趙 晨 王瑞峰 趙云鶴 楊桂姣▲.太原市公安局小店分局刑偵大隊(duì)技術(shù)中隊(duì),山西太原 000;.西安交通大學(xué)醫(yī)學(xué)院,陜西西安 7006;.山西醫(yī)科大學(xué)解剖教研室,山西太原 0000
?
大鼠下丘腦室旁核雌激素受體和一氧化氮合酶共存表達(dá)的年齡變化
趙晨1王瑞峰2趙云鶴3楊桂姣3▲
1.太原市公安局小店分局刑偵大隊(duì)技術(shù)中隊(duì),山西太原030032;2.西安交通大學(xué)醫(yī)學(xué)院,陜西西安710061;3.山西醫(yī)科大學(xué)解剖教研室,山西太原030001
[摘要]目的觀察大鼠下丘腦室旁核(PVN)雌激素受體(ER)及一氧化氮合酶(NOS)陽性細(xì)胞共存表達(dá)的數(shù)量和分布趨勢(shì),探討其隨年齡而變化的規(guī)律。方法取生后10 d齡、20 d齡、30 d齡、60 d齡、90 d齡SD大鼠,每組5只,取下丘腦部位腦組織行冠狀切片,采用免疫組織化學(xué)技術(shù)與還原型輔酶Ⅱ-黃遞酶(NADPH-d)組織化學(xué)法,觀察PVN內(nèi)NOS/ER雙標(biāo)陽性細(xì)胞在各個(gè)年齡組的表達(dá)情況。結(jié)果生后10 d組SD鼠PVN內(nèi)小細(xì)胞部腹內(nèi)側(cè)NOS及ER共表達(dá)細(xì)胞較密集,約(31.85±2.01)%,小細(xì)胞部后外側(cè)區(qū)NOS及ER共表達(dá)細(xì)胞分布散在,突起不明顯,隨著年齡的增長(zhǎng)雙染細(xì)胞數(shù)目增多,突起延長(zhǎng)。在生后20 d組約為(35.16±1.99)%,30 d組約為(43.83±3.13)%,60 d組約為(60.11±2.27)%,到生后90 d組SD鼠NOS及ER共表達(dá)細(xì)胞達(dá)(82.78±2.14)%(F=79.755,P<0.05)。結(jié)論①SD大鼠出生后各發(fā)育階段下丘腦PVN內(nèi)ER和NOS皆有共存表達(dá),且分布逐漸向內(nèi)側(cè)部遷移;②SD大鼠雌激素水平對(duì)下丘腦PVN內(nèi)NOS陽性細(xì)胞表達(dá)起正向調(diào)控。
[關(guān)鍵詞]一氧化氮合酶;雌激素受體;室旁核;發(fā)育
機(jī)體維持內(nèi)環(huán)境穩(wěn)定的重要途徑之一是神經(jīng)內(nèi)分泌調(diào)節(jié),如下丘腦-垂體-性腺軸的調(diào)控,對(duì)于內(nèi)環(huán)境穩(wěn)定非常重要,而神經(jīng)內(nèi)分泌調(diào)節(jié)的高級(jí)中樞是下丘腦[1,2]。雌激素通過與其受體結(jié)合影響腦內(nèi)神經(jīng)元結(jié)構(gòu)和功能,在促進(jìn)神經(jīng)元的增殖、分化、存活、以及維持神經(jīng)元的正常功能等方面均起重要作用[3-7]。人類隨著年齡增長(zhǎng),激素水平產(chǎn)生變化,可能影響機(jī)體的神經(jīng)內(nèi)分泌功能。一氧化氮(NO)是神經(jīng)內(nèi)分泌網(wǎng)絡(luò)系統(tǒng)調(diào)節(jié)的重要信使分子,既可作為神經(jīng)調(diào)質(zhì),促進(jìn)釋放神經(jīng)遞質(zhì)[8];其本身又有神經(jīng)遞質(zhì)的作用,可通過影響下丘腦-垂體-性腺軸,參與調(diào)節(jié)整個(gè)身體內(nèi)環(huán)境的平衡[9]。NO合成的關(guān)鍵因素是一氧化氮合酶(nitric oxide synthase,NOS),NOS表達(dá)可間接反映NO的分布[10-13]。研究發(fā)現(xiàn)在下丘腦室旁核有NOS和雌激素受體(estrogen receptor,ER)共存表達(dá)[14,15],但ER和NOS相互作用的功能及機(jī)制尚不清楚,且隨年齡變化大鼠室旁核ER/NOS共表達(dá)的趨勢(shì)國(guó)內(nèi)鮮有報(bào)道。因此,本課題采用雙標(biāo)法,觀察SD大鼠下丘腦室旁核在生后不同年齡階段ER和NOS陽性神經(jīng)元的共存表達(dá),并進(jìn)一步研究一氧化氮與雌激素的相互作用,以期為預(yù)防和治療年齡相關(guān)性退行性疾病提供新靶點(diǎn)和新思路。
