• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Syntheses,Crystal Structures and Properties of Two Homochiral Co(Ⅱ)Complexes Based on N-Acetyl-L-tyrosine

    2016-04-05 08:11:15MANingSONGHuiHuaYUHaiTao
    無機化學學報 2016年6期
    關鍵詞:手性酪氨酸吡啶

    MA NingSONG Hui-HuaYU Hai-Tao

    (College of Chemistry and Material Sciences,Hebei Normal University,Shijiazhuang 050024,China)

    Syntheses,Crystal Structures and Properties of Two Homochiral Co(Ⅱ)Complexes Based on N-Acetyl-L-tyrosine

    MA NingSONG Hui-Hua*YU Hai-Tao

    (College of Chemistry and Material Sciences,Hebei Normal University,Shijiazhuang 050024,China)

    Two novel homochiral coordination polymers based on N-acetyl-L-tyrosine(Hacty),{[Co(acty)(bpp)2(H2O)2] (NO3)·2H2O}n(1)and{[Co2(acty)2(bpe)3(H2O)3](ClO4)2·4H2O}n(2)(bpp=1,3-di(4-pyridyl)propane,bpe=1,2-di(4-pyridyl)ethane)have been synthesized and characterized by elemental analyses,IR,UV,TG,PXRD,singlecrystal X-ray diffraction.Complex 1 crystallizes in the monoclinic space group P21,and the six-coordinated Co(Ⅱ) ions are bridged by bpp ligands,exhibiting a 1D right-handed helical chain structure.Complex 2 belongs to the triclinic space group P1,and the six-coordinated dinuclear Co(Ⅱ)ions are bridged by bpe ligands,forming a 1D ribbon chain structure.The two different 1D chains are further extended into 3D supramolecular architectures through hydrogen-bonding interactions.The effect of different N-donor ancillary ligands on the structural assembly and diversity has been further discussed.Furthermore,circular dichroism spectra(CD)of compounds 1 and 2 were investigated.CCDC:1438882,1;1438883,2.

    cobalt(Ⅱ)complex;N-acetyl-L-tyrosine;crystal structure;homochiral complex

    0 Introduction

    The rational design and controlled synthesis of chiralcoordinationpolymershasattractedgreat interest owing to their intriguing structures[1-3]and their potential applications in asymmetrical catalysis, chiral separation,luminescence,magnetism and nonlinear optical applications[4-8].Although a major challenge in this approach is the chance of the polymeric structures since many factors such as the solvent system,ligand-to-metal ratios,temperature,coordination geometry of the metals,nature of the ligands,pH value of solution[9-14],the internal surface functionality and topology of chiral complexes could be crafted efficiently by choosing appropriate ligands and metal ionswithdiversecoordinationgeometryunder optimum reaction conditions.Recently,numbers of chiral coordination polymers with aesthetic structural motifs and potential applications have been obtained by using multidentate ligands[15-16].

    According to previously reported,the usage of chiral ligands as reactant precursors is one of the mostefficientandviableapproachesforthe homochiral coordination polymers[17-18].Chiral amino acid derivatives as good candidates for construction of chiral coordination polymers,have attracted considerable attention due to their coordination sites and rich bonding modes[19-21].N-acetyl-L-tyrosine can donate carboxylic group,which could adopt versatile coordinationmodes,includingmonodentate,bidentate chelating and bridging to give highdimensional structure.From the viewpoint of crystal supramolecular structure,N-acetyl-L-tyrosine creates countless possibilities for the formation of inter-and intramolecular interactions through aromatic interactions and hydrogen bonds to stabilize the structure of chiral coordination polymers.However,only a few examples of chiral coordination polymers with Hacty have been reported[22-23].

    Apart from the amino acid derivative linker,N-donor ancillary ligands also play an important role in structural assembly and diversity of the coordination polymers.Herein,the second N-donor ligands with different conformations and lengths such as 1,3-di(4-pyridyl)propane and 1,2-di(4-pyridyl)ethane were employed respectively and we have gained two homochiral complexes,namely,{[Co(acty)(bpp)2(H2O)2](NO3)·2H2O}n(1)and{[Co2(acty)2(bpe)3(H2O)3](ClO4)2·4H2O}n(2) (bpp=1,3-di(4-pyridyl)propane,bpe=1,2-di(4-pyridyl) ethane).Bpp and bpe ligands all can be found as two geometric isomers in titled complexes,respectively (Scheme 1).More importantly,the simultaneous appearance of two different conformations of bpp or bpe ligands in one crystal structure is rarely reported. Herein we report their syntheses,crystal structures and circular dichroism spectra(CD).Furthermore,the effects of N-donor ligands on the structures of the complexes have been discussed in detail.

    Scheme 1(a)Observed coordination mode of Hacty ligand for 1 and 2;(b)Observed coordination mode of Hacty ligand for 2;(c),(d)Observed coordination modes of bpp ligand for 1;(e),(f)Observed coordination modes of bpe ligand for compound 2

    1 Experimental

    1.1 Materials and methods

    All reagents and solvents for syntheses were purchased from commercial sources and were used as received without further purification.Element analyses (C,H and N)were performed on an Elemental Vario EL elemental analyzer.Infrared(IR)spectra were measured on a FTIR-8900 spectrometer from 4 000 to 400 cm-1(KBr pellets).Thermogravimetric analyses (TGA)were carried out on a simultaneous STA 449F3/TENSOR 27 thermal analyzer under nitrogen with a heating rate of 10℃·min-1from room temperature to 800℃.Powder X-ray diffraction (PXRD)patterns were collected on a Bruker D8-Advance X-ray diffractometer using Cu Kα radiation(λ=0.154 2 nm,U=40 kV,I=40 mA)and ω-2θ scan mode at 293 K.The solid state circular dichroism(CD) spectra were recorded on a JASCOJ-810 spectropolarimeter with KCl pellets.Fluorescence spectra were recorded on a Hitachi F-4500 luminescence spectrometer.

