馮 瑾,陳光俠,費(fèi)素娟
?
二甲雙胍抗腫瘤機(jī)制的研究進(jìn)展
馮 瑾1,陳光俠2,費(fèi)素娟3*
二甲雙胍是臨床中治療2型糖尿病最常用的一線治療藥物,近年研究發(fā)現(xiàn),二甲雙胍不僅有降血糖的作用,還有抑制腫瘤細(xì)胞增殖的作用,其抗腫瘤機(jī)制的焦點(diǎn)主要集中在激活單磷酸腺苷依賴的蛋白激酶途徑、降低循環(huán)中胰島素及胰島素樣生長(zhǎng)因子水平、誘導(dǎo)細(xì)胞周期停滯、抑制血管生成及炎癥反應(yīng)、抑制氧自由基生成、抑制腫瘤干細(xì)胞增殖、聯(lián)合相關(guān)藥物增強(qiáng)對(duì)放療及化療的敏感性等,以此抑制腫瘤細(xì)胞增殖,減少糖尿病患者腫瘤的發(fā)病風(fēng)險(xiǎn)。目前,二甲雙胍的抗腫瘤作用及其分子機(jī)制的研究已成為熱點(diǎn),本文就近年來二甲雙胍抗腫瘤機(jī)制進(jìn)行簡(jiǎn)要綜述。
二甲雙胍;腫瘤;糖尿??;單磷酸腺苷依賴的蛋白激酶;雷帕霉素靶蛋白;氧自由基;腫瘤干細(xì)胞
糖尿病是常見的由多病因引起的以循環(huán)中血糖升高為特征的慢性代謝性疾病,常導(dǎo)致機(jī)體三大物質(zhì)代謝紊亂,從而引起多器官功能損害[1]。胰島素分泌不足和(或)作用缺陷是糖尿病發(fā)生的主要病因。根據(jù)最新流行病學(xué)研究顯示,從20世紀(jì)80年代到目前為止,我國(guó)糖尿病患病率已經(jīng)由0.67%升至11.6%,糖尿病前期率升至50.1%,城市男性為糖尿病的好發(fā)人群[2]。目前,我國(guó)已經(jīng)成為2型糖尿病患者人數(shù)最多的國(guó)家[3]。
糖尿病和惡性腫瘤均為多因素的疾病[4-5],常見的危險(xiǎn)因素有:年齡、性別、種族、超重和肥胖[6]、飲食、體力活動(dòng),糖尿病患者惡性腫瘤發(fā)病率較高的原因不僅共享這些危險(xiǎn)因素,而且為糖尿病誘發(fā)癌癥提供發(fā)展,產(chǎn)生這種影響的可能機(jī)制包括高胰島素血癥、高血糖、氧化應(yīng)激、慢性炎癥、肥胖相關(guān)因素與糖尿病并發(fā)癥的影響。
二甲雙胍不僅是一種含有兩個(gè)甲基的雙胍類降糖藥,也是一種胰島素增敏劑[7],優(yōu)點(diǎn)是不降低生理性血糖。二甲雙胍能夠維持血中胰島素的正常范圍,緩解各組織對(duì)胰島素產(chǎn)生的抵抗,增加葡萄糖的消耗,抑制葡萄糖的來源,從而達(dá)到維持血糖正常的目的[8]。Evans等[9]觀測(cè)1993-2001年在英國(guó)泰賽德地區(qū)的314 127名居民(包括死亡),發(fā)現(xiàn)有11 876例新診斷為2型糖尿病患者,而其中923例診斷為腫瘤,研究者整理了所有的病例和對(duì)照組使用二甲雙胍的信息后,發(fā)現(xiàn)服用二甲雙胍的2型糖尿病患者罹患腫瘤的風(fēng)險(xiǎn)降低,隨之二甲雙胍抗腫瘤作用成為了研究熱點(diǎn)。
大量的實(shí)驗(yàn)研究顯示,2型糖尿病患者服用二甲雙胍后能抑制食管癌[10-11]、胃癌[12-13]、肝癌[14-15]、胰腺癌[16]、結(jié)腸癌[17]、肺癌[18]、膠質(zhì)母細(xì)胞瘤[19]和乳腺癌[20]等多種腫瘤細(xì)胞的增殖,從而降低腫瘤發(fā)生的風(fēng)險(xiǎn)。
2.1 二甲雙胍與 LKB1-AMPK-mTOR途徑 大量流行病學(xué)研究顯示,二甲雙胍能夠降低多種類型腫瘤的發(fā)病率[21]。腫瘤可以看作基因疾病,是由于癌基因和抑癌基因之間的牽制力受到外界刺激因素影響后失衡導(dǎo)致的。近年來,LKB1-AMPK-mTOR信號(hào)通路[22-24]在腫瘤中的作用引起了廣泛的關(guān)注,肝激酶B1 (Liver kinase B1,LKB1)通過磷酸化單磷酸腺苷激活的蛋白激酶(Adenosine monophosphate activated protein kinase,AMPK)激活A(yù)MPK,從而抑制雷帕霉素靶蛋白(Mammalian target of rapamycin,mTOR)活性,達(dá)到抑制腫瘤細(xì)胞增殖的目的。