1.1實(shí)驗(yàn)動(dòng)物
健康成年SD大鼠,山西醫(yī)科大學(xué)實(shí)驗(yàn)動(dòng)物中心提供,動(dòng)物許可證號(hào):山醫(yī)字第070101號(hào),12只,雌雄各半,體重250~300 g,配對(duì)繁殖小鼠。小鼠出生日為生后第1天,取生后不同發(fā)育階段10 d、20 d、30 d、60 d、90 d齡的SD大鼠,每組5只,共計(jì)25只。實(shí)驗(yàn)于2013年10月~2014年9月在山西醫(yī)科大學(xué)人體解剖學(xué)科研實(shí)驗(yàn)室和山西醫(yī)科大學(xué)科研實(shí)驗(yàn)中心完成。
1.2冰凍切片
1%戊巴比妥鈉麻醉大鼠(40 mg/kg),生理鹽水、4%多聚甲醛、灌注取腦,4%多聚甲醛后固定,15%、30%蔗糖溶液脫水。取下丘腦,冠狀面冰凍切片,片厚40 μm。
1.3黃遞酶(NADPH-d)與ER雙標(biāo)染色
(1)黃遞酶(NADPH-d)組織化學(xué)染色切片在0.01 mol/L PBS液中漂洗5 min×3次后,正常山羊血清37℃恒溫箱封閉1 h;(2)一抗(1∶50;兔抗鼠ER抗體),4℃過夜,0.01 mol/L PBS液漂洗5 min×3次;(3)生物化二抗溶液,37℃1 h,PBS洗5 min×3次;(4)辣根酶標(biāo)記鏈酶卵白素工作液,37℃1 h,PBS漂洗,步驟同上;(5)DAB反應(yīng)液顯色;(6)常規(guī)梯度酒精脫水,二甲苯透明,中性樹膠封片;(7)對(duì)照組用正常兔血清代替兔抗ER血清。
1.4結(jié)果分析
依照大鼠腦立體定位圖譜[16],選各組切片中下丘腦室旁核部位,在明場(chǎng)下用Olympus BX51顯微鏡觀察,拍照,捷達(dá)801圖像分析系統(tǒng)計(jì)數(shù),分析在單位面積內(nèi)ER及NOS陽性神經(jīng)元數(shù)目,計(jì)算雙染陽性細(xì)胞百分率,并進(jìn)行統(tǒng)計(jì)學(xué)分析。
1.5統(tǒng)計(jì)學(xué)方法
2.1ER和NOS染色陽性細(xì)胞形態(tài)
ER陽性細(xì)胞呈棕黃色,卵圓形,胞漿不著色,胞核著色,大多數(shù)著色較淺,但細(xì)胞輪廓清晰,分布較密集,突起不明顯,偶可見較短突起。NOS陽性細(xì)胞呈藍(lán)黑色或藍(lán)色,細(xì)胞核不著色,胞質(zhì)著色,突起較短。見圖1。
圖1 大鼠生后NOS與ER雙染細(xì)胞在下丘腦PVN的表達(dá)
表1 下丘腦PVN內(nèi)ER和NOS的表達(dá)(±s)
表1 下丘腦PVN內(nèi)ER和NOS的表達(dá)(±s)
注:30 d組、60 d組、90 d組ER+NOS+與10 d組比較,t=3.216,9.298,17.332,*P<0.05;60 d組、90 d組ER+NOS+與20 d組比較,t=8.249,16.293,aP<0.05;10 d組、60 d組、90 d組ER+NOS+與30 d組比較,t=-3.216,4.202,10.261,bP<0.05;10 d組、20 d組、30 d組、90 d組ER+NOS+與60 d組比較,t=-9.298,-8.249,-4.202,7.253,cP<0.05;10 d組、20 d組、30 d組、60 d組ER+NOS+與90 d組比較,t=-17.332,-16.293,-10.261,-7.253,dP<0.05
ER(個(gè))NOS(個(gè))ER+NOS+(%)F值P值(vs 10 d)P值(vs 20 d)P值(vs 30 d)P值(vs 60 d)P值(vs 90 d)120.1±13.05 112.5±25.96 31.8±2.01 0.328 0.001b0.000c0.000d136.7±13.09 99.4±8.84 35.1±1.99 0.328 -0.15 0.000c0.000d143.3±9.54 103.4±16.14 43.8±3.13*79.755 0.001*0.15 -0.000c0.000d129.7±14.69 87.2±9.08 60.1±2.27*0.000*0.000a0.000b-0.000d114.3±12.66 82.7±9.77 82.7±2.14*0.000*0.000a0.000b0.000c-組別 10 d 20 d 30 d 60 d 90 d