    1.2 Synthesis

    1.2.1 {[Co(acty)(bpp)2(H2O)2](NO3)·2H2O}n(1)

    Hacty(0.1 mmol,0.022 3 g)was stirred into a 10 mL aqueous solution.The solution was adjusted to pH=5.6 with the addition of 1 mol·L-1NaOH solution. Co(NO3)2·6H2O(0.1 mmol,0.029 1 g)was added to the solution,which was heated in a water bath at 60℃for about 10 min.A solution of bpp(0.2 mmol,0.039 6 g)in MeOH(5 mL)was slowly added.The resulting solution was stirred for 10 minutes,filtered off and allowed to stand for one week.The light red blockshaped transparent crystals1,suitable for X-ray analysis were obtained with 51%yield based on Co. Anal.Calcd.for C37H48CoN6O11(%):C,54.75;H,5.96; N,10.35.Found(%):C,54.88;H,5.91;N,10.36.IR (KBr,cm-1):3 246(b),1614(s),1 558(s),1 516(s),1 426 (s),1384(s),1331(s),1264(s),1227(m),1179(w),1123 (w),1 070(m),1 020(m),964(w),840(m),818(s),742 (w),616(w),521(m).

    1.2.2 {[Co2(acty)2(bpe)3(H2O)3](ClO4)2·4H2O}n(2)

    Compound 2 was synthesized in a procedure similar to that for 1 except that Co(ClO4)2·6H2O(0.1 mmol,0.036 6 g)and bpe(0.1 mmol,0.018 4 g)was used instead of Co(NO3)2·6H2O and bpp,respectively. The red block-shaped transparent crystals 2 were obtained with 50%yield based on Co.Anal.Calcd. for C58H74Cl2Co2N8O23(%):C,48.38;H,5.18;N,7.78. Found(%):C,49.59;H,5.30;N,7.91.IR(KBr,cm-1): 3 361(b),1 656(s),1 617(s),1 580(s),1 427(s),1 377 (m),1 295(w),1 252(m),1 100(s),1 019(m),878(w), 824(s),699(w),625(m),528(m).

    1.3 X-ray crystallography

    Suitable single crystals for title compounds were selected for single-crystal X-ray diffraction analyses (Crystal size/mm:0.31×0.24×0.11 for 1;0.42×0.27× 0.24 for 2).Crystallographic data were collected at 100 K for 1 and 298(2)K for 2 on a Bruker Smart Apex CCD diffractometer with graphite monochromated Mo Kα radiation(λ=0.071 073 nm).All structures were solved through direct methods and refined by fullmatrix least-squares on F2with SHELXL-97 program[24]. All non-hydrogen atoms were refined anisotropically. The hydrogen atoms were added theoretically and refined with a riding model.The assignment of the absolute structures for 1~2 was confirmed by the refinementoftheFlackparametertovaluesof -0.005(11)and-0.03(2),respectively[25-26].Oxygen atoms from ClO4-,carbon atoms and hydrogen atoms from bpe ligands were disordered in complex 2. Further crystallographic data and experimental details for structural analyses of complexes 1~2 are summarized in Table 1.The selected bond lengths and angles of 1~2 are given in Table 2.

    CCDC:1438882,1;1438883,2.

    Table 1Crystal data and structure refinements for complexes 1 and 2

    Continued Table 1

    Table 2Selected bond lengths(nm)and angles(°)for complexes 1 and 2

    2 Results and discussion

    2.1 Crystal structures

    2.1.1 {[Co(acty)(bpp)2(H2O)2](NO3)·2H2O}n(1)

    The crystallographic analysis reveals that complex 1 crystallizes in the monoclinic space group P21and features a 1D right-handed helical chain structure. There are one Co(Ⅱ)cation,one acty-anion,two bpp ligands,two coordinated water molecules,one NO3-and two lattice water molecules in the asymmetricunit.As shown in Fig.1a,each Co(Ⅱ)cation is sixcoordinated by one oxygen atom(O1)from one actyanion,two oxygen atoms(O10,O11)from two different coordinated water molecules and three nitrogen atoms (N2,N3,N6#1)from different bpp ligands.The N2, O1,O10,O11 atoms constitute the equatorial plane. N3,N6#1occupy the apical positions.The Co-O bond lengths range from 0.208 0(2)~0.215 10(2)nm,and the Co-N bond lengths are in the range of 0.214 4(2)~0.216 9(2)nm.

    As shown in Fig.1b,the acty-anion acts as a decorating ligand in monodentate mode to connect one Co(Ⅱ)metal ion.The bpp ligands in 1 are of two types.One type of bpp serves as an unsymmetrical bridgingligand with TT[27](T=trans)conformation (Scheme 1c)and links two different Co(Ⅱ)cations, forming a 1D right-handed helical chain structure along the b axis.In the TT conformation of flexible bpp ligand,the dihedral angle between the two independent pyridine moieties of each bpp ligand is 66.42°.The other type of bpp acts as a monodentate ligand with TG[27](G=gauche)conformation(Scheme 1d)to connect one Co(Ⅱ)metal ion and arranges on both sides of the helical chain.The required uncoordinated NO3-anions are readily accommodated between the helical chain.In addition,extensive hydrogen bonds(Table 3)are observed and these helical chains are further linked together through hydrogen bonds to construct a 3D supramolecular structure(O(11)-H (11D)…O(9)0.177 nm;O(9)-H(9B)…O(7)#50.192 nm; O(11)-H(11E)…O(2)#70.189 nm;O(9)-H(9A)…O(3)#40.190 nm),as shown in Fig.1c.

    2.1.2 {[Co2(acty)2(bpe)3(H2O)3](ClO4)2·4H2O}n(2)

    Fig.1(a)Coordination environment of the Co center for 1;(b)Right-handed helical chain structure in complex 1; (c)3D supramolecular architecture through hydrogen-bonding interactions for 1

    Table 3Hydrogen bond lengths(nm)and bond angles(°)for complex 1

    Complex 2 presents a 1D chain structure which crystallizes in the Triclinic space group P1.Each crystallographic unit consists of two Co(Ⅱ)cations,two acty-anions,three bpe molecules,three coordinated water molecules,two ClO4-and four lattice water molecules.As shown in Fig.2a,the Co1 ion of 2 is six-coordinatedanddisplaysaslightlydistorted octahedral geometry,in which the coordination sphere of Co1 is O3N3 by three nitrogen atoms(N3,N5, N7#1)derived from three different bpe groups,one oxygen atom(O9)from one acty-anion and two oxygen atoms(O17,O18)from two different coordinated water molecules.The Co2 ion is surrounded by three nitrogen atoms(N4,N6,N8)derived from three different bpe groups,two carboxyl oxygen atoms(O13,O14)from one acty-anion and one coordinated water molecule. The Co-O bond lengths are in the range of 0.204 0(8)~0.220 2(7)nm.The Co-N bond lengths are in the range of 0.211 8(8)~0.220 7(8)nm.