體外實(shí)驗(yàn)發(fā)現(xiàn),在細(xì)胞水平上,二甲雙胍誘導(dǎo)細(xì)胞周期停滯,進(jìn)而誘導(dǎo)細(xì)胞凋亡[25]。除此之外,其能抑制腫瘤細(xì)胞的代謝,并且抑制腫瘤細(xì)胞內(nèi)線粒體復(fù)合物Ⅰ的活性[26-27]。在分子水平上,LKB1是幾乎存在于人體中所有組織的一種腫瘤抑制基因,參與對(duì)AMPK及其下游信號(hào)通路的調(diào)控。LKB1蛋白在細(xì)胞漿中少量表達(dá),有絲氨酸/蘇氨酸蛋白激酶活性,參與控制和調(diào)節(jié)細(xì)胞增殖、凋亡、細(xì)胞極性和細(xì)胞能量代謝過程[28],是參與調(diào)控的主要功能區(qū)[29]。LKB1基因的突變能導(dǎo)致LKB1蛋白喪失激酶活性,從而失去對(duì)細(xì)胞生長(zhǎng)、分化、遷移的控制,導(dǎo)致腫瘤的發(fā)生[30-31]。AMPK作為L(zhǎng)KB1下游的重要信號(hào)分子,是由一種具有催化活性的α(α1、α2)亞單位及兩個(gè)具有調(diào)節(jié)功能的β(β1、β2)和γ(γ1、γ2、γ3)單位組成的多種形式的異源三聚體蛋白,在蘇氨酸的α亞基上LKB1的磷酸化作用提高了AMPK的活性[32]。AMPK是細(xì)胞能量代謝“感受器”[33],能對(duì)細(xì)胞內(nèi)單磷酸腺苷(AMP)及三磷酸腺苷(ATP)比值變化進(jìn)行靈敏的調(diào)控。缺氧、營(yíng)養(yǎng)不良等代謝性應(yīng)激刺激可活化 AMPK,抑制依賴ATP供應(yīng)的合成代謝過程,促進(jìn)生成ATP的分解氧化過程,維持機(jī)體的正常代謝。LKB1/AMPK信號(hào)通路也是控制絲氨酸-蘇氨酸激酶mTOR的蛋白合成率的關(guān)鍵節(jié)點(diǎn)[34]。mTOR是AMPK下游重要靶蛋白,參與對(duì)蛋白質(zhì)合成、細(xì)胞周期、凋亡等過程的調(diào)控,在生化及功能上有兩個(gè)獨(dú)立的不連續(xù)的信號(hào)復(fù)合物mTORC1和mTORC2。富含腦內(nèi)Ras同系物(Rheb)是一種小GTP酶,其也是激活mTOR的關(guān)鍵蛋白[35],而結(jié)節(jié)性腦硬化復(fù)合物-1(TSC-1)和結(jié)節(jié)性腦硬化復(fù)合物-2(TSC-2)形成的二聚體復(fù)合物是Rheb的抑制劑。因此,在正常情況下,TSC-1/TSC-2形成的二聚體復(fù)合物抑制Rheb,進(jìn)而抑制mTOR功能。當(dāng)AKt激活后,使TSC-2磷酸化,TSC-1/TSC-2復(fù)合物的形成受到抑制,Rheb恢復(fù)活力,mTOR被激活,構(gòu)成了mTOR的上游傳導(dǎo)通路。AMPK是通過蘇氨酸1227位點(diǎn)和絲氨酸1345位點(diǎn)磷酸化的TSC2來發(fā)揮作用,這種磷酸化刺激TSC2的GTP酶活性,蛋白產(chǎn)物TSC-1和TSC-2形成了一個(gè)具有GTP酶活性的復(fù)合體,通過小G蛋白R(shí)heb,抑制mTOR的激活[36]。當(dāng)mTOR活性降低時(shí),使兩條下游通路[37]核糖體S6蛋白激酶(S6K)和真核生物始動(dòng)因子4E結(jié)合蛋白1(4E-BP1)發(fā)生磷酸化,導(dǎo)致mRNA翻譯受阻并減少蛋白合成,這兩條通路構(gòu)成了mTOR的下游信號(hào)傳導(dǎo)途徑。在能量需求增多的細(xì)胞內(nèi),AMPK可以抑制mTORC1通路,其主要是通過磷酸化TSC-2,促進(jìn)二聚體復(fù)合物的形成,降低Rheb活性實(shí)現(xiàn)的。
綜上所述,二甲雙胍可以通過LKB1-AMPK-mTOR途徑,影響腫瘤細(xì)胞的能量供需平衡,控制細(xì)胞周期,從而達(dá)到抑制腫瘤細(xì)胞生長(zhǎng)的目的。