圖2 大鼠下丘腦室旁核ER和NOS變化直方圖
2.2大鼠生后隨年齡變化NOS與ER雙染細(xì)胞在下丘腦PVN的表達(dá)情況
室旁核(Paraventricular nucleus,PVN)位于第三腦室下丘腦部的上端兩側(cè),是下丘腦前區(qū)最顯著的核團(tuán)之一,可分為大細(xì)胞部、小細(xì)胞部和背側(cè)帽部等部位。生后10 d組,雙染細(xì)胞大多為深藍(lán)色胞漿,棕黃色胞核,少量細(xì)胞的胞漿著色較淺,胞核較大,于小細(xì)胞部腹內(nèi)側(cè)區(qū)域雙染細(xì)胞分布較為密集[占細(xì)胞總數(shù)(31.8±2.01)%;見表1、圖2],于大細(xì)胞部后外側(cè)區(qū)域呈散在分布(圖1①,②)。生后20 d組,雙染細(xì)胞形態(tài)與10 d組相似,細(xì)胞呈卵圓形或梭形,較低齡組(生后10 d組)神經(jīng)元突起延長(zhǎng)。小細(xì)胞部可見散在的橢圓形或卵圓形,無明顯突起,輪廓較為清晰的ER陽性細(xì)胞,分布于密集的雙染陽性細(xì)胞之間[約為總細(xì)胞數(shù)的(35.1±1.99)%](圖1③,④;表1、圖2)。生后30 d組,細(xì)胞突起較生后20 d增長(zhǎng),小細(xì)胞部部雙染細(xì)胞增多,占細(xì)胞總數(shù)(43.8±3.13)%,NOS陽性細(xì)胞突起明顯增長(zhǎng)(圖1⑤,⑥;表1、圖2)。生后60 d組,雙染陽性細(xì)胞較密集分布于小細(xì)胞部腹內(nèi)側(cè)區(qū)域,散在分布于大細(xì)胞部后外側(cè)區(qū)。細(xì)胞的分支比較多,突起較短而粗,在一些區(qū)域交織成叢。雙染陽性細(xì)胞的突起在小細(xì)胞部的腹內(nèi)側(cè)區(qū)域不容易辨別,多和附近的細(xì)胞突起交錯(cuò)混雜。雙染細(xì)胞占小細(xì)胞部細(xì)胞總數(shù)的(60.10±2.27)%,少數(shù)雙染陽性細(xì)胞,胞體較大,核仁濃染,橢圓形的細(xì)胞截面,不明顯的突起,散在地分布在大細(xì)胞部的后外側(cè)區(qū)(圖1⑦,⑧;表1、圖2)。生后90 d組,雙染陽性細(xì)胞突起延長(zhǎng),細(xì)胞形態(tài)較成熟,雙染細(xì)胞占小細(xì)胞部細(xì)胞總數(shù)的80%以上(圖1⑨,⑩;表1、圖2)。
已有文獻(xiàn)報(bào)道,雌激素和一氧化氮共同作用可影響人體心血管功能[17]。而雌激素亦可通過血腦屏障,與受體結(jié)合,進(jìn)而影響腦的功能,有報(bào)道表明,雌激素可調(diào)節(jié)腦內(nèi)特定神經(jīng)元的分化,亦可營(yíng)養(yǎng)膽堿能神經(jīng)元,發(fā)揮神經(jīng)生長(zhǎng)因子輔因子的作用[18,19]。哺乳動(dòng)物出生后,雌激素水平隨著年齡變化很大,老年動(dòng)物雌激素水平大幅降低,而老年神經(jīng)退行性疾病高發(fā)。下丘腦是神經(jīng)內(nèi)分泌系統(tǒng)的高級(jí)中樞,幫助維持機(jī)體的內(nèi)環(huán)境平衡,具有調(diào)節(jié)體溫、調(diào)控血漿滲透壓、情緒、調(diào)節(jié)水?dāng)z取及血容量、調(diào)節(jié)攝食及代謝,調(diào)控生殖等功能,是間腦的一部分,為大腦基部相對(duì)較小的區(qū)域[20]。NOS陽性神經(jīng)元參與和介導(dǎo)了下丘腦的功能,可促進(jìn)釋放神經(jīng)遞質(zhì),并作為第二信使介導(dǎo)興奮性氨基酸的功能,參與長(zhǎng)時(shí)程增強(qiáng)電位的形成,NOS還參與失活花生四烯酸的過程,以及在基因修飾和蛋白質(zhì)修飾中發(fā)揮作用,與神經(jīng)的發(fā)生,衰老和死亡等重要生物活性相關(guān)[21]。那么,阿爾茨海默病、帕金森癥等年齡相關(guān)性疾病是否與雌激素以及一氧化氮表達(dá)水平相關(guān)呢?
