• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Syntheses,Structures and DNA Interaction of Zn(Ⅱ)and Pb(Ⅱ)Complexes Based on Imidazo-phenanthrolin-phenoxy Acetic Acid

    2016-04-05 08:11:19SHENWeiHUWeiJiWUXiaoYongZHAOGuoLiang
    無機化學(xué)學(xué)報 2016年6期
    關(guān)鍵詞:網(wǎng)狀結(jié)構(gòu)浙江師范大學(xué)配位

    SHEN WeiHU Wei-JiWU Xiao-YongZHAO Guo-Liang

    (1College of Chemistry and Life Science,Zhejiang Normal University,Jinhua,Zhejiang 321004,China)

    (2Xingzhi College,Zhejiang Normal University,Jinhua,Zhejiang 321004,China)

    Syntheses,Structures and DNA Interaction of Zn(Ⅱ)and Pb(Ⅱ)Complexes Based on Imidazo-phenanthrolin-phenoxy Acetic Acid

    SHEN Wei1HU Wei-Ji1WU Xiao-Yong1ZHAO Guo-Liang*,,2

    (1College of Chemistry and Life Science,Zhejiang Normal University,Jinhua,Zhejiang 321004,China)

    (2Xingzhi College,Zhejiang Normal University,Jinhua,Zhejiang 321004,China)

    Two novel complexes[Zn(PIMPHC)2]n(1),{[Pb(OIMPHC)2]·4H2O}n(2)were synthesized under hydrothermal reactions by using 2-(4-(1H-imidazo-2-[4,5-f][1,10]phenanthrolinyl)phenoxy)acetic acid(HPIMPHC)and 2-(2-(1H-imidazo-2-[4,5-f][1,10]phenanthrolinyl)phenoxy)acetic acid(HOIMPHC).Complex 1 crystallizes in orthorhombic system with space group Pbcn.Zn(Ⅱ)is six-coordinated by two PIMPHC-anions,forming a distorted octahedral coordination geometry.Complex 2 crystallizes in monoclinic system with space group P21/n,Pb(Ⅱ)is seven-coordinated,forming a distorted pentagonal bipyramid coordination geometry.The fluorescence spectra indicate that the interaction of the complexes with DNA are stronger than ligands.CCDC:1476033,1;1476034,2.

    2-(4-(1H-imidazo-2-[4,5-f][1,10]phenanthrolinyl)phenoxy)acetic acid;2-(2-(1H-imidazo-2-[4,5-f][1,10]phenanthrolinyl) phenoxy)acetic acid;Zn(Ⅱ);Pb(Ⅱ);DNA-binding

    Rational designs and syntheses of coordination polymers have attracted great interests in recent decades,owing to their rich structural aesthetics[1-5]and functionalities[6-9].According to some factors of formation,molecularstructuresandpropertiesof coordination polymers can be speculated,such asmetal ions(nodes),ligands(linkers),metal-ligand ratio,supramolecular interaction,reaction conditions. Therefore,itispossibletodevelopatargeted architecture through the choice of organic ligands and metal ions.

    So far,extensive work has been carried out by using heterocycliccarboxylate ligands[10-17],because these ligands containing both N-and O-donors are good choices to build multi-configurations.Carboxylate groups often play important roles in many organic ligands,which have different coordinating modes, such as monodentate terminal,bidentate bridging, bidentate chelating modes.The coordination modes make the expected structures much more robust.What is more,the flexibility of carboxylate groups offers the possibilities to form different topologies.Deprotonated carboxylategroupscanformhydrogenbondsto participateinsupermolecularself-assemblywith coordination bonds as acceptors.Heterocyclic rings are expected to show robust coordination modes in the construction,andtheπ-πstackinginteractions between heterocyclic rings make the whole framework further stable.

    Asismentionedabove,theadvantagesof heterocyclic carboxylate ligands offer a self-assembly solution that can be expected and controlled in certain extent.In this paper,two novel ligands(2-(4-(1H-imidazo-2-[4,5-f][1,10]phenanthrolinyl)phenoxy)acetic acid(HPIMPHC)and 2-(2-(1H-imidazo-2-[4,5-f][1,10] phenanthrolinyl)phenoxy)acetic acid(HOIMPHC))were designed and synthesized,thereby two novel complexes ([Zn(PIMPHC)2]n(1),{[Pb(OIMPHC)2]·4H2O}n(2))were synthesized by hydrothermal reaction method.The interaction between complexes,ligands and ct-DNA were studied by EtBr fluorescence probe.

    1 Experimental

    1.1 Chemical and materials

    All of the reagents were of analytical grade and used without further purification.Calf thymus DNA (ct-DNA)was prepared with 0.1 mol·L-1NaCl.The concentration of ct-DNA was 200 μg·mL-1(cDNA= 3.72×10-4mol·L-1).The ct-DNA solutions were stored at 4℃and gave a ratio of UV-Vis absorbance at 260 and 280 nm,A260/A280=1.8,indicating that DNA was sufficiently free of protein.The buffer solution,0.0l mol·L-1Tris-HCl(tris(hydroxymethyl)aminomethane hydrochloride(pH=7.4)),was prepared with doubledistilled water.

    ElementalanalysiswasperformedonCHN elemental analyzer,Elementar Vario ELⅢ.FTIR spectra was recorded on a Nicolet NEXUS 670 FTIR spectrophotometer,using KBr discs in the range of 4 000~400 cm-1.Crystallographic data of the complexes were collected on a Bruker Smart ApexⅡCCD diffractometer.A Mettler Toledo thermal analyzer TGA/SDTA 851ewas used to carry out the thermoanalytical analysis with a heating rate of 10℃·min-1from 30 to 800℃in air atmosphere.Fluorescence spectra were measured at room temperature with an Edinburgh FL-FS920 TCSPC system.1H NMR spectra of ligands were acquired with Bruker AV400 NMR instrument in DMSO-d6solution with TMS as internal standard.

    1.2 Synthesis of ligands

    2-(4-(1H-imidazo-2-[4,5-f][1,10]phenanthrolinyl) phenoxy)acetic acid(HPIMPHC)and 2-(2-(1H-imidazo-2-[4,5-f][1,10]phenanthrolinyl)phenoxy)acetic acid(HOIMPHC)were synthesized according to literature(Fig.1)[18-20].