2.2 二甲雙胍與循環(huán)中胰島素、胰島素樣生長(zhǎng)因子(IGFs) IGFs是一類多功能細(xì)胞增殖調(diào)控因子,參與個(gè)體生長(zhǎng)發(fā)育、細(xì)胞增殖與分化等過程,對(duì)腫瘤發(fā)生發(fā)展有重要的促進(jìn)作用[38-39]。胰島素和IGFs在體內(nèi)發(fā)揮著不同的生理作用,胰島素在調(diào)節(jié)肌肉、脂肪和肝臟中的葡萄糖和脂類的代謝過程中的作用最為顯著,以保證消化系統(tǒng)的協(xié)調(diào)吸收和儲(chǔ)存。而IGFs主要表現(xiàn)在促進(jìn)細(xì)胞的生長(zhǎng)和分化方面。胰島素、IGFs及其受體主要通過以下兩個(gè)典型信號(hào)通路[40]參與對(duì)細(xì)胞代謝、增殖、分化的調(diào)控,一種是磷脂酰肌醇3-激酶(PI3K)/ Akt/mTOR[41],另一種是Ras /細(xì)胞外信號(hào)調(diào)節(jié)激酶(ERK)通路。二甲雙胍通過促進(jìn)葡萄糖攝取及利用,抑制葡萄糖生成,維持血糖平衡,減少胰島素分泌,繼而達(dá)到緩解高胰島素血癥及胰島素抵抗的目的。但在臨床研究中,即使在校正了胰島素劑量之后,二甲雙胍的保護(hù)作用仍顯著,表明二甲雙胍的抗腫瘤作用不能完全用胰島素節(jié)約效應(yīng)來解釋。一些臨床前研究發(fā)現(xiàn),在不同的動(dòng)物模型中,腫瘤生長(zhǎng)的減緩和胰島素及IGFs水平的降低是密切相關(guān)的[42-43]。在這些研究中,二甲雙胍抗腫瘤的機(jī)制被歸納為降低循環(huán)中胰島素、IGFs的水平。
2.3 二甲雙胍與誘導(dǎo)細(xì)胞周期停滯 細(xì)胞周期(Cell cycle)是指細(xì)胞從一次分裂完成開始經(jīng)歷間期(G1期、S期、G2期)與分裂期(M期)2個(gè)階段到下一次分裂結(jié)束所經(jīng)歷的全過程。細(xì)胞周期的調(diào)控需要細(xì)胞周期蛋白1 (Cyclin D1)、細(xì)胞周期依賴性蛋白激酶(CDK)和細(xì)胞周期依賴性蛋白激酶抑制因子(CDKI)共同參與[44-45]。有研究表明,二甲雙胍可以通過激活A(yù)MPK,繼而活化p53軸,達(dá)到阻滯細(xì)胞周期的目的。p53是一種腫瘤抑制基因,通過對(duì)一些細(xì)胞應(yīng)激包括DNA損傷、癌基因的激活和缺氧誘導(dǎo)的細(xì)胞周期阻滯或衰老等的調(diào)控,在預(yù)防腫瘤的發(fā)生發(fā)展中起著重要作用[46],其編碼的轉(zhuǎn)錄因子參與對(duì)細(xì)胞周期的調(diào)控。p53基因的高突變率(50%)幾乎在所有惡性腫瘤中都能得到體現(xiàn)[47]。p21作為p53下游關(guān)鍵信號(hào)分子,具有調(diào)控細(xì)胞周期阻滯的作用。二甲雙胍激活A(yù)MPK繼而磷酸化p53,導(dǎo)致p53基因的表達(dá)增高[48],進(jìn)而活化p21,抑制Rb蛋白磷酸化,導(dǎo)致轉(zhuǎn)錄受阻[49]。另外,也有文獻(xiàn)報(bào)道,在無p53表達(dá)而p21、p27高表達(dá)的腫瘤細(xì)胞中,同樣表現(xiàn)出轉(zhuǎn)錄受阻、蛋白質(zhì)合成低下,造成細(xì)胞周期停滯[50]。
2.4 抑制腫瘤新生血管的生成和炎癥反應(yīng) 抗血管生成已成為目前主要的抗腫瘤策略之一,其對(duì)腫瘤的治療和預(yù)防有著重要的作用。血管內(nèi)皮生長(zhǎng)因子(VEGF)是促進(jìn)血管生成的主要因子,同時(shí)作為內(nèi)皮細(xì)胞的有絲分裂原,也是腫瘤形成、增殖及轉(zhuǎn)移的重要原因。最近的研究證實(shí),二甲雙胍能夠抑制腫瘤血管生成,而這種抗血管生成作用的機(jī)制尚不明確。Wang等[51]在研究HER-2乳腺癌細(xì)胞發(fā)現(xiàn),二甲雙胍可以通過HIF-1α/VEGF軸信號(hào)通路,抑制VEGF分泌,從而抑制腫瘤血管生成。Tadakawa等[52]在研究二甲雙胍是否可以調(diào)節(jié)在大鼠源性子宮平滑肌瘤細(xì)胞(ELT-3細(xì)胞)中VEGF的表達(dá)情況時(shí)發(fā)現(xiàn),在常氧條件下,二甲雙胍能夠抑制細(xì)胞中VEGF蛋白的表達(dá),呈劑量依賴性。在模擬低氧條件,血管內(nèi)皮生長(zhǎng)因子和缺氧誘導(dǎo)因子(HIF-1α)蛋白均呈高表達(dá),但在應(yīng)用二甲雙胍后,VEGF及HIF-1α表達(dá)均被抑制。二甲雙胍不影響HIF-1α mRNA表達(dá)水平,提示其作用發(fā)生在轉(zhuǎn)錄后水平。二甲雙胍在ELT-3細(xì)胞中抑制VEGF分泌,阻礙血管生成,主要是通過mTORC1/HIF-1α通路介導(dǎo)的。