本實(shí)驗(yàn)發(fā)現(xiàn)大鼠生后早期(第10天以前)PVN內(nèi)有較為密集的ER免疫陽性細(xì)胞,生后30 d組ER免疫陽性細(xì)胞數(shù)目最多,而后逐步下降,在SD大鼠發(fā)育過程中,ER表達(dá)在出生后于PVN內(nèi)呈先增多后減少的趨勢(shì)(表1,圖2)。生后各年齡階段大鼠下丘腦PVN內(nèi)ER和NOS均有共存表達(dá)(表1),且NOS的變化趨勢(shì)與ER的變化趨勢(shì)基本一致(圖2),提示NO可能是雌激素與雌激素受體結(jié)合后所產(chǎn)生的第二信使,并幫助完成雌激素的促神經(jīng)分化等作用,雌激素水平提高可能有助于NO水平升高,并幫助下丘腦發(fā)揮其神經(jīng)內(nèi)分泌功能,二者之間的作用機(jī)制尚待進(jìn)一步研究探討。
[參考文獻(xiàn)]
[1] Pawlikowski M,Pisarek H,F(xiàn)ryczak J. Effects of nitric oxide synthase inhibition on diethylstilbestrol -induced hyperprolactinaemia and pituitary tumourigenesis in rats[J]. Endokrynol Pol,2012,63(2):115-118.
[2] Bellefontaine N,Hanchate NK,Parkash J,et al. Nitric oxide as key mediator of neuron-to-neuron and endotheliato -glia communication involved in the neuroendocrine control of reproduction[J]. Neuroendocrinology,2011,93(2):74-89.
[3] Brunton PJ,Donadio MV,Yao ST,et al. 5α-Reduced neurosteroids sex-dependently reverse central prenatal programming of neuroendocrine stress responses in rats[J]. J Neurosci,2015,35(2):666-677.
[4] Wei Q,Guo P,Mu K,et al. Estrogen suppresses hepatocellular carcinoma cells through ERβ-mediated upregulation of the NLRP3 inflammasome[J]. Lab Invest,2015,95 (7):804-816.
[5] Asl SZ,Khaksari M,Khachki AS,et al. Contribution of estrogen receptors alpha and beta in the brain response to traumatic brain injury[J]. J Neurosurg,2013,119(2):353-61.
[6] Luo D,Liu Y,Zhou Y,et al. Association between dietary phytoestrogen intake and bone mineral density varied with estrogen receptor alpha gene polymorphisms in southern Chinese postmenopausal women[J]. Food Funct,2015,6 (6):1977-1983.
[7] Wu J,Crowe DL. The histone methyltransferase EZH2 promotes mammary stem and luminal progenitor cell expansion,metastasis and inhibits estrogen receptor-positive cellular differentiation in a model of basal breast cancer[J]. Oncol Rep,2015,34(1):455-460.
[8]吳英,余艷紅,陳敦金.母源性BDE-209暴露對(duì)仔鼠海馬一氧化氮神經(jīng)遞質(zhì)的影響[J].中國(guó)優(yōu)生與遺傳雜志,2012,20(10),18-20.
[9] Gadek-Michalska A,Tadeusz J,Rachwalska P,et al. Brain nitric oxide synthases in the interleukin-1β-induced activation of hypothalamic-pituitary-adrenal axis[J]. Pharmacol Rep,2012,64(6):1455-1465.
[10] Huang B,Chen CT,Chen CS. Laminar shear flow increases hydrogen sulfide and activates a nitric oxide produc ing signaling cascade in endothelial cells[J]. Biochem Biophys Res Commun,2015,464(4):1254-1259.