    1.2.1 2-(4-formylphenoxy)acetic acid[18]

    Chloracetic acid(2.5 mL,50%)was added to 4-hydroxybenzaldehyde(1 g)and NaOH solution(3.5 mL,33%),and gently heated on water bath(80℃)for 1 h.Then the mixture was immediately acidified with concentratedHCl,extractedwithetherand5% Na2CO3solution.Na2CO3extract was acidified with concentrated HCl.White powder was isolated and separated by filtration.The product thus obtained was recrystallized from ethanol.Yield:86%.

    1.2.2 1,10-phenanthroline-5,6-dione[19]

    1,10-phenanthroline(1.20 g,6 mmol)was added to concentrated H2SO4(20 mL)and concentrated HNO3(10 mL)at 0℃.The mixture was refluxing at 80℃for 2 h,then cooled to room temperature.The contents were diluted with deionized water(400 mL),and neutralized with NaHCO3,then extracted with methylene chloride,and dried over anhydrous Na2SO4. Yellow-brown powder was obtained.Yellow-brown crystals were recrystallized from methanol.Yield: 90%.

    Fig.1Synthesis of HPIMPHC and HOIMPHC

    1.2.32 -(4-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenoxy)acetic acid(HPIMPHC)[20]

    1,10-phenanthroline-5,6-dione(5 mmol,1.05 g) and 2-(4-formylphenoxy)acetic acid(5 mmol,0.90 g) were added in the NH4Ac-HAc buffer solution(10%, 20 mL).The mixture was heated in the open flask at 80℃.Deionized water was required to control the volume of solution.Yield:80%.Anal.Calcd.for C21H13N4O3(%):C,68.29;H,3.54;N,15.17;Found (%):C,68.25;H,3.58;N,15.23.IR(KBr,cm-1):3 418 (br),2 358(w),1 611(s),1 579(m),1 559(m),1 538 (m),1484(m),1 458(m),1 422(m),1 362(w),1 338(w), 1 315(w),1 295(w),1 254(m),1 190(m),1 127(w), 1 059(m),958(w),846(w),822(w),742(w),721(m), 694(w).1H NMR(400MHz,DMSO-d6):δ 8.90~9.03 (4H)for phenanthroline-H,7.83~7.84(2H)for phenanthroline-H,7.17~7.19(2H)for benzene-H,8.21~8.23 (2H)for benzene-H,4.83(2H,s,-CH2-),13.66(H,-OH).

    1.2.32 -(2-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenoxy)acetic acid(HOIMPHC)

    The synthetic process of HOIMPHC is the same as HPIMPHC.2-hydroxybenzaldehyde was used instead of 4-hydroxybenzaldehyde.Yellow-brown powder was recrystallized from methanol.Yield:70.1%,Anal. Calcd.for C21H13N4O3(%):C,68.29;H,3.54;N,15.17; Found(%):C,68.22;H,3.53;N,15.32.IR(KBr,cm-1): 3 440(br),2 362(w),1 680(s),1 584(m),1 562(m),1 544 (m),1488(m),1 462(m),1 433(m),1 375(w),1 345(w), 1 323(w),1 294(w),1 252(m),1 195(m),1132(w),1 065 (m),959(w),841(w),805(w),752(w),735(m),704(w).1H NMR(400 MHz,DMSO-d6):δ 8.42~8.94(4H)for phenanthroline-H,7.73~7.79(2H)for phenanthroline-H,7.15,7.24,7.51,7.76(4H)for benzene-H,4.76(2H, s,-CH2-),14.45(H,-OH).

    1.3 Synthesis of complexes

    [Zn(PIMPHC)2]n(1):A mixture of HPIMPHC (0.148 g,0.4 mmol),NaOH(0.016 g,0.4 mmol),ZnSO4·7H2O(0.058 g,0.2 mmol),and H2O/EtOH(20 mL,1∶1,V/V)was sealed in a 25 mL Teflon-lined stainless steel vessel and heated at 160℃for 3 d.Then the mixture was cooled to room temperature at a rate of 10℃·h-1,with colorless crystals appearing at the bottomoftheTeflonvessel.Afterwashedwith distilled water and dried in air,the crystals suitable for single-crystal analysis and physical measurements were obtained.Yield:45%(based on HPIMPHC). Anal.Calcd.for C42H26N8O6Zn(%):C,62.68;H,3.23; N,13.93;Found(%):C,62.54;H,3.19;N,13.87;IR (KBr,cm-1):3 072(w),2 354(w),1 608(s),1 527(m), 1 479(s),1 454(m),1 362(m),1 075(m),837(m),812 (m),733(m),694(m),635(m).

    {[Pb(OIMPHC)2]·4H2O}n(2):The preparation of 2 was similar to 1 using HOIMPHC and Pb(NO3)2instead of HPIMPHC andYield:38%(based on HOIMPHC).Anal.Calcd.for C42H34N8O10Pb(%):C, 49.51;H,3.34;N,11.00;Found(%):C,49.40;H, 3.29;N,10.96;IR(KBr,cm-1):3 424(w),2 361(w),1 607(s),1 514(s),1 481(s),1 446(m),1 388(m),1 358(m), 1 259(m),1 224(m),1 067(m),836(m),817(m),740 (m),701(m),638(m).

    1.4 Single X-ray crystallographic study

    The single crystal of the complexes with approximate dimensions were mounted on a Bruker Smart Apex CCD diffractometer.A graphite monochromated Mo Kα radiation(λ=0.071 073 nm)was used to collect the diffraction data at 296 K.The structures were solved by SHELXS-97 program package[21-22]and refined with the full-matrix least-squares technique based on F2using the SHELXTL-97 program package[23].All non-H atoms were anisotropically refined.Remaining hydrogen atoms were added in calculated positons and refined as riding atoms with a common fixed isotropic thermal parameter.Hydrogen atoms on water molecules were located in a difference Fourier map and included in the subsequent refinement using restrains(d(O-H)= 0.085 nm)with Uiso(H)=1.5 Ueq(O).Detail information about the crystal data is summarized in Table 1. Selected interatomic distances and bond angles are given in Table 2 and Table 3.

    CCDC:1476033,1;1476034,2.