炎癥和腫瘤之間可能存在功能性聯(lián)系,其完整的潛在的細(xì)胞及分子途徑仍然未知[53]。環(huán)氧合酶-2(COX-2)作為重要的炎癥介質(zhì),已被證明與腫瘤的發(fā)生和發(fā)展密切相關(guān)[54]。機(jī)體正常狀態(tài)下,COX-2在大部分組織細(xì)胞中幾乎無表達(dá);而在病理狀態(tài)下,COX-2表達(dá)增高,主要是由于受到致癌物質(zhì)、炎性刺激物等促進(jìn)炎癥介質(zhì)誘導(dǎo)生成的,同時(shí)其參與多種病理生理過程,生成眾多炎癥介質(zhì),這些炎癥介質(zhì)中的前列腺素能促進(jìn)多種腫瘤的生長(zhǎng)。Lee等[55]研究結(jié)腸癌細(xì)胞系中AMPK時(shí)發(fā)現(xiàn),其激活與COX-2的抑制存在相關(guān)性,這種聯(lián)系也在白血病[56]和黑色素瘤細(xì)胞系[57]中得到體現(xiàn)。Saber等[58]觀察在結(jié)腸癌細(xì)胞株HCT-116和Caco-2中二甲雙胍與5-氨基水楊酸(5-ASA)聯(lián)合作用時(shí)發(fā)現(xiàn),二甲雙胍通過誘導(dǎo)5-ASA增加氧化應(yīng)激及細(xì)胞凋亡機(jī)制的激活來抑制CRC的增殖。此外,二甲雙胍增強(qiáng)5-ASA的抗炎作用主要是通過降低IL-1β、IL-6、COX-2和TNF-α及其受體的表達(dá),抑制活化的NF-κB和STAT3的轉(zhuǎn)錄因子。二甲雙胍也可以增強(qiáng)5-ASA對(duì)MMP-2和MMP-9酶活性的抑制作用,減少腫瘤轉(zhuǎn)移??梢?,二甲雙胍抑制炎癥及腫瘤的機(jī)制仍不十分明確,需要進(jìn)一步研究。
2.5 抑制氧自由基的生成 ROS即活性氧,是維持人體正常生命活動(dòng)所必需的活性化物質(zhì)。如果體內(nèi)ROS生成過多,超出機(jī)體自身清除保護(hù)能力范圍時(shí),輕者表現(xiàn)為生物膜脂質(zhì)氧化反應(yīng),重者表現(xiàn)為組織及器官受損,可以造成DNA等遺傳物質(zhì)突變,為腫瘤的形成提供有利條件。Algire等[59]發(fā)現(xiàn),二甲雙胍可以減弱農(nóng)藥百草枯作用(通過線粒體復(fù)合物Ⅰ刺激內(nèi)源性活性氧的生成)導(dǎo)致的氧自由基的增多,但是不影響外源性ROS的主要來源,即H2O2產(chǎn)生ROS,同時(shí)還可以下調(diào)Ras誘導(dǎo)的氧自由基的產(chǎn)生。Piwkowska等[60]在最近的一項(xiàng)研究中發(fā)現(xiàn),二甲雙胍能顯著減少腎小球臟層上皮細(xì)胞的NADPH的氧化活性,減少ROS的產(chǎn)生。Khouri等[61]提出另一個(gè)假設(shè)來解釋二甲雙胍的這種抗氧化特性,因?yàn)槎纂p胍對(duì)氧自由基沒有直接的清除能力,于是其推測(cè)二甲雙胍是通過抑制線粒體復(fù)合物Ⅰ來抑制ROS的產(chǎn)生量。線粒體復(fù)合物Ⅰ活性的降低能減少進(jìn)入電子傳遞鏈的電子數(shù)量,從而通過線粒體復(fù)合物Ⅰ和Ⅲ這兩條ROS的主要產(chǎn)生途徑來減少ROS的量。這種假說提出,二甲雙胍作用于線粒體,更特別的是作用于ROS產(chǎn)生的代謝過程,即氧化磷酸化過程,而不是通過傳統(tǒng)的抗氧化作用??偠灾?,二甲雙胍的抗氧化作用能為糖尿病患者及腫瘤患者提供更好的保護(hù)作用[62]。
2.6 抑制腫瘤干細(xì)胞增殖 腫瘤干細(xì)胞是腫瘤組織中少數(shù)具有自我更新、增殖和分化能力并能產(chǎn)生異質(zhì)性腫瘤細(xì)胞的細(xì)胞,是腫瘤發(fā)生、發(fā)展、復(fù)發(fā)和轉(zhuǎn)移的主要原因[63]。因此,針對(duì)腫瘤干細(xì)胞的治療將成為預(yù)防和治療腫瘤的新的治療手段。Zhang等[64]在體內(nèi)外研究發(fā)現(xiàn),二甲雙胍在低劑量時(shí)不影響卵巢癌細(xì)胞的增殖,但可以選擇性地抑制CD44(+)CD117(+)卵巢癌干細(xì)胞的增殖,其主要通過抑制上皮-間質(zhì)轉(zhuǎn)化(EMT)及增強(qiáng)卵巢癌對(duì)順鉑化療敏感性實(shí)現(xiàn)的。同時(shí)也有研究在3種不同類型的胰腺癌細(xì)胞培養(yǎng)干細(xì)胞的實(shí)驗(yàn)中發(fā)現(xiàn),二甲雙胍對(duì)胰腺癌干細(xì)胞具有殺傷作用,其與姜黃素聯(lián)用也可以增加化療藥物的敏感性[65]。