    The bpe ligands in 2 show bridging mode with anti and gauche[28]conformations(Scheme 1)alternatelyto link adjacent Co ions to form a 1D ribbon chain structure(the bpe ligand with anti conformation provides a N-to-N separation with the distance of 1.372 47(2) nmandthegaucheconformationseparationis 0.965 70(2)nm).Due to the flexibility of bpe ligand, the torsion angle py-C-C-py of bpe ligand for the gauche conformation is in the range of 79.7(3)°~81.83°and the dihedral angle between the two independent pyridine moieties of each bpe ligand is in the range of 46.61°~47.46°.Similar low values of the torsion angles have been found for other Co-(gauche-bpe)2-Co chains[28].Meanwhile,one half of acty-ligands adopt monodentate mode to connect Co1 ions arranged on one side of the chain,and the other half of actyligands act as chelating bidentate ligands to connect Co2 ions on the other side of the chain,as shown in Fig.2b.The adjacent 1D ribbon chains are linked to each other via O-H…O(Table 4)interactions to form a 3D supramolecular structure viewed along a axis direction,asshowninFig.2c.Significantly,the uncoordinatedanions are involved in hydrogen bondinginteractionwiththefourlatticewatermoleculesleadingtotheconstructionofa1D hydrogen-bonded supramolecular chain,as shown in Fig.2d.

    Table 4Hydrogen bond lengths(nm)and bond angles(°)for complex 2

    Fig.2(a)Coordination environment of the Co center for 2;(b)1D chain structure for complex 2;(c)3D supramolecular architecture through hydrogen-bonding interactions for 2;(d)Supramolecular chain through hydrogen-bonding interactions for 2

    2.1.3 Effect of different N-donor ligands

    The different structures of the two complexes with the same metal center of Co(Ⅱ)and acty-anion indicate that the different N-donor ancillary ligands have great influence on the connectivities of the complexesduetotheirdifferentstructuresand flexibility.In this work,we select two kinds of N-donor ligands(bpp and bpe)to observe their effects on the assembly of the coordination compounds.The bpp and bpe ligands are both N-containing linkages which can provide twisty configurations.For example, thetwistbppligandcanassumetwodifferent configurations(TT and TG)owing to the orientations of-CH2-CH2-CH2-groups.While the bpe ligand also can assume two different conformations(anti and gauche)that display different N-to-N distances owing to the orientations of-CH2-CH2-groups.The different degree of distortion is due to the different numbers of C atoms.For example,the dihedral angle between the two independent pyridine moieties is 66.42°for TG configuration of bpp ligand and in the range of 46.61°~47.46°for gauche configuration of bpe ligand.Further comparative analysis of the structures of the two complexes reveals that complex 1 shows a 1D righthanded helical chain structure and complex 2 shows a 1D ribbon chain structure.So from the results above, we can see that the different configurations and tortuosities of N-donor ligands play an important role in the formation of the crystal structures.Meanwhile, the coordination modes of the Hacty are different in the two complexes and only act as decorating ligands. The acty-ligand in monodentate mode connects one Co ion in complex 1.The acty-ligands act as monodentate and chelating bidentate ligands connect Co ions in 2.Additionally,complexes 1 and 2 selfassembletoform3Dsupramolecularstructures through hydrogen-bonding interactions.

    2.2 UV-Vis spectra and IR spectra

    The UV-Vis spectra of bpp,bpe,complexes 1 and 2 in H2O/DMF(1∶10,V/V)solution with the concentration of 2×10-5mol·L-1at room temperature are shown in Fig.3.Bpp and bpe show intense absorption band at 253 and 255 nm,respectively.The absorption bands of these ligands can be assigned to the π-π transition.Complexes 1 and 2 all show intense absorption bands at 255 nm and weak bands at 274 nm.The locations of intense absorption bands of complexes 1 and 2 are almost similar to the assistant ligands,while strength of intense absorption bands are stronger than the assistant ligands,which may be due to the ligands coordinate to metal ions.The different π-π transition energies may be due to the formation of Co-N and Co-O bands,which result in the weak absorption bands[29-30].

    The IR spectra(Fig.4)of the complexes show broad at about 3 246 cm-1for 1,3 361 cm-1for 2, which can be ascribed to the presence of νas(O-H) stretching frequencies of Hacty.The νas(COO-)and νs(COO-)vibrations can be observed at 1 558 and1426cm-1for1,1580and 1 427 cm-1for 2,respectively. The IR bands of bpp at 1 384 and 1 614 cm-1are due to νC=Cand νC=Nvibrations for compound 1.In compound 2,νC=Cand νC=Nvibrations of bpe show stretches at 1 377 and 1 617 cm-1[27-28].

    Fig.3UV-Vis absorption spectra of complexes 1 and 2

    Fig.4IR spectra of complexes 1 and 2

    2.3 Thermal analysis and PXRD patterns

    The thermal analysis experiments are performed on solid samples consisting of numerous single crystals in the 20~800℃range under N2atmosphere(Fig.5). The TGA curve of 1 suggests that the first weight loss in the range of 56~143℃corresponds to the release of two lattice water molecules and two coordinated water molecules(Obsd.8.27%,Calcd.8.87%).Above 262℃,compound 1 releases the organic moieties to decompose.The TGA curve of 2 suggests that the first weight loss in the range of 27~136℃corresponds to the release of seven lattice water molecules(Obsd. 7.62%,Calcd.8.75%).Compound 2 continues to lose weight up 278~800℃,indicating the continuous expulsion of organic moieties even at the upper limit of the measurement range.The decomposition of organic ligands of compounds 1 and 2 occur above 262 and 278℃,respectively,indicating that the two complexes are relatively stable.