    Table 1Crystallographic data for complex 1 and complex 2

    Table 2Selected bond lengths(nm)and angle(°)for 1

    Continued Table 2

    Table 3Selected bond lengths(nm)and angle(°)for 2

    2 Results and discussion

    2.1 Crystal structure of[Zn(PIMPHC)2]n(1)

    Single-crystal analysis shows that 1 crystallizes in orthorhombic system with space group Pbcn.The asymmetric unit cell contains one Zn(Ⅱ)ion and two PIMPHC-anions.The Zn(Ⅱ)exhibits distorted sixcoordinatedgeometrybyconsideringshort-range atomic interactions.Each Zn(Ⅱ)is bound to four nitrogen atoms(N1,N2,N1iii,N2iii,Zn-N 0.220 1(2)~0.221 2(3)nm)and two oxygen atoms(O2i,O2ii,Zn-O 0.203 4(2)nm).PIMPHC-adopts a μ2-κO∶κ2N coordination fashion to connect two Zn(Ⅱ)ions.The selected distances and bond angles for complex 1 fall in the normal regions which are comparable to the values reported in literatures[24-26].

    Fig.2Coordinated environment of complex 1

    Intheμ2-κO∶κ2Ncoordinationfashion,the phenanthroline unit chelates to one Zn(Ⅱ)and the deprotonated carboxylate unit is bound to another. The coordination mode of the μ2-PIMPHC-forms metallacyclic rings,which can be described as a 2D (2,4)-connected binodal network with the Schl?fli symbol of(84·122)2·(8)2.Every plane is parallel to each other.Through π…π stacking interaction of ligands and hydrogen bonds,2D polymers form 3D structures.

    2.2 Crystal structure of{[Pb(OIMPHC)2]·4H2O}n(2)

    Fig.3(a)Single-layer 2D structure of complex 1;(b)3D packing diagram of complex 1;(c)2D topological structure of complex 1

    Single-crystal analysis shows that 2 crystallizes in monoclinic crystallographic system with space group P21/n.The asymmetric unit cell contains one Pb(Ⅱ) ion,two crystallographically independent OIMPHC-anions and four water molecules.The Pb(Ⅱ)exhibits highly distorted seven-coordinated geometry by considering short-range atomic interactions.Each Pb(Ⅱ)is bound to four nitrogen atoms(N1,N2,N3,N4,Pb-N 0.253 5(4)~0.259 2(4)nm)and three oxygen atoms (O2,O4,O5,Pb-O 0.281 4(4)~0.299 8(3)nm)of ligands.OIMPHC-adopts μ2-κO∶κ2N and μ2-κ2O∶κ2N coordination fashions to connect two Pb(Ⅱ)ions.The selected distances and bond angles for complex 2 fall in the normal regions which are comparable to the values reported in literatures[27-32].In μ2-κO∶κ2N coordination fashion,the phenanthroline unit chelates to one Pb(Ⅱ)ion and the deprotonated carboxylate unit is bound to another.In μ2-κ2O∶κ2N coordination fashion, the phenanthroline unit chelates to one Pb(Ⅱ),and the deprotonated carboxylate unit chelates to another. These coordination modes forms metallacyclic rings, which can be described as a 2D(2,2,3)network with the Schl?fli symbol of(83)2·(8).Every plane is parallel to each other.

    In the 2D polymers,the coordinating competition between phenanthroline unit and carboxylate unit need to be considered.To simplify the demonstration, the ligand coordinated by one oxygen atom and two nitrogen atoms(O2,N1,N2)is labelled as A,the other as B.The different coordinating modes result in the considerable dihedral anglar difference between the benzeneringandthephenanthrolinering.The dihedral angle of A and B are 0.980°and 5.299°, respectively,which are attributed to different coordinating modes of ligands.One interpretation may be attributedtoπ-πstackinginteractionsbetween conjugate rings of ligands.The distance between adjacent imidazo-phenanthroline rings is 0.337 5 nm. According to Table 3,Bond distances of Pb-O are much longer than usual(Pb1-O2i0.281 6(4)nm,Pb1-O4ii0.299 8(3)nm,Pb1-O5ii0.281 4(4)nm).The long Pb-O bonds can be ascribed to different coordinating modesasfive-memberchelatingmodeismuch stronger than monodentate mode and four-member chelating mode.While the four-member chelating mode still has some effects on the structure,some toision angles(Pb1-N1-C15-C16 23.9(5)°,Pb1-N2-C16-C15-23.1(5)°,Pb1-N3-C35-C36 22.9(5)°,Pb1-N4-C36-C35-20.9(5)°)can be recognized.

    Fig.4Coordinated environment of complex 2

    Fig.5(a)2D structure of complex 2;(b)Topological structure of complex 2

    Fig.6(a)1D water chain of complex 2;(b)Ligands linked via hydrogen bonds;(c)Hydrogen-bonded packing diagram of complex 2

    A self-assemble chain of water molecules(O2Wi-H2WAi…O1Wiv,O1W-H1WA…O4W,O4W-H4WA…O2Wi,O4W-H4WB…O1W,O3Wii-H3WBii…O4W) are observed in Table 4.Water chains are fixed by hydrogen bonds(O1W-H1WB…O1iii,O2Wi-H2WBi…O4i,O3Wii-H3WAii…N7ii)and interconnect adjacency 2D networks to form 3D constructures.A side view of the same part of the structure along the direction is shown in Fig.6(c),where water chains parallel to this direction and crossing into the space of 2D networks are clearly seen.

    2.3 IR analysis

    The stretching vibration of C=O(1 611 cm-1)for HPIMPHC is much smaller than usual[33],which may be owing to intermolecular hydrogen bonds among carboxylate groups.In complex 1,This characteristicstretching vibration of C=O and O-H are absent and the asymmetric and symmetric stretchings of COO-appear at 1 608 cm-1(ν(OCO)asym)and 1 362 cm-1(ν(OCO)sym)respectively,showing the presence of mono -dentate carboxylate linkage.The C=N characteristic stretching vibration of HPIMPHC is 1 483 cm-1,while it shifts to 1 479 cm-1in complex 1.It is concluded that the chelating mode of phenanthroline groups reduces the frequency of C=N stretching vibration.

