馬玉榮,張濤,張靜
高分辨率MRI評價頸動脈斑塊穩(wěn)定性的優(yōu)勢及臨床應(yīng)用價值
馬玉榮1,張濤2,張靜3*
頸動脈粥樣硬化斑塊破裂和血栓形成是誘發(fā)急性缺血性腦血管疾病的獨立危險因素,及時識別易損斑塊有助于預(yù)防卒中的發(fā)生,為臨床治療提供依據(jù)。高分辨率MRI以其極高的軟組織分辨率及安全無創(chuàng)的優(yōu)勢成為近年來頸動脈篩查的研究熱點,它能夠較好地顯示斑塊重要的生物學(xué)特征,分析斑塊的內(nèi)部成分及形態(tài)學(xué)分布,確定易損斑塊,評價斑塊的穩(wěn)定性。本文旨在對高分辨MRI在易損斑塊的識別及其臨床應(yīng)用方面作一簡單綜述。
磁共振成像;頸動脈粥樣硬化;易損斑塊;卒中
腦卒中已成為嚴重危害人類健康的疾病之一,其致殘率居世界第一,致死率居世界第二,頸動脈粥樣硬化與缺血性腦卒中有著密切的關(guān)系。缺血事件的發(fā)生已不單是由于血管狹窄程度引起,斑塊內(nèi)的成分才是影響其是否發(fā)生的主要因素[1-3],斑塊破裂和血栓形成即易損斑塊的出現(xiàn)更是缺血事件發(fā)生及復(fù)發(fā)的危險因素。所以判定易損斑塊,評價斑塊的穩(wěn)定性成為臨床最為關(guān)注的問題。
高分辨率MRI就是指具有較高的軟組織分辨率。成像特點包括:專有頸部線圈、小FOV、大矩陣、薄層、無間距等。成像序列包括:三維時間飛躍法(three dimensional time of flight,3D-TOF)、增強前、后四翻轉(zhuǎn)恢復(fù)快速自旋回波T1WI序列、雙回波(proton weighted, PDWI)序列、多平面雙反轉(zhuǎn)恢復(fù)T2WI序列等以及一些特殊序列如磁化準備快速梯度回波成像序列(magnetization prepared rapid gradient echo, MP-RAGE)、三維多回波重組梯度回波序列(three dimensional multi echo gradient echo, 3D MERGE)、3D反轉(zhuǎn)恢復(fù)準備的快速擾相梯度回波序列(three dimensional inversionrecovery preparation for fast disturbed phase gradient echo, 3D IRFSPG)。非增強序列(3D-TOF、T1WI、T2WI、PDWI)可以很好地顯示斑塊特點(如脂核、纖維帽、鈣化、出血等內(nèi)部成分以及斑塊大小、范圍、比例、分布方式等),MP-RAGE、3D IRFSPG等對出血成分顯示更為敏感;CE-T1WI可以勾畫出脂核與纖維帽的界限,評價纖維帽厚度及脂核比例,同時反映斑塊內(nèi)部的新生血管及炎癥反應(yīng)狀態(tài),更好地評價斑塊的穩(wěn)定性。MR在顯示斑塊生物學(xué)特征方面已達到很高的準確率[4-5]。
Cai等[1]根據(jù)MRI對頸動脈斑塊的影像學(xué)特點修訂了美國心臟協(xié)會(American Heart Association,AHA)曾提出的影像學(xué)和組織病理學(xué)對照的動脈粥樣硬化(ateriosclerosis, AS)斑塊分類標準:Ⅰ-Ⅱ型:壁厚接近正常,無鈣化;Ⅲ型:彌漫或偏心性內(nèi)膜增厚,無鈣化;Ⅳ-Ⅴ型:斑塊內(nèi)含纖維包裹的脂質(zhì)核心,伴或不伴鈣化;Ⅵ型:復(fù)雜斑塊,表面可有破損、出血或血栓形成;Ⅶ型:鈣化斑塊;Ⅷ型:無脂質(zhì)核心纖維斑塊,可有小鈣化。Ⅳ-Ⅴ型及Ⅵ型斑塊易出現(xiàn)破裂及進展,導(dǎo)致臨床腦缺血事件的發(fā)生。
3.1 易損斑塊的定義及評價標準
3.1.1 定義