    Fig.5TGA curves of complexes 1 and 2

    To check the phase purity of the products,the powder X-ray diffraction(PXRD)experiments were carried out for 1~2 at room temperature.The main peaks of simulated patterns of 1~2 are basically consistentwiththeirexperimentalpatterns, demonstrating that the bulk synthesized materials and the measured single crystals are the same.The differences in intensity may be due to the preferred orientation of the crystal samples(Fig.6).

    2.4 Solid-state circular dichroism(CD)spectra

    To further examine the chiroptical activities,the solid-state CD(circular dichroism)spectra of the ligand Hacty and complexes 1~2 were measured in KCl pellet,as shown in Fig.7.

    Chiral Hacty exhibits two positive bands centered at 228 and 287 nm.The CD spectrum of 1 shows two positive Cotton effect around 230 and 284 nm and a negative signal centered around 241 nm,and the spectrum of 2 shows two positive Cotton effect around 233 and 269 nm.Compounds 1 and 2 show obvious Cotton effect in the CD spectra,which confirm the chirality of the bulk materials[31].The formation of the chiral structures of 1 and 2 have influence on the direction(+or-)of the CD signals except for a slightshift of the absorption peaks position compared with Hacty,which indicates the CD chromophores maybe affected by the ligand Hacty.The outcomes are in accord with the structures obtained by single crystal X-ray diffraction.

    Fig.6XRD patterns of complexes 1 and 2

    Fig.7Solid-state CD spectra of bulk samples of the ligand Hacty and complexes 1 and 2

    3 Conclusions

    In summary,we have successfully synthesized two homochiral compounds using N-acetyl-L-tyrosine under same condition.Compounds 1 and 2 show 1D right-handed helical chain and 1D ribbon chain structure,respectively.The results show that different numbers of C atoms have critical effect on the flexibilities and tortuosities of N-donor ligands(bpp and bpe),thereby different lengths and configurations of N-donor ligands directly influence the final crystal structures.3D supramolecular structures of 1 and 2 are formed finally through hydrogen-bonding interactions to stabilize their homochiral networks.Meanwhile, N-acetyl-L-tyrosineexhibitsdifferentcoordination modes.Compounds 1 and 2 are chiral complexes,and theCDspectrademonstratedthattheyareall homochiral.This study also reveals the significant effects of auxiliary ligands on the self-assembly of chiral compounds.Future research will further focus onthechiralsynthesis,whichmightleadto breakthroughs in synthesis of more chiral materials.

    [1]Jassal A K,Sharma S,Hundal G,et al.Cryst.Growth Des., 2015,15:79-93

    [2]Goswami A,Bala S,Pachfule P,et al.Cryst.Growth Des., 2013,13:5487-5498

    [3]Cheng L,Zhang L M,Gou S H,et al.CrystEngComm,2012, 14:4437-4443

    [4]Zhang J,Chen S M,Wu T,et al.J.Am.Chem.Soc.,2008, 130:12882-12883

    [5]Yokota M,Doki N,Shimizu K.Cryst.Growth Des.,2006,6: 1588-1590

    [6]Li M,Yang J,Liu Y Y,et al.Dyes Pigm.,2015,120:136-146

    [7]Li Q P,Jiang X,Du S W.RSC Adv.,2015,5:1785-1789

    [8]Cheng L,Zhang L M,Gou S H,et al.CrystEngComm,2012, 14:3888-3893

    [9]Garcia-Zarracino R,Hpfl H.J.Am.Chem.Soc.,2005,127: 3120-3130

    [10]Yang J X,Qin Y Y,Cheng J K,et al.Cryst.Growth Des., 2014,14:1047-1056

    [11]Cheng L,Zhang L M,Cao Q N,et al.CrystEngComm,2012,14:75027510

    [12]Chen N,Li M X,Yang P,et al.Cryst.Growth Des.,2013, 13:2650-2660

    [13]Kathalikkattil A C,Bisht K K,Núria A A,et al.Cryst.Growth Des.,2011,11:1631-1641

    [14]Zhang K,Jin C,Sun Y C,et al.Inorg.Chem.,2014,53:7803 -7805

    [15]Khullar S,Mandal S K.Cryst.Growth Des.,2014,14:6433-6444

    [16]Wang J,Luo J H,Zhao J,et al.Cryst.Growth Des.,2014, 14:2375-2380

    [17]Ying S M,Huang X H,Luo W K,et al.Acta Crystallogr. Sect.C,2014,70:375-378

    [18]Cao L H,Wei Y L,Yang Y,et al.Cryst.Growth Des.,2014, 14:1827-1838

    [19]Gould J A,Bacsa J,Park H,et al.Cryst.Growth Des.,2010, 10:2977-2982

    [20]Kumar N,Khullar S,Singh Y,et al.CrystEngComm,2014, 16:6730-6744

    [21]Miyake R,Nakagawa Y,Hase M.Cryst.Growth Des.,2014, 14:4882-4885

    [22]Abdel-Rahman L H,Nasser L A E.Transition Met.Chem., 2007,32:367-373

    [23]Li M L,Song H H.J.Solid State Chem.,2013,206:182-191

    [24]Sheldrick G M.Acta Crystallogr.Sect.A,2008,64:112-122

    [25]Flack H D.Acta Crystallogr.Sect.A,1983,39:876-881

    [26]He W W,Yang J,Yang Y,et al.Dalton Trans.,2012,41: 9737-9747

    [27]Marinho M V,Yoshida M I,Guedes K J,et al.Inorg.Chem., 2004,43:1539-1544

    [28]Pinta N D L,Madariaga G,Lezama L,et al.Eur.J.Inorg. Chem.,2010,22:3491-3497

    [29]LIANG Li-Li(梁麗麗),XU Lei(徐磊),CHEN Fei-Jian(陳飛劍),et al.Chinese J.Inorg.Chem.(無機化學學報),2015,31 (10):1993-2000