    Table 4Hydrogen bond distances(nm)and angles(°)in complex 2

    So is the complex 2,the characteristic stretching vibrations of O-H and C=O for HOIMPHC are absent and the asymmetric and symmetric stretchings of COO-appear at 1 607 cm-1(ν(OCO)asym),1 388 cm-1(ν(OCO)sym) and 1 358 cm-1(ν(OCO)sym)respectively,which shows the presence of two different carboxylate linkage.The carboxylate groups act as both bidenate and monodenate coordination modes.The C=N characteristic stretching vibration of HOIMPHC is 1 483 cm-1,while it shifts to 1 481 cm-1in complex 2,which is similar to complex 1.

    2.4 Thermal decomposition of complexes

    The TG curves of the title complexes are shown in Fig.7.No weight loss of complex 1 was observed below 200℃,indicating that there is no small solvent molecules in complex 1.The decomposition of complex 1 starts at 200℃and ended at 440℃,and the observed weight loss(89.98%)accompanied with the decomposition of PIMPHC-(Calcd.89.88%).The residual weight 10.02%might correspond to ZnO (Calcd.10.12%).Complex 2 experiences two steps of weight loss.The first step is from 72 to 129℃with a weight loss of 7.17%,which corresponds to the loss of four water molecules(Calcd.7.07%).The second step in the range of 220~527℃with a weight loss of 71.14%corresponds to the decomposition of OIMPHC-(Calcd.71.00%).Finally,the remaining weight of 21.69%,seems likely to correspond to PbO(Calcd. 21.93%).

    Fig.7TG curves for complex 1(a)and 2(b)

    2.5 EB-DNA binding study by fluorescence spectrum

    The effects of the ligands and complexes on the fluorescence spectra of EB-DNA system are presented in Fig.8,the fluorescence intensities of EB bound to ct-DNA at 592 nm show remarkable decreasing trends with the increasing concentration of the complexes, indicating that some EB molecules are released into solution after the exchange with the compounds which resulted in the fluorescence quenching of EB.The quenching of EB bound to DNA by the compounds is in agreement with the linear Stern-Volmer equation: I0/I=1+Ksqr[34],where I0and I represent the fluorescence intensities in the absence and presence of quencher, respectively.Ksqis the linear Stern-Volmer quenchingconstant,r is the ratio of the concentration of quencher and DNA.In the quenching plots(insets in Fig.8)of I0/I versus r,Ksqvalues are given by the slopes.The Ksqvalues for the compounds are 0.270,1.497 for HPIMPC and complex 1,0.318,1.854 for HOIMPC and complex 2,respectively.The results indicate that interaction of the complexes with DNA are stronger than ligands,because the complexes have higher rigidity to bind the base pairs along DNA,thus increasing their binding abilities.

    Fig.8Emission spectra of EB-DNA system in the absence and presence of ligands and complexes

    3 Conclusions

    Insummary,newligandsHPIMPHCand HOIMPHC were purposely synthesized based on 1, 10-phenanthroline.Both of ligands were successfully appliedto constructing[Zn(PIMPHC)2]n(1), {[Pb(OIMPHC)2]·4H2O}n(2).The complex 1 is a 2D framework with(2,4)-connected topology.The complex 2 is a 2D framework with(2,2,4)-connected topology. Because of the competition among monodentate mode, four-member chelating mode and five-member chelating mode,bond distances of Pb-O are much longer than usual.Complex 2 has stronger interaction with DNA, which can release more free EB molecules from EBDNA.

    [1]Li H J,Zhao B,Ding R,et al.Cryst.Growth Des.,2012,12 (8):4170-4179

    [2]Lin J D,Cheng J W,Du S W.Cryst.Growth Des.,2008,8(9): 3345-3353

    [3]Venkataraman D,Gardner G B,Lee S,et al.J.Am.Chem. Soc.,1995,117(46):11600-11601

    [4]Batten S R,Robson R.Angew.Chem.Int.Ed.,1998,37(11): 1460-1494

    [5]James S L.Chem.Soc.Rev.,2003,32(5):276-288

    [6]Huang Z,White P S,Brookhart M.Nature,2010,465(7298): 598-601

    [7]Lü L L,Yang J,Zhang H M,et al.Inorg.Chem.,2015,54(4): 1744-1755

    [8]Wang J C,Liu Q K,Ma J P,et al.Inorg.Chem.,2014,53 (20):10791-10793

    [9]Gong Y N,Huang Y L,Jiang L,et al.Inorg.Chem.,2014,53 (18):9457-9459

    [10]Panella B,Hirscher M,Pütter H,et al.Adv.Funct.Mater., 2006,16(4):520-524

    [11]Stock N,Biswas S.Chem.Rev.,2011,112(2):933-969

    [12]Arstad B,Fjellvg H,Kongshaug K O,et al.Adsorption,2008, 14(6):755-762

    [13]Janiak C,Vieth J K.New J.Chem.,2010,34(11):2366-2388

    [14]Henninger S K,Habib H A,Janiak C.J.Am.Chem.Soc., 2009,131(8):2776-2777

    [15]Torrisi A,Bell R G,Mellot-Draznieks C.Cryst.Growth Des., 2010,10(7):2839-2841

    [16]Li K,Olson D H,Lee J Y,et al.Adv.Funct.Mater.,2008, 18(15):2205-2214

    [17]Lee C Y,Farha O K,Hong B J,et al.J.Am.Chem.Soc., 2011,133(40):15858-15861

    [18]Nikalje A P G,Deshpande D,Une H D.Eur.J.Exp.Biol., 2012,2:343-353

    [19]Guo W,Engelman B J,Haywood T L,et al.Talanta,2011, 87:276-283

    [20]Lee Y S,Cho Y H,Lee S J,et al.Tetrahedron,2015,71(4): 532-538

    [21]Scheldrick G M.SADABS,University of G?ttingen,G?ttingen, Germany,1996.

    [22]Sheldrick G M.SHELXS-97,Program for the Solution of CrystalStructure,UniversityofG?ttingen,G?ttingen, Germany,1997.

    [23]Sheldrick G M.SHELXTL-97,Program for the Refinement of Crystal Structure,University of G?ttingen,G?ttingen, Germany,1997.