[11] Tyurenkov IN,Perfilova VN,Sadikova NV,et al. Effects of a new glutamic acid derivative on myocardial contractility of stressed animals under conditions of nitric oxide synthesis blockade[J]. Bull Exp Biol Med,2015,159(3):384-386.
[12] Cheng WH,Huang KY,Huang PJ,et al. Nitric oxide maintains cell survival of trichomonas vaginalis upon iron depletion[J]. Parasit Vectors,2015,25(8):393.
[13] Glass MJ,Wang G,Coleman CG,et al. NMDA receptor plasticity in the hypothalamic paraventricular nucleus contributes to the elevated blood pressure produced by Angiotensin II[J]. J Neurosci,2015,35(26):9558-9567.[14] Stefano GB,Cadet P,Mantione K,et al. Estrogen signaling at the cell surface coupled to nitric oxide release in Mytilus edulis nervous system[J]. Endocrinology,2003,144(4):1234-1240.
[15]曾俊峰,楊桂姣,皇甫平,等.大鼠下丘腦內(nèi)的一氧化氮合酶與雌激素受體雙標(biāo)神經(jīng)元[J].解剖學(xué)雜志,2008,31(2):217-221.
[16]諸葛啟釧.大鼠腦立體定位圖譜[M].北京:人民衛(wèi)生出版社,2005:圖26.
[17]穆軍升,朱洪生.一氧化氮和雌激素的關(guān)系在心血管病中的研究進(jìn)展[J].心血管病學(xué)進(jìn)展,2002,23(2):113-115.
[18] Lim J,Choi HS,Choi HJ. Estrogen-related receptor gamma regulates dopaminergic neuronal phenotype by activating GSK3β/NFAT signaling in SH-SY5Y cells[J]. J Neurochem,2015,133(4):544-557.
[19]馮杰,主性,鐘壘,等.貴州香豬睪丸發(fā)育中雌激素受體和一氧化氮合酶的表達(dá)[J].貴州農(nóng)業(yè)科學(xué),2015,43 (1):95-99.
[20] Goel N,Workman JL,Lee TT. Sex differences in the HPA axis[J]. Compr Physiol,2014,4(3):1121-1155.
[21] Gu YN,Kim HG,Jeon CJ. Localization of nitric oxide synthase-containing neurons in the bat visual cortex and co-localization with calcium-binding proteins[J]. Acta Histochem Cytochem,2015,48(4):125-133.
Expression variation of estrogen receptor and nitric oxide synthase in the paraventricular nucleus with rat development
ZHAO Chen1WANG Ruifeng2ZHAO Yunhe3YANG Guijiao3
1.Technology Squadron, Criminal Investigation Brigade, Xiaodian Branch, Taiyuan Public Security Bureau, Taiyuan 030032, China; 2.Medical School of Xi'an Jiaotong University, Xi'an 710061, China; 3.Department of Anatomy, Shanxi Medical University, Taiyuan 030001, China
[Abstract]Objective To observe the quantity and distribution of ER and NOS co-positive cells in hypothalamus with rat development, to explore the expression regulation of nitric oxide and estrogen in postnatal SD rats. Methods SD rats were divided into 5 groups according to the postnatal days 10, 20, 30, 60 and 90, n=5 for each group. The coronal sections in hypothalamus were collected to detect the shape, size and numbers of NOS/ER positive neurons in paraventricular nucleus using the immunohistochemical staining combined with NADPH-d histochemical. Results On the postnatal 10 days rats, NOS/ER double-labeled neurons were greatly detected in the medial parvicellular(31.85±2.01%), but in the lateral hypothalamic area they were scatted. With the development, the number of double-labeled neurons increased and neurites prolonged. On the postnatal 20 days rats, the proportion of NOS and ER double-positive neurons were(35.16±1.99)%, On the postnatal 30 days rats, it was(43.83±3.13)%, and it was(60.11±2.27)%on the postnatal 60 days rats, On the postnatal 90 days rats, the proportion of NOS and ER double-positive neurons got to(82.78±2.14)% (F=79.755,P<0.05). Conclusion①NOS and ER are co-expression in the hypothalamic paraventricular nucleus during each development stage in the postnatal SD rats.②In paraventricular nucleus, estrogen secretion may promote the NOS expression.
[Key words]Nitric oxide synthase; Estrogen receptor; Paraventricular nucleus; Development
收稿日期:(2015-09-15)
通訊作者▲
[中圖分類號(hào)]R339.2
[文獻(xiàn)標(biāo)識(shí)碼]A
[文章編號(hào)]1673-9701(2016)02-0023-04