“易損斑塊”最早用來描述不穩(wěn)定、易導(dǎo)致急性冠脈綜合征的斑塊,此外有“不穩(wěn)定斑塊、軟斑、高風(fēng)險斑塊”等不同的命名方式。2003年國際性文件達成共識,將“所有有破裂傾向、易發(fā)生血栓和(或)進展迅速的斑塊”統(tǒng)一命名為“易損斑塊”[6]。
3.1.2 評價標準
主要標準:管腔狹窄>90%;薄的纖維帽、大的脂質(zhì)核心;活動性炎癥,單核細胞及巨噬細胞浸潤;內(nèi)皮脫落及表面血小板聚集;斑塊裂隙。次要標準:斑塊表面鈣化結(jié)節(jié);血管內(nèi)徑下見黃亮斑塊;斑塊內(nèi)出血;內(nèi)皮功能障礙;斑塊正性重構(gòu)[7-8]。
3.2 斑塊的MRI成分分析及各組分對斑塊穩(wěn)定性的影響
斑塊不同成分MR表現(xiàn)不同,結(jié)合多種序列,可以分析出脂質(zhì)核心、纖維帽、鈣化、出血、炎性反應(yīng)或新生血管等,各種成分的比例、位置、范圍及分布方式等均可影響斑塊的穩(wěn)定性[9]。大的脂質(zhì)核心、薄的纖維帽或表面潰瘍形成是易損斑塊的主要特征[10],斑塊內(nèi)出血或血栓形成更易導(dǎo)致斑塊的不穩(wěn)定性,從而誘發(fā)腦缺血事件的發(fā)生。
3.2.1 脂質(zhì)壞死核心
脂質(zhì)核心T1WI為高信號,3D-TOF表現(xiàn)為中等強度信號,PDWI上呈等或低信號,T2WI依內(nèi)部成分不同呈現(xiàn)出不同信號特點,低、中等或高信號(脂質(zhì)核心若以甘油三酯為主,T2WI表現(xiàn)為低信號,若以膽固醇為主,T2WI則表現(xiàn)為高信號)[11]。脂核內(nèi)部由于缺乏新生血管,在CE-T1WI序列強化程度很低,而纖維帽內(nèi)部新生血管豐富通常呈明顯強化,這樣通過對比增強可以明確判斷脂核的存在及其比例大小。脂質(zhì)核的大小、內(nèi)部成分及脂核壞死對斑塊的穩(wěn)定性均有較大的影響,脂質(zhì)核所占斑塊比例>40%時斑塊易于破裂[12-13]。
3.2.2 纖維帽
主要成分包括膠原基質(zhì)及平滑肌,T1WI為等信號,T2WI呈稍高信號,3D-TOF呈低信號。由于纖維帽內(nèi)富含新生毛細血管,因此在CE-T1WI序列強化效果明顯,與臨近未強化的脂核形成鮮明對比,清楚地反映纖維帽結(jié)構(gòu),更好地分析纖維帽厚度,評價其完整性,觀察是否有破損[14];厚纖維帽表現(xiàn)為管腔與脂質(zhì)核心間的均勻條狀強化帶,薄纖維帽強化帶顯示不清或較薄,破裂纖維帽強化帶斷裂、管腔不規(guī)則。纖維帽的MRI成像特點與組織學(xué)對比有較好的一致性。組織學(xué)研究認為如果脂質(zhì)成分超過斑塊容積的40%以及纖維帽厚度小于165 μm為不穩(wěn)定斑塊[15]。
3.2.3 炎癥
炎癥及新生血管可以增加斑塊的不穩(wěn)定性,對于易損斑塊,內(nèi)部炎性細胞及新生血管比例明顯增多,炎性細胞以巨噬細胞為主。病理證實,斑塊內(nèi)部炎性細胞可以抑制膠原纖維生成、促進膠原纖維變性、誘導(dǎo)新生毛細血管生成等,使斑塊結(jié)構(gòu)發(fā)生改變,進而導(dǎo)致斑塊破裂[16]。依據(jù)MRI增強,斑塊局部信號強化程度、緩慢強化模式參數(shù)Ktrans和快速強化模式參數(shù)Vp,可以分析炎癥細胞浸潤程度并量化新生毛細血管[17];同時可利用[18]超微超順磁性氧化鐵微粒(ultra super paramagnetic iron oxide particles, USPIO)特殊對比劑來觀察斑塊內(nèi)部炎癥反應(yīng)狀態(tài)及巨噬細胞的負荷,其作用原理在于USPIO被單核巨噬細胞吞噬后,利用其自身的順磁效應(yīng),使得斑塊內(nèi)部炎癥信號在SE-TIWI、T2WI,尤其是梯度回波(gradient echo)、T2*WI序列呈現(xiàn)低信號特點。