    [24]Starikov A G,Minkin V I,Minyaev R M,et al.J.Phys. Chem.A,2010,114(29):7780-7785

    [25]Ivakhnenko E P,Starikov A G,Minkin V I,et al.Inorg. Chem.,2011,50(15):7022-7032

    [26]Tian Z,Lin J,Su Y,et al.Cryst.Growth Des.,2007,7(9): 1863-1867

    [27]Alvarado R J,Rosenberg J M,Andreu A,et al.Inorg.Chem., 2005,44(22):7951-7959

    [28]Kavallieratos K,Rosenberg J M,Bryan J C.Inorg.Chem., 2005,44(8):2573-2575

    [29]Gabriel C,Vangelis A A,Raptopoulou C P.Cryst.Growth Des.,2015,15(11):5310-5326

    [30]Peedikakkal A M P,Vittal J J.Cryst.Growth Des.,2011,11 (10):4697-4703

    [31]TANG Long(唐龍),WU Ya-Pan(吳亞盤),FU Feng(付峰), et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報),2011,27(11): 2287-2290

    [32]LI Chun-Xiang(李春香),WANG Jian(王艱),LIU Chun-Bo (劉春波),et al.Chinese J.Inorg.Chem.(無機化學(xué)學(xué)報), 2009,25(12):2211-2214

    [33]Larkin P.Infrared and Raman Spectroscopy:Principles and Spectral Interpretation.Waltham:Elsevier,2011.

    [34]Lakowicz J R,Weber G.Biochemistry,1973,12(21):4161-4170

    咪唑-菲咯啉-苯氧乙酸鋅、鉛配合物的合成,結(jié)構(gòu)及與DNA的相互作用

    沈偉1胡未極1吳小勇1趙國良*,1,2
    (1浙江師范大學(xué)化學(xué)與生命科學(xué)學(xué)院,金華321004)
    (2浙江師范大學(xué)行知學(xué)院,金華321004)

    以2-4-(1H-咪唑-2-[4,5-f][1,10]菲咯啉基)苯氧乙酸(HPIMPHC)和2-2-(1H-咪唑-2-[4,5-f][1,10]菲咯啉基)苯氧乙酸(HOIMPHC)為配體,水熱合成了2種新型配合物[Zn(PIMPHC)2]n(1)和{[Pb(OIMPHC)2]·4H2O}n(2)。配合物1屬正交晶系,空間群為Pbcn;Zn(Ⅱ)的配位數(shù)為6,配位構(gòu)型為變形的八面體,形成2D網(wǎng)狀結(jié)構(gòu)。配合物2屬單斜晶系,空間群為P21/n;Pb(Ⅱ)的配位數(shù)為7,配位構(gòu)型為變形的五角雙錐,形成2D網(wǎng)狀結(jié)構(gòu)。熒光光譜的結(jié)果表明,配合物與DNA的相互作用強于配體。

    2-4-(1H-咪唑-2-[4,5-f][1,10]菲咯啉基)苯氧乙酸;2-2-(1H-咪唑-2-[4,5-f][1,10]菲咯啉基)苯氧乙酸;Zn(Ⅱ);Pb(Ⅱ);DNA作用