    [30]Yan V V W,Lo K K W.Chem.Soc.Rev.,1999,28:323-334

    [31]Cheng L,Wang J,Yu H Y,et al.J.Solid State Chem.,2015, 221:85-94

    基于N-乙酰-L-酪氨酸構筑的兩例純手性鈷(Ⅱ)配合物的合成、結構及性質

    馬寧宋會花*于海濤
    (河北師范大學化學與材料科學學院,石家莊050024)

    利用手性配體N-乙酰-L-酪氨酸(Hacty)與鈷鹽通過溶液法合成了2例純手性配合物{[Co(acty)(bpp)2(H2O)2](NO3)·2H2O}n(1)和{[Co2(acty)2(bpe)3(H2O)3](ClO4H2O}n(2)(bpp=1,3-聯(lián)(4-吡啶)丙烷,bpe=1,2-聯(lián)(4-吡啶)乙烷),并對它們進行了元素分析(EA)、紅外光譜(IR)、紫外光譜(UV)、熱重(TG)、粉末X射線衍射(PXRD)及X射線單晶衍射測定。配合物1屬于單斜晶系P21空間群,六配位的Co(Ⅱ)離子被bpp配體連接形成一維右手螺旋鏈結構。配合物2屬于三斜晶系P1空間群,六配位的雙核Co(Ⅱ)離子被bpe配體連接形成一維帶狀鏈結構。在氫鍵的作用下,它們均形成三維超分子結構,深入討論了不同構型的含N輔助配體對配合物結構的影響。此外,測定了2例手性配合物的圓二色(CD)光譜。