3.2.4 斑塊內(nèi)出血
斑塊內(nèi)新生血管脆性較強,易破裂致使紅細胞及高鐵血紅蛋白大量溢出;斑塊內(nèi)出血促使斑塊發(fā)生破裂即斑塊的不穩(wěn)定相應(yīng)增加[19]。隨著出血時間變化,各時間段成分不同,MR則表現(xiàn)為不同的信號強度。研究證實,早期斑塊內(nèi)出血表現(xiàn)為TOF、T1WI高信號,PDWI、T2WI等或低信號;隨著出血時間延長,各序列呈高信號;后期由于斑塊內(nèi)部出血成分的改變,在所有序列則呈低信號[20]。
3.2.5 鈣化
鈣化區(qū)鈣鹽沉積,含水量少,質(zhì)子密度低,在所有MRI序列均表現(xiàn)為低信號。斑塊內(nèi)鈣化是否能夠加速斑塊的破裂,導(dǎo)致斑塊不穩(wěn)定性增加,暫時沒有明確的定論。有研究[21]顯示,斑塊內(nèi)大量的鈣鹽沉積及纖維成分的增加可以促使斑塊趨于穩(wěn)定,防止斑塊破裂;鈣化若出現(xiàn)在離斑塊表面較遠的位置,斑塊穩(wěn)定性相對增加[22]。早、中期的斑塊內(nèi)鈣化由于與鄰近區(qū)域之間應(yīng)力增加,斑塊易損程度增加;鈣化若出現(xiàn)在斑塊表面或薄纖維帽內(nèi),則斑塊的不穩(wěn)定性亦明顯增加[22]。
3.2.6 其他成分
其他成分如疏松基質(zhì),目前對其組織內(nèi)成分及形成過程的研究尚未見文獻明確報道,亦對其與斑塊穩(wěn)定性、缺血事件發(fā)生的相關(guān)性未有明確的提出。
4.1 易損斑塊與腦缺血事件相關(guān)性
MR斑塊成像識別頸動脈內(nèi)易損斑塊,有效預(yù)防缺血性卒中的發(fā)生。研究顯示對于腦卒中患者,卒中側(cè)頸動脈斑塊內(nèi)脂質(zhì)核心出現(xiàn)的概率及體積較非卒中側(cè)明顯增加,同時脂質(zhì)核心比例的增加易引起斑塊出現(xiàn)破裂,引起腦缺血事件的發(fā)生[23-24]。Moody等[25]認為出血可以加速臨床缺血性癥狀的發(fā)生;對于頸動脈斑塊內(nèi)含有出血或薄纖維帽及纖維帽破裂的患者,腦缺血事件的發(fā)生率明顯升高[26]。研究[23]認為斑塊內(nèi)因出血位置與發(fā)生時間不同,臨床癥狀出現(xiàn)的概率不同,通常情況發(fā)生在鄰近管腔的斑塊內(nèi)出血及新鮮出血與臨床癥狀的關(guān)系更為密切。因此,早期識別頸動脈內(nèi)易損斑塊并對其進行有效干預(yù),有利于腦缺血性卒中的預(yù)防。
學(xué)者發(fā)現(xiàn),對于一些沒有臨床癥狀的患者,通過MR識別斑塊內(nèi)大脂質(zhì)核、薄纖維帽、斑塊內(nèi)潰瘍以及出血等易損斑塊特征,在一定程度上可以預(yù)測腦血管事件的發(fā)生[27]。研究顯示,對于頸動脈斑塊所引起的腦卒中患者,若斑塊內(nèi)出現(xiàn)出血或纖維帽破裂,卒中的復(fù)發(fā)風(fēng)險率將明顯升高[28-29]。腦卒中患者利用常規(guī)檢查手段進行篩查,部分仍舊找不到明確的發(fā)病原因,稱為隱源性卒中。有學(xué)者對頸動脈狹窄程度<50%的隱源性卒中患者行高分辨率MRI管壁成像,發(fā)現(xiàn)一些患者存在偏心性斑塊,且易損[30]。這些研究結(jié)果提示,通過MR管壁成像對于“隱源性卒中”患者有可能找到導(dǎo)致卒中發(fā)生的病變。
4.2 MR斑塊成像為頸動脈支架植入術(shù)(carotid artery stenting, CAS)及頸動脈內(nèi)膜剝脫術(shù)(carotid endarterectomy,CEA)提供依據(jù)