    O614.24+1;O614.43+3

    A

    1001-4861(2016)06-1101-10

    2016-01-17。收修改稿日期:2016-04-23。

    10.11862/CJIC.2016.132

    浙江省自然科學(xué)基金(No.LY12B01003)資助項目。

    *通信聯(lián)系人。E-mail:sky53@zjnu.cn

    猜你喜歡
    網(wǎng)狀結(jié)構(gòu)浙江師范大學(xué)配位
    [Zn(Hcpic)·(H2O)]n配位聚合物的結(jié)構(gòu)與熒光性能
    浙江師范大學(xué)行知學(xué)院手繪作品選登
    LiBa0.95-yBO3∶0.05Tb3+,yBi3+熒光粉的制備及熒光性質(zhì)
    于昕卉作品
    Application of “Process Approach” in Middle School English Writing-Teaching
    德不配位 必有災(zāi)殃
    美國高等教育治理體系的結(jié)構(gòu)與特征
    論《紅高粱家族》的藝術(shù)特質(zhì)
    《清水洗塵》的網(wǎng)狀結(jié)構(gòu)分析
    利用純化組分重建小管內(nèi)質(zhì)網(wǎng)網(wǎng)狀結(jié)構(gòu)
    精品国产国语对白av| 亚洲精品av麻豆狂野| 满18在线观看网站| 亚洲av电影在线进入| 日韩熟女老妇一区二区性免费视频| 国产成人欧美| 亚洲国产色片| 啦啦啦中文免费视频观看日本| 一区二区av电影网| 边亲边吃奶的免费视频| 国产又色又爽无遮挡免| 国产精品久久久久久精品古装| 丝袜美足系列| 亚洲av电影在线观看一区二区三区| 99热国产这里只有精品6| 亚洲av中文av极速乱| 国产极品天堂在线| 精品国产一区二区久久| 日韩伦理黄色片| 伦理电影大哥的女人| 国产又爽黄色视频| 在线观看一区二区三区激情| 飞空精品影院首页| 国产精品国产三级国产专区5o| 飞空精品影院首页| 国产日韩欧美视频二区| 久久久久国产精品人妻一区二区| 下体分泌物呈黄色| 中文乱码字字幕精品一区二区三区| 少妇人妻精品综合一区二区| 蜜桃国产av成人99| 侵犯人妻中文字幕一二三四区| 丝袜脚勾引网站| 久久久久精品性色| 午夜福利影视在线免费观看| 国国产精品蜜臀av免费| 夫妻午夜视频| 午夜免费鲁丝| 搡老乐熟女国产| 国产熟女欧美一区二区| 18+在线观看网站| av在线老鸭窝| 狂野欧美激情性bbbbbb| 亚洲精品av麻豆狂野| 欧美精品av麻豆av| 国产欧美另类精品又又久久亚洲欧美| 十分钟在线观看高清视频www| 最新中文字幕久久久久| 日韩中字成人| 街头女战士在线观看网站| 亚洲av欧美aⅴ国产| 性高湖久久久久久久久免费观看| 国产免费又黄又爽又色| 亚洲av在线观看美女高潮| 天堂俺去俺来也www色官网| 国产片特级美女逼逼视频| 亚洲精品国产av成人精品| 嫩草影院入口| 亚洲av.av天堂| 2022亚洲国产成人精品| 母亲3免费完整高清在线观看 | 亚洲av欧美aⅴ国产| 久久精品国产a三级三级三级| a 毛片基地| 一级毛片我不卡| 国产成人免费无遮挡视频| 韩国av在线不卡| 亚洲欧美中文字幕日韩二区| 最后的刺客免费高清国语| a级毛色黄片| 亚洲少妇的诱惑av| 十八禁高潮呻吟视频| 免费黄频网站在线观看国产| 精品一品国产午夜福利视频| 99re6热这里在线精品视频| 精品酒店卫生间| 欧美精品人与动牲交sv欧美| 全区人妻精品视频| 亚洲精品美女久久久久99蜜臀 | 亚洲精品456在线播放app| a 毛片基地| 午夜老司机福利剧场| 久久人人爽av亚洲精品天堂| 黑人欧美特级aaaaaa片| 在线观看美女被高潮喷水网站| av天堂久久9| 免费av中文字幕在线| 少妇的逼好多水| 十分钟在线观看高清视频www| 26uuu在线亚洲综合色| 在线观看免费日韩欧美大片| 香蕉丝袜av| 亚洲性久久影院| 亚洲第一av免费看| 日日啪夜夜爽| 国产69精品久久久久777片| 欧美 亚洲 国产 日韩一| 国产精品三级大全| 观看av在线不卡| 五月伊人婷婷丁香| 亚洲美女视频黄频| 日本wwww免费看| 一区二区av电影网| 亚洲天堂av无毛| 欧美精品一区二区免费开放| 久久久久久久久久久久大奶| 亚洲国产精品一区二区三区在线| 成人亚洲欧美一区二区av| 欧美激情极品国产一区二区三区 | 欧美bdsm另类| 少妇被粗大猛烈的视频| 少妇人妻 视频| 日韩人妻精品一区2区三区| 日本黄大片高清| 久久国产精品大桥未久av| 免费女性裸体啪啪无遮挡网站| 亚洲第一区二区三区不卡| 成人毛片60女人毛片免费| 男女免费视频国产| 人体艺术视频欧美日本| 国产av精品麻豆| 免费高清在线观看日韩| av网站免费在线观看视频| 亚洲成国产人片在线观看| 美女福利国产在线| 成人二区视频| 美女中出高潮动态图| 最近最新中文字幕大全免费视频 | 丰满乱子伦码专区| 青春草亚洲视频在线观看| av天堂久久9| 9色porny在线观看| 国产亚洲精品久久久com| 美女视频免费永久观看网站| 极品少妇高潮喷水抽搐| 久久久久精品人妻al黑| 欧美老熟妇乱子伦牲交| 国产精品国产av在线观看| 亚洲国产精品999| 不卡视频在线观看欧美| 欧美激情极品国产一区二区三区 | 中文字幕最新亚洲高清| 欧美精品国产亚洲| 国国产精品蜜臀av免费| 成人影院久久| 久久99热这里只频精品6学生| 亚洲色图综合在线观看| 亚洲情色 制服丝袜| 国产综合精华液| 在线观看美女被高潮喷水网站| 国产免费视频播放在线视频| 看免费av毛片| 9色porny在线观看| 人人妻人人添人人爽欧美一区卜| 亚洲,一卡二卡三卡| 一本大道久久a久久精品| 下体分泌物呈黄色| 亚洲欧美日韩另类电影网站| 黑人欧美特级aaaaaa片| 久久精品久久精品一区二区三区| 97精品久久久久久久久久精品| 男女午夜视频在线观看 | 成人手机av| 久久久久久伊人网av| 少妇人妻久久综合中文| 亚洲国产av影院在线观看| 五月玫瑰六月丁香| 一级毛片电影观看| 啦啦啦视频在线资源免费观看| 国产精品熟女久久久久浪| 婷婷色av中文字幕| 