響——以雙臺河口為例.生態(tài)學(xué)報,2016,36(24):8081- 8090.
Liu J, Liu C F, Li S D, Li J, Tao W, Li L Y, Ma Y X.Effects ofSuaedaheteropteraon microbial biomass and the community structure of β-ammonia-oxidizing bacteria in salt marsh sediments: The case of the Shuangtai estuary.Acta Ecologica Sinica,2016,36(24):8081- 8090.