根據(jù)《顱外段頸動脈狹窄治療指南》,對于癥狀性患者,若其頸動脈出現(xiàn)重度狹窄則需要進行CEA或CAS[31]。易損斑塊內(nèi)脂質(zhì)核和出血等不穩(wěn)定性成分與CAS術(shù)中血管內(nèi)微小栓子的形成關(guān)系密切,因此通過MR斑塊成像分析內(nèi)部成分,可預(yù)防圍術(shù)期的新發(fā)梗死。Yamada等[32]發(fā)現(xiàn)當(dāng)斑塊與胸鎖乳突肌的信號干擾比值(signal to interference ratio, SIR)≥1.25時,提示斑塊內(nèi)富含脂質(zhì)核成分或有斑塊內(nèi)出血,CAS手術(shù)出現(xiàn)微栓子的概率要明顯高于CEA,對于這種類型的斑塊選擇CEA較為適宜。
4.3 MR斑塊成像監(jiān)測頸動脈斑塊他汀類藥物治療療效
臨床試驗表明,他汀類藥物調(diào)脂治療可以減小動脈粥樣硬化斑塊并改善管腔狹窄程度,減少臨床腦缺血事件的發(fā)生[33-35]。
MR斑塊成像通過監(jiān)測調(diào)脂治療后斑塊內(nèi)脂核體積的變化,判定他汀類藥物的治療效果。Corti[36]及West等[37]利用他汀類藥物或聯(lián)合用藥治療動脈粥樣硬化一段時間后,MRI檢測到斑塊內(nèi)脂核體積減小,管徑增大,提示了藥物治療有效。
MR斑塊成像可以觀察治療效果與時間的相關(guān)性。一項他汀類藥物3年治療頸動脈粥樣硬化病變的研究中,第1、2年斑塊脂質(zhì)核在治療后體積縮小,第3年脂質(zhì)核體積在治療后并未改變,這種脂核體積的變化對臨床制定他汀類藥物治療計劃提供了有利依據(jù)[24]。美國臨床研究提示1年他汀類藥物調(diào)脂治療后,DCE-MRI檢查顯示斑塊內(nèi)的炎癥細胞明顯下降(P=0.02)[38]。在ATHEROMA研究中,通過特異對比劑USPIO顯示炎癥明顯的減低(6個星期:P=0.003,12個星期:P<0.0001)[39]。
4.4 MRI對斑塊危險分層標準制定的指導(dǎo)意義
Underhill等[40]提出CAS評分系統(tǒng)對易損斑塊進行危險分層:斑塊負荷<2 mm,為低風(fēng)險斑塊;>2 mm,但脂核占斑塊<20%,也為低風(fēng)險斑塊;如斑塊負荷>2 mm,脂核占20%~40%,為中風(fēng)險斑塊,脂核>40%則為高危斑塊。該評分系統(tǒng)從斑塊負荷程度及脂核比例等方面闡述了斑塊的危險程度,對臨床管理動脈粥樣硬化的策略提供了指導(dǎo)依據(jù)。
MRI軟組織分辨率高,可以清楚顯示管壁及斑塊的影像學(xué)特征;可以多方位成像且客觀準確,無輻射損傷,對比劑使用少,無明顯并發(fā)癥,可進行反復(fù)檢查,此技術(shù)已被廣泛用于臨床[41-42],目的在于評價斑塊的大小、成分,進而評定斑塊的穩(wěn)定性,確定腦血管事件發(fā)生的危險性,為臨床制定治療方案提供依據(jù)。然而,斑塊內(nèi)成分、比例及分布方式復(fù)雜,影響斑塊穩(wěn)定性的不確定因素很多(如疏松基質(zhì),鈣化的位置及范圍,出血時相、速度及體積等),因此仍需要進行大量的影像及病理學(xué)研究觀察斑塊內(nèi)成分,分析各因素與斑塊穩(wěn)定性的相關(guān)性,從而更好地選擇臨床治療方案。
[1] Cai JM, Hatsukami TS, Ferguson MS, et al. Classifcation of human carotid atherosclerotic lesions with in vivo multicontrast magnetic resonance imaging. Circulation, 2002, 106(11): 1368-1373.