国产高清三级在线| 国产成人精品一,二区| 日韩一区二区视频免费看| 亚洲丝袜综合中文字幕| 久久精品aⅴ一区二区三区四区 | 免费观看性生交大片5| 校园人妻丝袜中文字幕| 一二三四中文在线观看免费高清| 亚洲婷婷狠狠爱综合网| 黄网站色视频无遮挡免费观看| 日日啪夜夜爽| 国产在线视频一区二区| 天天躁夜夜躁狠狠久久av| 搡女人真爽免费视频火全软件| 十分钟在线观看高清视频www| 成人国语在线视频| 男女国产视频网站| 曰老女人黄片| 免费人成在线观看视频色| 肉色欧美久久久久久久蜜桃| 精品一区二区三卡| 免费少妇av软件| 欧美 日韩 精品 国产| 熟女av电影| 国产成人精品久久久久久| 亚洲av成人精品一二三区| 午夜免费鲁丝| 欧美 亚洲 国产 日韩一| 最近的中文字幕免费完整| 久久久久久久大尺度免费视频| 午夜影院在线不卡| 97超碰精品成人国产| 成年人免费黄色播放视频| 国产免费福利视频在线观看| 69精品国产乱码久久久| 大香蕉久久成人网| 成人国产麻豆网| 亚洲av福利一区| 男女国产视频网站| 黄色毛片三级朝国网站| 国产精品嫩草影院av在线观看| 久热久热在线精品观看| 婷婷成人精品国产| 99久久人妻综合| 亚洲三级黄色毛片| 大香蕉久久网| 欧美精品人与动牲交sv欧美| 欧美精品一区二区免费开放| 成人国产av品久久久| 久久女婷五月综合色啪小说| 欧美日韩综合久久久久久| 国产一区二区三区综合在线观看 | 久久久久视频综合| 搡老乐熟女国产| 美女xxoo啪啪120秒动态图| 美女福利国产在线| 韩国高清视频一区二区三区| 丝瓜视频免费看黄片| 亚洲,欧美,日韩| 天天操日日干夜夜撸| 最新的欧美精品一区二区| 亚洲天堂av无毛| 日本猛色少妇xxxxx猛交久久| 中文字幕精品免费在线观看视频 | 国产在线免费精品| 母亲3免费完整高清在线观看 | 日韩成人伦理影院| 九九在线视频观看精品| 亚洲精品aⅴ在线观看| 肉色欧美久久久久久久蜜桃| 欧美xxⅹ黑人| 亚洲天堂av无毛| 日日撸夜夜添| 久久ye,这里只有精品| 王馨瑶露胸无遮挡在线观看| 韩国av在线不卡| 成年女人在线观看亚洲视频| 亚洲精品乱码久久久久久按摩| 亚洲国产欧美在线一区| 日本欧美国产在线视频| 久久久国产欧美日韩av| 美女脱内裤让男人舔精品视频| 日韩伦理黄色片| 日日爽夜夜爽网站| 婷婷色av中文字幕| 日韩成人伦理影院| 看非洲黑人一级黄片| 欧美国产精品va在线观看不卡| 看免费成人av毛片| av一本久久久久| av黄色大香蕉| 中文字幕人妻熟女乱码| 成人亚洲欧美一区二区av| 夫妻午夜视频| 又黄又爽又刺激的免费视频.| 婷婷色综合大香蕉| 国产乱来视频区| 国产福利在线免费观看视频| 大片免费播放器 马上看| 免费在线观看完整版高清| 国产亚洲欧美精品永久| av黄色大香蕉| 只有这里有精品99| 9热在线视频观看99| 成人亚洲欧美一区二区av| 观看美女的网站| 男女无遮挡免费网站观看| 极品人妻少妇av视频| 超碰97精品在线观看| 亚洲av欧美aⅴ国产| 精品久久久精品久久久| 少妇高潮的动态图| 亚洲国产精品一区三区| 午夜免费观看性视频| 成人国产av品久久久| 国产片内射在线| 国产日韩欧美亚洲二区| 久久精品久久久久久噜噜老黄| 日韩一区二区三区影片| 美女大奶头黄色视频| 亚洲精品国产av成人精品| 国产一区二区激情短视频 | 人妻系列 视频| 寂寞人妻少妇视频99o| 精品卡一卡二卡四卡免费| 不卡视频在线观看欧美| 国产高清国产精品国产三级| 午夜福利乱码中文字幕| 中国三级夫妇交换| 内地一区二区视频在线| 免费观看a级毛片全部| 最近2019中文字幕mv第一页| 久久人妻熟女aⅴ| 毛片一级片免费看久久久久| 成年人免费黄色播放视频| av天堂久久9| 亚洲丝袜综合中文字幕| 精品午夜福利在线看| 亚洲国产精品国产精品| 国产极品粉嫩免费观看在线| 丰满饥渴人妻一区二区三| 亚洲精品aⅴ在线观看| 午夜福利影视在线免费观看| 国产白丝娇喘喷水9色精品| 久久热在线av| 18+在线观看网站| 一边亲一边摸免费视频| 久久久a久久爽久久v久久| 免费播放大片免费观看视频在线观看| 三级国产精品片| 国产一区二区激情短视频 | 欧美国产精品一级二级三级| 国产高清三级在线| 99热网站在线观看| 丝瓜视频免费看黄片| 欧美人与性动交α欧美精品济南到 | 中文欧美无线码| 97人妻天天添夜夜摸| 亚洲av日韩在线播放| 欧美日韩国产mv在线观看视频| 亚洲中文av在线| 日本av手机在线免费观看| 亚洲,欧美精品.| 多毛熟女@视频| 男人添女人高潮全过程视频| 中文精品一卡2卡3卡4更新| 午夜福利视频在线观看免费| 99久久中文字幕三级久久日本| 免费黄网站久久成人精品| 观看av在线不卡| 国产精品久久久久久精品古装| freevideosex欧美| 久久人人爽人人片av| 男女边摸边吃奶| 熟女人妻精品中文字幕| 久久99一区二区三区| 99久久精品国产国产毛片| 欧美最新免费一区二区三区| 99久久综合免费| 国产精品.久久久| av国产精品久久久久影院| 人妻一区二区av| 成人18禁高潮啪啪吃奶动态图| 国产又色又爽无遮挡免| 久久ye,这里只有精品| 另类亚洲欧美激情| 中文字幕最新亚洲高清| 18禁国产床啪视频网站| 成人18禁高潮啪啪吃奶动态图| 蜜桃在线观看..| 欧美国产精品一级二级三级| 热99久久久久精品小说推荐| 国产视频首页在线观看| 宅男免费午夜| 9色porny在线观看| 在线精品无人区一区二区三| 免费观看性生交大片5| 国产在线视频一区二区| 黄色毛片三级朝国网站| 亚洲经典国产精华液单| 久久午夜福利片| 色94色欧美一区二区| 日日爽夜夜爽网站| 色94色欧美一区二区| 嫩草影院入口| 美女脱内裤让男人舔精品视频| 最后的刺客免费高清国语| 国产精品一区二区在线观看99| 久久 成人 亚洲| 亚洲中文av在线| 美女福利国产在线| 大陆偷拍与自拍| 一区二区三区乱码不卡18| 香蕉丝袜av| av不卡在线播放| 久久人妻熟女aⅴ| 免费日韩欧美在线观看| 男的添女的下面高潮视频| 亚洲欧美中文字幕日韩二区| 午夜日本视频在线| 欧美丝袜亚洲另类| 欧美日韩精品成人综合77777| 欧美成人精品欧美一级黄| 看非洲黑人一级黄片| 免费黄网站久久成人精品| 草草在线视频免费看| 国产日韩欧美亚洲二区| 在线观看三级黄色| 两个人免费观看高清视频| √禁漫天堂资源中文www| 国产av一区二区精品久久| 久久ye,这里只有精品| 亚洲国产精品999| 久久久久久久精品精品| 国产精品.