    鈷配合物;N-乙酰-L-酪氨酸;晶體結構;純手性配合物

    O614.81+2

    A

    1001-4861(2016)06-1078-11

    2015-12-17。收修改稿日期:2016-04-15。

    10.11862/CJIC.2016.127

    國家自然科學基金(No.21141002)和河北省自然科學基金(No.B2012205040)資助項目。

    *通信聯(lián)系人。E-mail:songhuihua@mail.hebtu.edu.cn

    猜你喜歡
    手性酪氨酸吡啶
    手性磷酰胺類化合物不對稱催化合成α-芳基丙醇類化合物
    分子催化(2022年1期)2022-11-02 07:10:30
    吡啶-2-羧酸鉻的制備研究
    云南化工(2021年10期)2021-12-21 07:33:28
    勘 誤
    化工學報(2020年4期)2020-05-28 09:25:24
    今日農業(yè)(2019年11期)2019-08-13 00:49:02
    枸骨葉提取物對酪氨酸酶的抑制與抗氧化作用
    薔薇花總黃酮對酪氨酸酶的抑制作用及其動力學行為
    中成藥(2018年1期)2018-02-02 07:19:57
    利奈唑胺原料藥中R型異構體的手性HPLC分析
    脂肪酶Novozyme435手性拆分(R,S)-扁桃酸
    PVC用酪氨酸鑭的合成、復配及熱穩(wěn)定性能研究
    中國塑料(2016年7期)2016-04-16 05:25:52
    純手性的三聯(lián)吡啶氨基酸—汞(II)配合物的合成與表征
    美女高潮到喷水免费观看| 天天躁狠狠躁夜夜躁狠狠躁| 91九色精品人成在线观看| 18禁美女被吸乳视频| 精品电影一区二区在线| 亚洲午夜理论影院| 中出人妻视频一区二区| 99riav亚洲国产免费| 精品一品国产午夜福利视频| 一二三四在线观看免费中文在| 黄色丝袜av网址大全| 日本一区二区免费在线视频| 69av精品久久久久久| 捣出白浆h1v1| 十八禁高潮呻吟视频| 国产无遮挡羞羞视频在线观看| 老司机亚洲免费影院| 波多野结衣一区麻豆| 99国产精品免费福利视频| 热re99久久国产66热| 久久精品国产亚洲av高清一级| 伊人久久大香线蕉亚洲五| 精品国产乱子伦一区二区三区| 免费在线观看黄色视频的| 人成视频在线观看免费观看| 日韩成人在线观看一区二区三区| 不卡一级毛片| 亚洲专区国产一区二区| 日日爽夜夜爽网站| 久久久久视频综合| 久9热在线精品视频| 一级,二级,三级黄色视频| 精品久久久久久久毛片微露脸| 亚洲精品国产精品久久久不卡| 19禁男女啪啪无遮挡网站| 巨乳人妻的诱惑在线观看| 久久香蕉精品热| 高潮久久久久久久久久久不卡| 亚洲一区高清亚洲精品| 日韩大码丰满熟妇| 国产精品自产拍在线观看55亚洲 | 亚洲精品一二三| 极品少妇高潮喷水抽搐| 精品一区二区三区视频在线观看免费 | 成年人午夜在线观看视频| 美国免费a级毛片| 国产高清videossex| 国产欧美日韩一区二区精品| 免费少妇av软件| 一边摸一边做爽爽视频免费| 国产成人啪精品午夜网站| 中国美女看黄片| 丝瓜视频免费看黄片| 久久久久久免费高清国产稀缺| 麻豆乱淫一区二区| 欧美不卡视频在线免费观看 | 悠悠久久av| 一本综合久久免费| 亚洲欧洲精品一区二区精品久久久| 中出人妻视频一区二区| 日本wwww免费看| 高清黄色对白视频在线免费看| 老司机影院毛片| 午夜免费观看网址| 国产蜜桃级精品一区二区三区 | 中文字幕人妻熟女乱码| 中文欧美无线码| 嫁个100分男人电影在线观看| 两性夫妻黄色片| 欧美黄色淫秽网站| 50天的宝宝边吃奶边哭怎么回事| 久久久久精品国产欧美久久久| 亚洲欧洲精品一区二区精品久久久| 校园春色视频在线观看| 亚洲成国产人片在线观看| 老司机午夜福利在线观看视频| 人人妻人人澡人人爽人人夜夜| 精品国产一区二区三区久久久樱花| 一进一出抽搐gif免费好疼 | 国精品久久久久久国模美| 波多野结衣一区麻豆| 国产成人精品在线电影| 日韩欧美三级三区| 国产精品久久久久久精品古装| 少妇猛男粗大的猛烈进出视频| www.精华液| 成人18禁在线播放| 色尼玛亚洲综合影院| 亚洲精品国产一区二区精华液| 久久久国产成人精品二区 | 久久天躁狠狠躁夜夜2o2o| 大型av网站在线播放| videosex国产| 少妇裸体淫交视频免费看高清 | 成人手机av| 亚洲av日韩在线播放| 成年人免费黄色播放视频| 在线观看免费视频网站a站| www.熟女人妻精品国产| 两性夫妻黄色片| a在线观看视频网站| 国产精品 国内视频| 亚洲av第一区精品v没综合| 大陆偷拍与自拍| 大香蕉久久网| 人妻一区二区av| 免费在线观看完整版高清| 午夜免费观看网址| 久久久国产欧美日韩av| 一边摸一边做爽爽视频免费| 999精品在线视频| 亚洲成人免费电影在线观看| 中文亚洲av片在线观看爽 | 国产一卡二卡三卡精品| 欧美午夜高清在线| 中文字幕人妻丝袜一区二区| 免费黄频网站在线观看国产| 亚洲全国av大片| 身体一侧抽搐| 国产亚洲一区二区精品| 少妇粗大呻吟视频| 老司机靠b影院| 在线观看www视频免费| 欧美日韩精品网址| 久久久久久久久免费视频了| 91老司机精品| 看片在线看免费视频| 日日摸夜夜添夜夜添小说| 午夜日韩欧美国产| 色播在线永久视频| 无限看片的www在线观看| 激情在线观看视频在线高清 | 18禁观看日本| 在线观看66精品国产| 亚洲欧美日韩另类电影网站| 精品一区二区三区av网在线观看| 精品一区二区三区av网在线观看| 成年女人毛片免费观看观看9 | 久久国产精品人妻蜜桃| 很黄的视频免费| 精品熟女少妇八av免费久了| av福利片在线| 很黄的视频免费| 精品欧美一区二区三区在线| 亚洲综合色网址| 国产高清国产精品国产三级| 国产精品欧美亚洲77777| 久久青草综合色| 亚洲国产精品合色在线| 国产精品99久久99久久久不卡| 亚洲精品在线观看二区| 国产不卡一卡二| 久久亚洲精品不卡| 亚洲第一av免费看| 精品久久久久久,| 超碰97精品在线观看| 午夜两性在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 国产不卡一卡二| av有码第一页| 亚洲精品粉嫩美女一区| 国产免费现黄频在线看| 中文字幕另类日韩欧美亚洲嫩草| 人成视频在线观看免费观看| 最新的欧美精品一区二区| 欧美色视频一区免费| 欧美日韩一级在线毛片| 