[2] Pende A, Dallegri F. Is the carotid plaque rupture a pivotal event in stroke pathogenesis? update on the role of the intraplaque infammatory processes. Curr Vasc Pharmacol, 2015, 13(2): 173-181.
[3] Dai JP. Attach importance to the research of vulnerable plaque by MRI. Chin J Magn Reson Imaging, 2010, 1(6): 406-407.戴建平. 重視MRI對易損斑塊的研究. 磁共振成像, 2010, 1(6):406-407.
[4] Yuan C, Zhao XH. MR imaging of vulnerable plaque: consensus and challenges. Chin J Magn Reson Imaging, 2010, 1(6): 429-431.苑純, 趙錫海. 易損斑塊磁共振成像: 共識與挑戰(zhàn). 磁共振成像,2010, 1(6): 429-431.
[5] Zhang N, Liu X, Zhang YT, et al. Advantages and disadvantages of MRI in detecting vulnerable plaque. Chin J Magn Reson Imaging,2010, 1(6): 415-421.張娜, 劉新, 張元亭, 等. MRI檢測易損斑塊的優(yōu)勢與不足. 磁共振成像, 2010, 1(6): 415-421.
[6] Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies:PartI. Circulation, 2003, 108(14): 1664-1672.
[7] Li HY. MRI features of carotid vulnerable plaque and risk prediction of ischemic stroke. Chin J Magn Reson Imaging, 2016, 7(1): 16-19.李紅英. 頸動脈易損斑塊MRI表現(xiàn)與缺血性卒中的風(fēng)險預(yù)測. 磁共振成像, 2016, 7(1): 16-19.
[8] Zhao SH. Definition and diagnostic criteria of vulnerable plaque. Chin J Magn Reson Imaging, 2010, 1(6): 408-410.趙世華. 易損斑塊的含義和診斷標準. 磁共振成像, 2010, 1(6):408-410.
[9] Pedersen SF, Sandholt BV, Keller SH, et al. 64 Cu-DOTATATE PET/ MRI for detection of activated macrophages in carotid atherosclerotic plaques: studies in patients undergoing endarterectomy. Arterioscler Thromb Vasc Biol, 2015, 35(7): 1696-1703.
[10] Gijsen FJ, Nieuwstadt HA, Wentzel JJ, et al. Carotid plaque morphological classification compared with biomechanical cap stress: implications for a magnetic resonance imaging-based assessment. Stroke, 2015, 46(8): 2124-2128.
[11] Kashiwazaki D, Akioka N, Kuwayama N, et al. Pathophysiology of acute cerebrovascular syndrome in patients with carotid artery stenosis: amagnetic resonance imaging/single-photon emission computed tomography study. Neurosurgery, 2015, 76(4): 427-433.
[12] Yu XY, Zhou DL, Hao D, et al. Application of optical coherence tomography in detecting rabbit vulnerable abdominal artery plaques. Chin J Geriatr Heart Brain Vessel Dis, 2014, l6(12): 1265-1268.
[13] Lei Y, Ding L, Ren LX, et al. Component analysis and typing of carotid atherosclerotic plaque by 3.0 T MRI. Chin J Magn Reson Imaging, 2015, 6(6): 430-436.雷云, 丁里, 任麗香, 等. 3.0 T MRI對頸動脈粥樣硬化斑塊成分分析及分型的研究. 磁共振成像, 2015, 6(6): 430-436.
[14] Calcagno C, Mani V, Ramachandran S, et al. Dynamic contrast enhanced(DCE) magnetic resonance imaging(MRI)of atherosclerotic plaque angiogenesis. Angiogenesis, 2010, 13(2): 87-99.
[15] Mauriello A, Sangiorgi GM, Virmani R, et al. A pathobiologic link between risk factors profile and morphological markers of carotid instability. Atherosclerosis, 2010, 208(2): 572-580.
[16] Lenglet S, Mach F, Montecucco F. Role of matrix metalloproteinase-8 in atherosclerosis. Mediators of Inflammation, 2013, 2013(1):105-114.
[17] Qiao Y, Zeiler SR, Mirbagheri S, et al. Intracranial plaque enhancement in patients with cerebrovascular events on high spatialresolution MR images. Radiology, 2014, 271(2): 534-542.