久久久| 精品国产国语对白av| 一级毛片黄色毛片免费观看视频| 五月天丁香电影| 纵有疾风起免费观看全集完整版| 亚洲精品第二区| 国产精品成人在线| 狠狠精品人妻久久久久久综合| 最新中文字幕久久久久| 91成人精品电影| 亚洲综合色网址| 精品视频人人做人人爽| 中国国产av一级| 99国产精品免费福利视频| 啦啦啦视频在线资源免费观看| 欧美最新免费一区二区三区| 国内精品宾馆在线| a级毛片在线看网站| 青春草国产在线视频| 哪个播放器可以免费观看大片| 熟妇人妻不卡中文字幕| 最近最新中文字幕免费大全7| 国产精品久久久av美女十八| 男女边吃奶边做爰视频| 国产伦理片在线播放av一区| 国产1区2区3区精品| 国产成人精品在线电影| 中文字幕精品免费在线观看视频 | 高清欧美精品videossex| 久久鲁丝午夜福利片| 国产精品欧美亚洲77777| videos熟女内射| 草草在线视频免费看| 一级黄片播放器| 国产精品成人在线| 黑人巨大精品欧美一区二区蜜桃 | 久久久久国产精品人妻一区二区| 香蕉国产在线看| 亚洲精品国产av蜜桃| 亚洲av.av天堂| 日本欧美视频一区| 亚洲国产精品专区欧美| 飞空精品影院首页| 亚洲精品久久午夜乱码| 五月天丁香电影| 久久女婷五月综合色啪小说| 国产日韩一区二区三区精品不卡| 国产在线一区二区三区精| 日产精品乱码卡一卡2卡三| 欧美 亚洲 国产 日韩一| 国产免费现黄频在线看| 国产精品女同一区二区软件| tube8黄色片| 中文字幕人妻熟女乱码| 国产在视频线精品| 国产精品人妻久久久久久| 国产欧美另类精品又又久久亚洲欧美| 热re99久久精品国产66热6| 天天躁夜夜躁狠狠久久av| 欧美国产精品va在线观看不卡| 国产欧美亚洲国产| 亚洲情色 制服丝袜| 80岁老熟妇乱子伦牲交| 一本—道久久a久久精品蜜桃钙片| 久久人人97超碰香蕉20202| 日本色播在线视频| 国产精品国产三级国产专区5o| 亚洲激情五月婷婷啪啪| 黄网站色视频无遮挡免费观看| 在线天堂中文资源库| 精品久久久精品久久久| 最近最新中文字幕大全免费视频 | 一边摸一边做爽爽视频免费| 国产精品一区二区在线观看99| 亚洲婷婷狠狠爱综合网| 边亲边吃奶的免费视频| 麻豆精品久久久久久蜜桃| 久久99精品国语久久久| 秋霞在线观看毛片| 超色免费av| 久久久精品区二区三区| 少妇熟女欧美另类| 寂寞人妻少妇视频99o| 一区二区av电影网| 欧美激情 高清一区二区三区| 中文字幕人妻熟女乱码| 999精品在线视频| 欧美日韩成人在线一区二区| 少妇熟女欧美另类| 成人毛片60女人毛片免费| 99久国产av精品国产电影| 国产熟女欧美一区二区| av国产久精品久网站免费入址| 久久毛片免费看一区二区三区| 亚洲情色 制服丝袜| 亚洲成av片中文字幕在线观看 | 欧美激情 高清一区二区三区| 天美传媒精品一区二区| 亚洲国产日韩一区二区| 丝袜美足系列| 欧美日韩综合久久久久久| 大香蕉97超碰在线| 男女下面插进去视频免费观看 | 成人毛片60女人毛片免费| 曰老女人黄片| 制服丝袜香蕉在线| 老司机影院成人| 大话2 男鬼变身卡| 在线 av 中文字幕| 欧美精品一区二区大全| 日韩 亚洲 欧美在线| 最新的欧美精品一区二区| 一级黄片播放器| 哪个播放器可以免费观看大片| 九九爱精品视频在线观看| 亚洲国产av影院在线观看| 久久久久久久亚洲中文字幕| 少妇人妻 视频| 天天躁夜夜躁狠狠躁躁| av免费观看日本| 国产精品国产三级国产专区5o| 如日韩欧美国产精品一区二区三区| 国产日韩欧美视频二区| 久久久久久久久久久久大奶| 亚洲av免费高清在线观看| 中文天堂在线官网| 亚洲精品成人av观看孕妇| 亚洲熟女精品中文字幕| 午夜精品国产一区二区电影| 美女国产视频在线观看| 又黄又爽又刺激的免费视频.| 午夜久久久在线观看| 国产成人午夜福利电影在线观看| 在线观看国产h片| 成人亚洲欧美一区二区av| 国产国拍精品亚洲av在线观看| 精品国产一区二区三区四区第35| 国产精品免费大片| 日韩在线高清观看一区二区三区| 黑人猛操日本美女一级片| 久久精品熟女亚洲av麻豆精品| 国产亚洲欧美精品永久| 欧美激情极品国产一区二区三区 | 免费高清在线观看日韩| 日韩一区二区三区影片| 一本色道久久久久久精品综合| 久久亚洲国产成人精品v| 亚洲成人手机| 免费高清在线观看视频在线观看| 久久人人97超碰香蕉20202| 欧美另类一区| 国产高清不卡午夜福利| 99热全是精品| 国产成人免费观看mmmm| 欧美老熟妇乱子伦牲交| 国产精品久久久久成人av| 国产精品成人在线| 国产色婷婷99| 少妇猛男粗大的猛烈进出视频| 一级片免费观看大全| 久久精品国产a三级三级三级| av天堂久久9| av.在线天堂| 亚洲国产欧美日韩在线播放| 国产精品三级大全| 成人免费观看视频高清| 97精品久久久久久久久久精品| 亚洲av男天堂| 精品少妇黑人巨大在线播放| 欧美国产精品va在线观看不卡| 久久精品国产自在天天线| 日韩电影二区| 精品卡一卡二卡四卡免费| 免费人妻精品一区二区三区视频| 老女人水多毛片| 看免费av毛片| 亚洲av欧美aⅴ国产| 日韩制服丝袜自拍偷拍| 制服人妻中文乱码| 制服丝袜香蕉在线| 久久久久久人妻| 在线观看国产h片| 亚洲欧美精品自产自拍| 如何舔出高潮| 男女国产视频网站| av.在线天堂| 三上悠亚av全集在线观看| 91久久精品国产一区二区三区| 国产高清不卡午夜福利| 成人二区视频| 久久久国产一区二区| 波野结衣二区三区在线| 国产乱来视频区| 自拍欧美九色日韩亚洲蝌蚪91| 成人亚洲精品一区在线观看| 亚洲人与动物交配视频| 一本—道久久a久久精品蜜桃钙片| 成年人免费黄色播放视频| 少妇人妻精品综合一区二区| 亚洲精品乱久久久久久| 亚洲中文av在线| 99热这里只有是精品在线观看| xxx大片免费视频| 国产一区二区激情短视频 | 久久av网站| 精品一区二区三区视频在线| 成人黄色视频免费在线看| 日韩一区二区视频免费看| av电影中文网址| 日韩伦理黄色片|