2.7 二甲雙胍的協(xié)同作用 目前,放療、化療是治療惡性腫瘤的重要方法,因其不良反應(yīng)較大,導(dǎo)致軀體無法耐受而降低治療效果,而二甲雙胍不良反應(yīng)小、與化療藥物具有協(xié)同作用[66],二者聯(lián)合不僅能增加化療藥物抗腫瘤的作用效果,還能使化療藥物使用量及其本身不良反應(yīng)降低。Julie等[67]研究發(fā)現(xiàn),二甲雙胍能顯著抑制人腦膠質(zhì)瘤細(xì)胞增殖,其與替莫唑胺聯(lián)合治療腦膠質(zhì)瘤細(xì)胞株可表現(xiàn)出協(xié)同抗腫瘤反應(yīng)。Chai等[68]研究發(fā)現(xiàn),二甲雙胍增加胰腺癌細(xì)胞對(duì)吉西他濱的敏感性,部分機(jī)制是通過抑制CD133+細(xì)胞群的增殖及抑制ERK的磷酸化,從而抑制p70S6K信號(hào)激活來實(shí)現(xiàn)的。此外,Koritzinsky等[69]發(fā)現(xiàn),二甲雙胍可以作為一種新的腫瘤放射治療的生物修飾劑,其潛在的增強(qiáng)放療能力的機(jī)制主要包括直接的放療增敏作用以及抑制腫瘤細(xì)胞的分化、增殖,這種表現(xiàn)在細(xì)胞與腫瘤抑制基因p53和LKB1缺失的情況下更加明顯。
目前,二甲雙胍的抗腫瘤機(jī)制尚未完全闡明,大致認(rèn)為二甲雙胍可能通過LKB1-AMPK-mTOR通路、降低宿主胰島素水平、誘導(dǎo)細(xì)胞周期停滯、抑制腫瘤新生血管的生成和炎癥反應(yīng)、抑制氧自由基的生成、抑制腫瘤干細(xì)胞等抑制腫瘤細(xì)胞生長(zhǎng),也可通過增強(qiáng)放化療的敏感性、誘導(dǎo)自噬、激活免疫系統(tǒng)、抑制UPR等途徑發(fā)揮抗腫瘤作用。至今,對(duì)二甲雙胍的研究多數(shù)都是回顧性病例分析及細(xì)胞或者動(dòng)物實(shí)驗(yàn),其結(jié)果的可靠性較低。希望隨著研究的不斷深入,二甲雙胍抗腫瘤機(jī)制越來越明確、清晰,其信號(hào)通路能夠成為抗腫瘤治療的新靶點(diǎn),為腫瘤患者帶來福音。
[1] McAlpine RR,Morris AD,Emslie-Smith A,et al.The annual incidence of diabetic complications in a population of patients with Type 1 and Type 2 diabetes[J].Diabet Med,2005,22(3):348-352.
[2] Kao PC,Han QJ,Liu S,et al.Letter to the editor:the surge of type 2 diabetes mellitus in China-an international alert:physical exercise and low-caloric diet may reduce the risks of type 2 diabetes mellitus and dementia[J].Ann Clin Lab Sci,2016,46(1):114-118.
[3] 中華醫(yī)學(xué)會(huì)糖尿病學(xué)分會(huì).2013年版中國(guó)2型糖尿病防治指南選登(上) [J].糖尿病臨床,2014,8(7):298-311.
[4] 張紅國(guó),韓世超,龐海艷,等.2型糖尿病與惡性腫瘤的相關(guān)性研究[J].河北醫(yī)藥,2014,(12):1864-1866.
[5] Petera J,Smahelova A.Diabetes mellitus and malignancies[J].Vnitr Lek,2014,60(Suppl 2):69-74.
[6] Jain R,Strickler HD,Fine E,et al.Clinical studies examining the impact of obesity on breast cancer risk and prognosis[J].J Mammary Gland Biol Neoplasia,2013,18(3-4):257-266.