[18] Li MH, Li M. Imaging examination method of vulnerable plaque. Chin J Magn Reson Imaging, 2010, 1(6): 411-414.李明華, 李梅. 易損斑塊的影像學(xué)檢查方法. 磁共振成像, 2010,1(6): 411-414.
[19] Simpson RJ, Akwei S, Hosseini AA, et al. MR imaging-detected carotid plaque hemorrhage is stable for 2 years and a marker for stenosis progression. AJNR Am J Neuroradiol, 2015, 36(6):1171-1175.
[20] Yang LX, Dong L, Yu W. Clinical application and technical progress of high resolution MR imaging of carotid artery plaque hemorrhage. Chin J Magn Reson Imaging, 2015, 6(9): 711-715.楊利新, 董莉, 于薇. 頸動脈斑塊內(nèi)出血的高分辨率MR成像臨床應(yīng)用及技術(shù)進展. 磁共振成像, 2015, 6(9): 711-715.
[21] Wong KK, Thavornpattanapong P, Cheung SC, et al. Effect of calcifcation on the mechanical stability of plaque based on a threedimensional carotid bifurcation model. BMC Cardiovascular Disorders, 2012, 12(4): 7.
[22] Li Z, U-King-Im J, Tang T, et al. Impact of calcifcation and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm. J Vasc Surg, 2008, 47(5): 928-935.
[23] Grimm JM, Schindler A, Freilinger T, et a1. Comparison of symptomatic and asymptomatic atherosclerotic carotid plaques using parallel imaging and 3 T black-blood in vivo CMR. J Cardiovasc Magn Reson, 2013, 15(1): 44-53.
[24] Zhao XQ, Dong L, Hatsukami T, et al. MR imaging of carotid plaque composition during lipid-lowering therapy:a prospective assessment of effect and time course. JACC Cardiovasc Imaging, 2011, 4(9):977-986.
[25] Moody AR, Murphy RE, Morgan PS, et al. Characterization of complicated carotid plaque with magnetic resonance direct thrombus imaging in patients with cerebral ischemia. Circulation, 2003,107(24): 3047-3052.
[26] Zhao X, Underhill HR, Zhao Q, et al. Discriminating carotid atherosclerotic lesion severity by luminal stenosis and plaque burden:a comparison utilizing high-resolution magnetic resonance imaging at 3.0 Tesla. Stroke, 2011, 42(2): 347-353.
[27] Mono ML, Karameshev A, Slotboom J, et al. Plaque characteristics of asymptomatic carotid stenosis and risk of stroke. Cerebrovasc Dis,2012, 34(5-6): 343-350.
[28] Kurosaki Y, Yoshida K, Endo H, et al. Association between carotid atherosclerosis plaque with high signal intensity on T1-weighted imaging and subsequent ipsilateral ischemic events. Neurosurgery,2011, 68(1): 62-67.
[29] Lindsay AC, Biasiolli L, Lee JM, et al. Plaque features associated with increased cerebral infarction after minor stroke and TIA: A prospective, case-control, 3-T carotid artery MR imaging study. JACC Cardiovasc Imaging, 2012, 5(4): 388-396.
[30] Freilinger TM, Schindler A, Schmidt C, et al. Prevalence of nonstenosing, complicated atherosclerotic plaques in cryptogenic stroke. JACC Cardiovasc Imaging, 2012, 5(4): 397-405.
[31] Department of vascular surgery, Chinese Medical Association. Guidelines for the treatment of carotid artery stenosis. Chinese Journal of Practical Surgery, 2008, 28(11): 913-915.中華醫(yī)學(xué)會外科學(xué)分會血管外科學(xué)組. 顱外段頸動脈狹窄治療指南. 中國實用外科雜志, 2008, 28(11): 913-915.
[32] Yamada K, Yoshimura S, Kawasaki M, et al. Embolic complications after carotid artery stenting or carotid endarterectomy are associated with tissue characteristics of carotid plaques evaluated by magnetic resonance imaging. Atherosclerosis, 2011, 215(2): 399-404.