99精品久久久久人妻精品| 首页视频小说图片口味搜索| 欧美日韩亚洲国产一区二区在线观看 | 高清视频免费观看一区二区| 成人亚洲精品一区在线观看| 中文字幕人妻丝袜制服| 欧美精品一区二区免费开放| 久久香蕉激情| 高清av免费在线| 亚洲 欧美一区二区三区| 老司机亚洲免费影院| ponron亚洲| 黑人巨大精品欧美一区二区蜜桃| 日韩制服丝袜自拍偷拍| tube8黄色片| 成人国产一区最新在线观看| 国产在线观看jvid| 村上凉子中文字幕在线| 老熟女久久久| 在线观看免费视频网站a站| 叶爱在线成人免费视频播放| 久久精品91无色码中文字幕| 日本wwww免费看| 制服人妻中文乱码| 久久精品亚洲精品国产色婷小说| 国产亚洲精品久久久久久毛片 | 免费人成视频x8x8入口观看| 午夜精品久久久久久毛片777| 最新在线观看一区二区三区| 女性生殖器流出的白浆| 欧美日韩中文字幕国产精品一区二区三区 | 久久久久久久国产电影| av中文乱码字幕在线| 建设人人有责人人尽责人人享有的| 亚洲色图av天堂| 老司机靠b影院| 国产一区二区三区视频了| 免费看a级黄色片| 久久精品熟女亚洲av麻豆精品| 日本精品一区二区三区蜜桃| 国内毛片毛片毛片毛片毛片| 精品一区二区三区四区五区乱码| 99国产精品99久久久久| 国产精品国产高清国产av | 免费看十八禁软件| 99热网站在线观看| 精品少妇久久久久久888优播| 欧美激情久久久久久爽电影 | 热99re8久久精品国产| 国产成人啪精品午夜网站| 啦啦啦在线免费观看视频4| 亚洲国产欧美网| 久热爱精品视频在线9| 飞空精品影院首页| tube8黄色片| 妹子高潮喷水视频| 亚洲 国产 在线| 免费少妇av软件| 国产高清视频在线播放一区| 大型黄色视频在线免费观看| av免费在线观看网站| 中文字幕制服av| 一区福利在线观看| 亚洲熟妇熟女久久| 精品免费久久久久久久清纯 | 美国免费a级毛片| ponron亚洲| 在线永久观看黄色视频| 在线天堂中文资源库| 久久久久久久久久久久大奶| 别揉我奶头~嗯~啊~动态视频| 国产成人啪精品午夜网站| 午夜日韩欧美国产| 不卡一级毛片| 国产淫语在线视频| 91成年电影在线观看| 久久久国产成人免费| 国产男女内射视频| 精品高清国产在线一区| 国产精品免费视频内射| 久久精品国产a三级三级三级| 免费在线观看完整版高清| 国产成人精品无人区| 黄色片一级片一级黄色片| 熟女少妇亚洲综合色aaa.| 丰满迷人的少妇在线观看| 久久精品亚洲精品国产色婷小说| 婷婷成人精品国产| 午夜福利乱码中文字幕| 老司机影院毛片| 免费观看a级毛片全部| 成人18禁在线播放| 建设人人有责人人尽责人人享有的| 久久亚洲精品不卡| 欧美日韩成人在线一区二区| 中文字幕色久视频| 国产成人免费无遮挡视频| 在线观看66精品国产| 亚洲第一av免费看| 亚洲国产精品一区二区三区在线| 亚洲精品中文字幕一二三四区| 自拍欧美九色日韩亚洲蝌蚪91| 可以免费在线观看a视频的电影网站| 亚洲欧美一区二区三区久久| 黑人操中国人逼视频| 国产野战对白在线观看| 精品亚洲成a人片在线观看| 80岁老熟妇乱子伦牲交| 亚洲成人国产一区在线观看| 国产午夜精品久久久久久| 人成视频在线观看免费观看| 日韩有码中文字幕| 成熟少妇高潮喷水视频| 亚洲欧美一区二区三区久久| av线在线观看网站| 中文字幕人妻丝袜一区二区| 人成视频在线观看免费观看| 可以免费在线观看a视频的电影网站| 国产1区2区3区精品| 久久久久久免费高清国产稀缺| 久久精品国产亚洲av香蕉五月 | 久久久久视频综合| 国产成+人综合+亚洲专区| 亚洲欧美精品综合一区二区三区| 日韩免费av在线播放| 亚洲精品久久成人aⅴ小说| 国产有黄有色有爽视频| 后天国语完整版免费观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产1区2区3区精品| 亚洲欧美激情在线| 啦啦啦免费观看视频1| 成人亚洲精品一区在线观看| tocl精华| 久久久久精品国产欧美久久久| 国产精品99久久99久久久不卡| 深夜精品福利| 久久久久久久国产电影| 黑人巨大精品欧美一区二区蜜桃| www.999成人在线观看| 久久久久国内视频| 亚洲精品国产一区二区精华液| 91在线观看av| 亚洲精品国产区一区二| 日韩欧美三级三区| 后天国语完整版免费观看| 一级毛片女人18水好多| 亚洲成人免费电影在线观看| 久久精品国产亚洲av香蕉五月 | 操美女的视频在线观看| 亚洲情色 制服丝袜| 在线观看66精品国产| 精品一区二区三卡| 大香蕉久久网| 午夜精品久久久久久毛片777| 人妻久久中文字幕网| 真人做人爱边吃奶动态| 少妇粗大呻吟视频| 成年人免费黄色播放视频| 国产熟女午夜一区二区三区| 精品国内亚洲2022精品成人 | 日韩欧美国产一区二区入口| 久久香蕉国产精品| 国产成人av教育| 丁香六月欧美| 国产亚洲一区二区精品| 老熟女久久久| 国产一区在线观看成人免费| 免费女性裸体啪啪无遮挡网站| 两性夫妻黄色片| 亚洲精品国产一区二区精华液| 亚洲精品久久午夜乱码| 变态另类成人亚洲欧美熟女 | 国产熟女午夜一区二区三区| 亚洲第一欧美日韩一区二区三区| 50天的宝宝边吃奶边哭怎么回事| 建设人人有责人人尽责人人享有的| 久久精品aⅴ一区二区三区四区| 最新的欧美精品一区二区| 国产高清videossex| 黄网站色视频无遮挡免费观看| 免费在线观看完整版高清| 久久九九热精品免费| av国产精品久久久久影院| 亚洲精品在线观看二区| 成在线人永久免费视频| 精品欧美一区二区三区在线| 亚洲午夜精品一区,二区,三区| 久久精品国产亚洲av香蕉五月 | 成人永久免费在线观看视频| 国产精品久久久av美女十八| 这个男人来自地球电影免费观看| 国产aⅴ精品一区二区三区波| 亚洲精品一卡2卡三卡4卡5卡| 欧美精品高潮呻吟av久久| 99在线人妻在线中文字幕 | 免费在线观看视频国产中文字幕亚洲| 精品久久久久久,| 日韩欧美免费精品| 十分钟在线观看高清视频www| av电影中文网址| 国产男靠女视频免费网站| 中文字幕另类日韩欧美亚洲嫩草| 久久久久国产一级毛片高清牌| 激情在线观看视频在线高清 | 成年女人毛片免费观看观看9 | av欧美777| 久久久国产成人免费| 99国产精品一区二区三区| 精品人妻1区二区| 国产av精品麻豆| 人妻久久中文字幕网| 下体分泌物呈黄色| 他把我摸到了高潮在线观看| 后天国语完整版免费观看| 真人做人爱边吃奶动态| 久久久久久久国产电影| 少妇裸体淫交视频免费看高清 | 一本大道久久a久久精品| 亚洲第一av免费看| 