[7] Kirpichnikov D,McFarlane SI,Sowers JR.Metformin:an update[J].Ann Intern Med,2002,137(1):25-33.
[8] Wiernsperger NF,Bailey CJ.The antihyperglycaemic effect of metformin:therapeutic and cellular mechanisms[J].Drugs,1999,58(Suppl 1):31-39.
[9] Evans JM,Donnelly LA,Emslie-Smith AM,et al.Metformin and reduced risk of cancer in diabetic patients[J].BMJ,2005,330(7503):1304-1305.
[10]Fujihara S,Kato K,Morishita A,et al.Antidiabetic drug metformin inhibits esophageal adenocarcinoma cell proliferation in vitro and in vivo[J].Int J Oncol,2015,46(5):2172-2180.
[11]Cai X,Hu X,Tan X,et al.Metformin induced AMPK activation,G0/G1phase cell cycle arrest and the inhibition of growth of esophageal squamous cell carcinomas in vitro and in vivo[J].PLoS One,2015,10(7):e0133349.
[12]Chen G,Feng W,Zhang S,et al.Metformin inhibits gastric cancer via the inhibition of HIF1alpha/PKM2 signaling[J].Am J Cancer Res,2015,5(4):1423-1434.
[13]Greenhill C.Gastric cancer.Metformin improves survival and recurrence rate in patients with diabetes and gastric cancer[J].Nat Rev Gastroenterol Hepatol,2015,12(3):124.
[14]DePeralta DK,Wei L,Ghoshal S,et al.Metformin prevents hepatocellular carcinoma development by suppressing hepatic progenitor cell activation in a rat model of cirrhosis[J].Cancer,2016,122(8):1216-1227.
[15]Obara A,Fujita Y,Abudukadier A,et al.DEPTOR-related mTOR suppression is involved in metformin′s anti-cancer action in human liver cancer cells[J].Biochem Biophys Res Commun,2015,460(4):1047-1052.
[16]Kato K,Iwama H,Yamashita T,et al.The anti-diabetic drug metformin inhibits pancreatic cancer cell proliferation in vitro and in vivo:study of the microRNAs associated with the antitumor effect of metformin[J].Oncol Rep,2016,35(3):1582-1592.
[17]Abdelsatir AA,Husain NE,Hassan AT,et al.Potential benefit of metformin as treatment for colon cancer:the evidence so far[J].Asian Pac J Cancer Prev,2015,16(18):8053-8058.
[18]Guo Q,Liu Z,Jiang L,et al.Metformin inhibits growth of human non-small cell lung cancer cells via liver kinase B-1-independent activation of adenosine monophosphate-activated protein kinase[J].Mol Med Rep,2016,13(3):2590-2596.
[19]Carmignani M,Volpe AR,Aldea M,et al.Glioblastoma stem cells:a new target for metformin and arsenic trioxide[J].J Biol Regul Homeost Agents,2014,28(1):1-15.
[20]Li NS,Zou JR,Lin H,et al.LKB1/AMPK inhibits TGF-beta1 production and the TGF-beta signaling pathway in breast cancer cells[J].Tumour Biol,2016,37(6):8249-8258.
[21]Rizos CV,Elisaf MS.Metformin and cancer[J].Eur J Pharmacol,2013,705(1-3):96-108.
[22]Green AS,Chapuis N,Lacombe C,et al.LKB1/AMPK/mTOR signaling pathway in hematological malignancies:from metabolism to cancer cell biology[J].Cell Cycle,2011,10(13):2115-2120.
[23]Han D,Li SJ,Zhu YT,et al.LKB1/AMPK/mTOR signaling pathway in non-small-cell lung cancer[J].Asian Pac J Cancer Prev,2013,14(7):4033-4039.
[24]Lin CC,Yeh HH,Huang WL,et al.Metformin enhances cisplatin cytotoxicity by suppressing signal transducer and activator of transcription-3 activity independently of the liver kinase B1-AMP-activated protein kinase pathway[J].Am J Respir Cell Mol Biol,2013,49(2):241-250.
[25]Patel S,Kumar L,Singh N.Metformin and epithelial ovarian cancer therapeutics[J].Cell Oncol (Dordr),2015,38(5):365-375.
[26]Jara JA,Lopez-Munoz R.Metformin and cancer:between the bioenergetic disturbances and the antifolate activity[J].Pharmacol Res,2015,101:102-108.
[27]Griss T,Vincent EE,Egnatchik R,et al.Metformin antagonizes cancer cell proliferation by suppressing mitochondrial-dependent biosynthesis[J].PLoS Biol,2015,13(12):e1002309.
[28]Hurov JB,Huang M,White LS,et al.Loss of the Par-1b/MARK2 polarity kinase leads to increased metabolic rate,decreased adiposity,and insulin hypersensitivity in vivo[J].Proc Natl Acad Sci U S A,2007,104(13):5680-5685.
[29]Karuman P,Gozani O,Odze RD,et al.The Peutz-Jegher gene product LKB1 is a mediator of p53-dependent cell death[J].Mol Cell,2001,7(6):1307-1319.