[33] Zhao H, Hu YT, Chen YJ, et al. Effect of atorvastatin calcium on carotid atherosclerotic plaque in patients with acute cerebral infarction. Chinese Journal of practical neurological diseases, 2011,14(8): 6-8.趙紅, 胡云濤, 陳彥菊, 等. 阿托伐他汀鈣對急性腦梗死患者頸動脈粥樣硬化斑塊的影響.中國實用神經(jīng)疾病雜志, 2011, 14(8): 6-8.
[34] Zhao Y, Nicoll R, He YH, et al. The effect of statins therapy in aortic stenosis: Meta-analysis comparison data of RCTs and observationals. Data in Brief, 2016, 7: 357-361.
[35] Zhao Y, Nicoll R, He YH, et al. The effect of statins on valve function andcalcifcation in aortic stenosis: A meta-analysis. Atherosclerosis,2016, 246: 318-324.
[36] Corti R, Fayad ZA, Fuster V, et al. Effects of lipid lowering by simvastatin on human atherosclerotic lesions: A longitudinal study by high-resolution, noninvasive magnetic resonance imaging. Circulation, 2001, 104(3): 249-252.
[37] West AM, Anderson JD, Meyer CH, et al. The effect of ezetimibe on peripheral arterial atherosclerosis depends upon statin use at baseline. Atherosclerosis, 2011, 218(1): 156-162.
[38] Dong L, Kerwin W, Chen HJ, et al. Effect of intensive lipid therapy on atherosclerotic plaque inflammation: evaluation using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in carotid disease.Circulation, 2009(18): 342-343.
[39] Tang TY, Howarth SP, Miller SR, et al. The ATHEROMA(Atorvastatin Therapy: Effects on Reduction of Macrophage Activity) Study. Evaluation using ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging in carotid disease. J Am Coll Cardiol, 2009, 53(22): 2039-2050.
[40] Underhill HR, Hatsukami TS, Cai J, et al. A noninvasive imaging approach to assess plaque severity: the carotid atherosclerosis score. AJNR Am J Neuroradiol, 2010, 31(6): 1068-1075.
[41] Makowski MR, Botnar RM. MR imaging of the arterial vessel wall:molecular imaging from bench to bedside. Radiology, 2013, 269(1):34-51.
[42] Witkiewicz W, Klimeczek P, Iwanowski W, et al. Dual source computed tomography in analysis of significance and morphology carotid plaques. Przegl Lek, 2013, 70(3): 118-122.
The advantages and clinical value of high resolution MRI in evaluating the stability of carotid plaque
MA Yu-rong1, ZHANG Tao2, ZHANG Jing3*
1Gansu University of Traditional Chinese Medicine, Department of Nuclear Magnetic Resonance of the Second Hospital of Lanzhou University, Lanzhou 730000, China
2Peopleˊ s Hospital of Zhongwei, Zhongwei 755000, China
3Department of Nuclear Magnetic Resonance of the Second Hospital of Lanzhou University, Lanzhou 730000, China
*Correspondence to: Zhang J, E-mail: 260570874@qq.com
Received 25 Mar 2016, Accepted 27 May 2016
Carotid atherosclerotic plaque rupture and thrombosis are the independent risk factors of acute ischemic cerebrovascular disease. Timely identification of vulnerable plaque is helpful to prevent the occurrence of stroke, and it can provide the basis for clinical treatment. In recent years, high resolution MRI has become a hot spot in the research of carotid artery screening with its high soft tissue resolution and the advantage of safety. It can well show the important biological characteristics of the plaque, analyze the internal composition and morphology of the patch, identify vulnerable plaque, and evaluate the stability of the plaque. The purpose of this paper is to make a brief summary of the high resolution MR in the identifcation of vulnerable plaque and its clinical application.
Magnetic resonance imaging; Carotid artery atherosclerosis; Vulnerable plaque; Stroke
1.甘肅中醫(yī)藥大學(xué)(碩士),蘭州大學(xué)第二醫(yī)院核磁共振科(工作),蘭州 730000
2.中衛(wèi)市人民醫(yī)院,中衛(wèi) 755000
3.蘭州大學(xué)第二醫(yī)院核磁共振科,蘭州 730000
張靜,E-mail:260570874@qq.com
2016-03-25接受日期:2016-05-27
R445.2;R743.3
A
10.12015/issn.1674-8034.2016.08.015
馬玉榮, 張濤, 張靜. 高分辨率MRI評價頸動脈斑塊穩(wěn)定性的優(yōu)勢及臨床應(yīng)用價值. 磁共振成像, 2016, 7(8):630-634.