久久亚洲真实| 国产99久久九九免费精品| 伊人久久大香线蕉亚洲五| 大香蕉久久网| 国产成人av教育| 久久精品国产综合久久久| 日韩成人在线观看一区二区三区| 男女免费视频国产| 法律面前人人平等表现在哪些方面| 日韩中文字幕欧美一区二区| 国产欧美日韩精品亚洲av| 女警被强在线播放| 高清毛片免费观看视频网站 | 亚洲久久久国产精品| 久久香蕉激情| 国产1区2区3区精品| 国产亚洲精品第一综合不卡| 大陆偷拍与自拍| 欧美另类亚洲清纯唯美| 飞空精品影院首页| 午夜福利在线免费观看网站| 如日韩欧美国产精品一区二区三区| 女人爽到高潮嗷嗷叫在线视频| 亚洲 国产 在线| 久久久久久久午夜电影 | 国产精华一区二区三区| 成人18禁在线播放| 777久久人妻少妇嫩草av网站| 在线观看免费视频网站a站| 丝袜美足系列| 天堂俺去俺来也www色官网| 99re6热这里在线精品视频| 亚洲免费av在线视频| 黄色成人免费大全| 亚洲熟妇熟女久久| 久久久久视频综合| 国产亚洲一区二区精品| 久久中文字幕一级| 两个人看的免费小视频| 亚洲美女黄片视频| 桃红色精品国产亚洲av| 天天躁日日躁夜夜躁夜夜| 在线观看免费视频网站a站| 在线观看免费午夜福利视频| 久久久久国产精品人妻aⅴ院 | 国产亚洲欧美精品永久| 亚洲专区国产一区二区| 天堂动漫精品| 最新在线观看一区二区三区| 黄色 视频免费看| 中亚洲国语对白在线视频| 高潮久久久久久久久久久不卡| 女人被躁到高潮嗷嗷叫费观| 亚洲av成人av| 欧美日韩福利视频一区二区| 在线观看舔阴道视频| 成年动漫av网址| 欧美日韩视频精品一区| 亚洲国产欧美网| 精品人妻在线不人妻| 别揉我奶头~嗯~啊~动态视频| 高清毛片免费观看视频网站 | 69av精品久久久久久| 最近最新中文字幕大全电影3 | 99久久99久久久精品蜜桃| 一区福利在线观看| 别揉我奶头~嗯~啊~动态视频| 亚洲午夜精品一区,二区,三区| 黄色视频不卡| 成年女人毛片免费观看观看9 | 亚洲第一青青草原| 欧美黄色淫秽网站| 国产一区二区三区视频了| 最近最新中文字幕大全免费视频| 国产精品电影一区二区三区 | 大码成人一级视频| 男人舔女人的私密视频| 中文字幕另类日韩欧美亚洲嫩草| 777米奇影视久久| 日韩中文字幕欧美一区二区| av有码第一页| 淫妇啪啪啪对白视频| avwww免费| 欧美黄色淫秽网站| 老司机亚洲免费影院| 国产精品免费一区二区三区在线 | 欧美另类亚洲清纯唯美| 飞空精品影院首页| 黄色视频,在线免费观看| 国产在线精品亚洲第一网站| 18禁观看日本| 精品免费久久久久久久清纯 | 亚洲欧美色中文字幕在线| 在线观看日韩欧美| 在线观看66精品国产| 亚洲av电影在线进入| 成人影院久久| 亚洲第一av免费看| 一进一出抽搐动态| 麻豆成人av在线观看| 狠狠婷婷综合久久久久久88av| 久久热在线av| 国产又爽黄色视频| 国产极品粉嫩免费观看在线| 久久国产精品影院| 99精国产麻豆久久婷婷| 国产成人av激情在线播放| 美女午夜性视频免费| 日本撒尿小便嘘嘘汇集6| 建设人人有责人人尽责人人享有的| 视频在线观看一区二区三区| 国产乱人伦免费视频| 亚洲一码二码三码区别大吗| 成人永久免费在线观看视频| 日本精品一区二区三区蜜桃| 亚洲精品国产色婷婷电影| 啦啦啦免费观看视频1| 精品一区二区三区四区五区乱码| 在线观看66精品国产| 精品国产一区二区三区久久久樱花| 丰满迷人的少妇在线观看| 精品视频人人做人人爽| 精品熟女少妇八av免费久了| 又紧又爽又黄一区二区| 18禁美女被吸乳视频| 色综合婷婷激情| 一进一出好大好爽视频| 中出人妻视频一区二区| 国产精品影院久久| 如日韩欧美国产精品一区二区三区| 曰老女人黄片| 精品国产乱码久久久久久男人| 免费一级毛片在线播放高清视频 | 波多野结衣一区麻豆| 色婷婷久久久亚洲欧美| 国产精品自产拍在线观看55亚洲 | 久久天堂一区二区三区四区| 成年女人毛片免费观看观看9 | a在线观看视频网站| 精品国产国语对白av| 90打野战视频偷拍视频| 夜夜躁狠狠躁天天躁| 两个人免费观看高清视频| 亚洲人成伊人成综合网2020| 婷婷成人精品国产| 欧美亚洲 丝袜 人妻 在线| 久久久久国产精品人妻aⅴ院 | xxxhd国产人妻xxx| 国产精品免费一区二区三区在线 | 在线十欧美十亚洲十日本专区| 91成年电影在线观看| 黄色a级毛片大全视频| tube8黄色片| 免费不卡黄色视频| 久久久久久久国产电影| 成人黄色视频免费在线看| 一区二区三区激情视频| 一边摸一边抽搐一进一小说 | 免费观看人在逋| 亚洲午夜理论影院| 亚洲精品美女久久av网站| 夜夜躁狠狠躁天天躁| 国产91精品成人一区二区三区| 免费av中文字幕在线| av欧美777| www.精华液| 一区福利在线观看| 一级片'在线观看视频| videos熟女内射| 久9热在线精品视频| 激情视频va一区二区三区| 一边摸一边抽搐一进一小说 | 99精国产麻豆久久婷婷| 真人做人爱边吃奶动态| 亚洲精品美女久久av网站| 黄片播放在线免费| 黄片小视频在线播放| 国产人伦9x9x在线观看| 久久天堂一区二区三区四区| 久久久久久久久免费视频了| 天天影视国产精品| 免费不卡黄色视频| 日韩免费av在线播放| 69av精品久久久久久| 一级毛片精品| 日本精品一区二区三区蜜桃| 亚洲精品久久午夜乱码| 亚洲精品一二三| 欧洲精品卡2卡3卡4卡5卡区| 欧美午夜高清在线| 欧美中文综合在线视频| 无遮挡黄片免费观看| 首页视频小说图片口味搜索| www.自偷自拍.com| av线在线观看网站| 国产精品美女特级片免费视频播放器 | 久久久精品国产亚洲av高清涩受| 美女视频免费永久观看网站| 波多野结衣一区麻豆| 欧美亚洲日本最大视频资源| 波多野结衣一区麻豆| 美女视频免费永久观看网站| 欧美日韩一级在线毛片| 亚洲专区中文字幕在线| 日本wwww免费看| 日本五十路高清| 国产成人欧美在线观看 | 极品人妻少妇av视频| 亚洲欧美色中文字幕在线| 午夜久久久在线观看| av视频免费观看在线观看| 国产片内射在线| 国产91精品成人一区二区三区| 人人澡人人妻人| 99在线人妻在线中文字幕 | 亚洲成人国产一区在线观看| 亚洲欧洲精品一区二区精品久久久| 欧美激情 高清一区二区三区| 久久久久久久久免费视频了| 日本精品一区二区三区蜜桃| 亚洲 欧美一区二区三区| 色94色欧美一区二区| 成人永久免费在线观看视频| 亚洲七黄色美女视频| 9热在线视频观看99| 一边摸一边抽搐一进一小说 | 老鸭窝网址在线观看| 在线观看免费视频日本深夜|