[30]Ji H,Ramsey MR,Hayes DN,et al.LKB1 modulates lung cancer differentiation and metastasis[J].Nature,2007,448(7155):807-810.
[31]Strazisar M,Mlakar V,Rott T,et al.Somatic alterations of the serine/threonine kinase LKB1 gene in squamous cell (SCC) and large cell (LCC) lung carcinoma[J].Cancer Invest,2009,27(4):407-416.
[32]Li N,Huang D,Lu N,et al.Role of the LKB1/AMPK pathway in tumor invasion and metastasis of cancer cells (Review)[J].Oncol Rep,2015,34(6):2821-2826.
[33]Hardie DG,Schaffer BE,Brunet A.AMPK:an energy-sensing pathway with multiple inputs and outputs[J].Trends Cell Biol,2016,26(3):190-201.
[34]Alain T,Morita M,Fonseca BD,et al.eIF4E/4E-BP ratio predicts the efficacy of mTOR targeted therapies[J].Cancer Res,2012,72(24):6468-6476.
[35]Auricchio N,Malinowska I,Shaw R,et al.Therapeutic trial of metformin and bortezomib in a mouse model of tuberous sclerosis complex (TSC)[J].PLoS One,2012,7(2):e31900.
[36]Green AS,Chapuis N,Maciel TT,et al.The LKB1/AMPK signaling pathway has tumor suppressor activity in acute myeloid leukemia through the repression of mTOR-dependent oncogenic mRNA translation[J].Blood,2010,116(20):4262-4273.
[37]Belda-Iniesta C,Pernia O,Simo R.Metformin:a new option in cancer treatment[J].Clin Transl Oncol,2011,13(6):363-367.
[38]Pollak M.Insulin and insulin-like growth factor signalling in neoplasia[J].Nat Rev Cancer,2008,8(12):915-928.
[39]Gallagher EJ,LeRoith D.Minireview:IGF,insulin,and cancer[J].Endocrinology,2011,152(7):2546-2551.
[40]Siddle K.Molecular basis of signaling specificity of insulin and IGF receptors:neglected corners and recent advances[J].Front Endocrinol (Lausanne),2012,3:34.
[41]Brahmkhatri VP,Prasanna C,Atreya HS.Insulin-like growth factor system in cancer:novel targeted therapies[J].Biomed Res Int,2015:538019.
[42]Algire C,Amrein L,Bazile M,et al.Diet and tumor LKB1 expression interact to determine sensitivity to anti-neoplastic effects of metformin in vivo[J].Oncogene,2011,30(10):1174-1182.
[43]Kalaany NY,Sabatini DM.Tumours with PI3K activation are resistant to dietary restriction[J].Nature,2009,458(7239):725-731.
[44]Zhuang Y,Miskimins WK.Cell cycle arrest in metformin treated breast cancer cells involves activation of AMPK,downregulation of cyclin D1,and requires p27Kip1 or p21Cip1[J].J Mol Signal,2008,3:18.
[45]Kato K,Gong J,Iwama H,et al.The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo[J].Mol Cancer Ther,2012,11(3):549-560.
[46]Vousden KH,Prives C.Blinded by the light:the growing complexity of p53[J].Cell,2009,137(3):413-431.
[47]Li W,Saud SM,Young MR,et al.Targeting AMPK for cancer prevention and treatment[J].Oncotarget,2015,6(10):7365-7378.
[48]Okoshi R,Ozaki T,Yamamoto H,et al.Activation of AMP-activated protein kinase induces p53-dependent apoptotic cell death in response to energetic stress[J].J Biol Chem,2008,283(7):3979-3987.
[49]Skinner HD,Crane CH,Garrett CR,et al.Metformin use and improved response to therapy in rectal cancer[J].Cancer Med,2013,2(1):99-107.
[50]Sadeghi N,Abbruzzese JL,Yeung SC,et al.Metformin use is associated with better survival of diabetic patients with pancreatic cancer[J].Clin Cancer Res,2012,18(10):2905-2912.
[51]Wang J,Li G,Wang Y,et al.Suppression of tumor angiogenesis by metformin treatment via a mechanism linked to targeting of HER2/HIF-1alpha/VEGF secretion axis[J].Oncotarget,2015,6(42):44579-44592.
[52]Tadakawa M,Takeda T,Li B,et al.The anti-diabetic drug metformin inhibits vascular endothelial growth factor expression via the mammalian target of rapamycin complex 1/hypoxia-inducible factor-1alpha signaling pathway in ELT-3 cells[J].Mol Cell Endocrinol,2015,399:1-8.
[53]Coussens LM,Werb Z.Inflammation and cancer[J].Nature,2002,420(6917):860-867.
[54]Castellone MD,Teramoto H,Williams BO,et al.Prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-beta-catenin signaling axis[J].Science,2005,310(5753):1504-1510.
[55]Lee YK,Park SY,Kim YM,et al.Regulatory effect of the AMPK-COX-2 signaling pathway in curcumin-induced apoptosis in HT-29 colon cancer cells[J].Ann N Y Acad Sci,2009,1171:489-494.
[56]Lee JY,Choi AY,Oh YT,et al.AMP-activated protein kinase mediates T cell activation-induced expression of FasL and COX-2 via protein kinase C theta-dependent pathway in human Jurkat T leukemia cells[J].Cell Signal,2012,24(6):1195-1207.
[57]Kim HS,Kim MJ,Kim EJ,et al.Berberine-induced AMPK activation inhibits the metastatic potential of melanoma cells via reduction of ERK activity and COX-2 protein expression[J].Biochem Pharmacol,2012,83(3):385-394.
[58]Saber MM,Galal MA,Ain-Shoka AA,et al.Combination of metformin and 5-aminosalicylic acid cooperates to decrease proliferation and induce apoptosis in colorectal cancer cell lines[J].BMC Cancer,2016,16:126.
[59]Algire C,Moiseeva O,Deschenes-Simard X,et al.Metformin reduces endogenous reactive oxygen species and associated DNA damage[J].Cancer Prev Res (Phila),2012,5(4):536-543.
[60]Piwkowska A,Rogacka D,Jankowski M,et al.Metformin induces suppression of NAD(P)H oxidase activity in podocytes[J].Biochem Biophys Res Commun,2010,393(2):268-273.
[61]Khouri H,Collin F,Bonnefont-Rousselot D,et al.Radical-induced oxidation of metformin[J].Eur J Biochem,2004,271(23-24):4745-4752.
[62]桑敏,張躍輝,吳效科,等.二甲雙胍的研究進(jìn)展[J].中國(guó)醫(yī)藥,2015,10(8):1242-1244.
[63]Hirsch HA,Iliopoulos D,Struhl K.Metformin inhibits the inflammatory response associated with cellular transformation and cancer stem cell growth[J].Proc Natl Acad Sci U S A,2013,110(3):972-977.
[64]Zhang R,Zhang P,Wang H,et al.Inhibitory effects of metformin at low concentration on epithelial-mesenchymal transition of CD44(+)CD117(+) ovarian cancer stem cells[J].Stem Cell Res Ther,2015,6(1):262.
[65]Ning X,Du Y,Ben Q,et al.Bulk pancreatic cancer cells can convert into cancer stem cells(CSCs) in vitro and 2 compounds can target these CSCs[J].Cell Cycle,2016,15(3):403-412.
[66]范妮娜.屈螺酮炔雌醇片聯(lián)合二甲雙胍對(duì)多囊卵巢綜合征患者胰島素抵抗的影響[J].中國(guó)醫(yī)藥,2014,9(7):1045-1047.
[67]Sesen J,Dahan P,Scotland SJ,et al.Metformin inhibits growth of human glioblastoma cells and enhances therapeutic response[J].PLoS One,2015,10(4):e0123721.
[68]Chai X,Chu H,Yang X,et al.Metformin increases sensitivity of pancreatic cancer cells to gemcitabine by reducing CD133+ cell populations and suppressing ERK/P70S6K signaling[J].Sci Rep,2015,5:14404.
[69]Koritzinsky M.Metformin:A novel biological modifier of tumor response to radiation therapy[J].Int J Radiat Oncol Biol Phys,2015,93(2):454-464.
Research progress in anti-tumor effect of metformin
FENG Jin1,CHEN Guang-xia2,FEI Su-juan3*
(1.Xuzhou Medical College,Xuzhou 221002,China;2.Department of Gastroenterology,the First People′s Hospital of Xuzhou,Xuzhou 221002,China;3.Department of Gastroenterology,the Affiliated Hospital of Xuzhou Medical College,Xuzhou 221002,China)
Metformin is the most commonly used first-line therapy drug for type 2 diabetes mellitus in clinical practice.In recent years,a large number of studies have found that metformin not only has the effect of reducing blood sugar,but also inhibits the proliferation of tumor cells,and the mechanism of anti-tumor mainly in the activation of adenosine monophosphate-dependent protein kinase pathway,the decrease of circulating insulin and insulin-like growth factor levels,induction of cell cycle arrest,inhibition of angiogenesis,inflammation,ROS and the proliferation of tumor stem cell,and the combination with related drugs to enhance the sensitivity of radiotherapy and chemotherapy,so that metformin can inhibit the proliferation of tumor cell,and reduce the risk of cancer in patients with diabetes.This article reviews the recent progresses on the anti-tumor effects of metformin and its molecular mechanism,which has become a research hotspot now.
Metformin;Tumor;Diabetes mellitus;AMPK;mTOR;ROS;Tumor stem cell
2016-03-21
1.徐州醫(yī)學(xué)院,江蘇 徐州 221002;2.徐州市第一人民醫(yī)院消化內(nèi)科,江蘇 徐州 221002;3.徐州醫(yī)學(xué)院附屬醫(yī)院消化內(nèi)科,江蘇 徐州 221002
江蘇省衛(wèi)生廳課題資助項(xiàng)目(Q201413);徐州市科技局課題資助項(xiàng)目(KC14SH007);徐州市醫(yī)學(xué)青年后備人才資助項(xiàng)目(2014002)
10.14053/j.cnki.ppcr.201610027
*通信作者