• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of Magnetic Field on Tribological Properties of Lubricating Oils with and without Tricresyl Phosphate

    2016-03-22 08:05:07
    中國煉油與石油化工 2016年3期

    (Logistical Engineering University, Chongqing 401311)

    Effect of Magnetic Field on Tribological Properties of Lubricating Oils with and without Tricresyl Phosphate

    Jiang Zeqi; Fang Jianhua; Chen Boshui; Zheng Zhe; Li Hao; Xu Lai

    (Logistical Engineering University, Chongqing 401311)

    Tribological properties of neat 150 SN mineral base oil and the oils doped with different contents of tricresyl phosphate (TCP) under magnetic feld or non-magnetic feld were evaluated on a four-ball tribotester, on which an external magnetic feld was applied. Furthermore, the morphology and the tribochemical characteristics of the worn surfaces were examined with a scanning electron microscope (SEM) and an X-ray photoelectron spectrograph (XPS). The tribological test results showed that the magnetic feld improved anti-wear properties but impaired the friction-reducing properties of neat base oil and the TCP-doped oils. The worn surfaces tested in magnetic feld were characterized by a slighter wear than those tested in normal condition, especially for the surfaces lubricated with the TCP-doped oils. Furthermore, the results of XPS analysis indicated that tribochemical flms on the surfaces tested with TCP-doped oils were mainly composed of ferriccontaining compounds such as Fe2O3, Fe3O4and FePO4. Under the infuence of a magnetic feld, the atomic concentrations of oxygen and phosphorous in the frictional sub-surfaces were higher than those without magnetic impact. Thus it can be inferred that the improved anti-wear properties and impaired friction-reducing capabilities of lubricating oils with TCP under a magnetic feld were related to the diffusion of phosphorus and oxygen into the substrate induced by magnetism.

    magnetic feld; tricresyl phosphate; tribological properties; mechanisms

    1 Introduction

    In industrial tribological systems, many sliding units work in electric and magnetic surroundings such as the magnetic cutting, the motor brush, the carbon brush of excitation machine, the contact wire of high speed skater, the switch contactor of high power electric transmission[1-4]. It has been known that electromagnetic-induced physico-chemical effect will certainly infuence tribological properties of lubricants[5-7]. On the other hand, the self generated voltage (SGV) induced by friction will produce electric felds which, when varying, will excite magnetic felds[8]. Studies have shown that tribomates under magnetic conditions can produce dynamic magnetization thus affecting the hardness of frictional materials[9-11]. Tang[12]pointed out that the electron clouds inside molecules would deform temporarily under magnetic felds, resulting in changes of intermolecular forces that could influence the physical and chemical properties of a substance such as viscosity. Zhai, et al.[13]demonstrated that the friction coefficients were related to tribochemical reaction on the worn surfaces under electromagnetic condition. Unfortunately, the infuence of electromagnetic effect on the molecular design of traditional lubricant additives is usually not taken into consideration. It is thus of great significance to understand the electromagnetic effect on tribological performance of lubricants to realize the reasonable application and design of lubricants and additives for tribological contacts involved in electromagnetic conditions.

    Tricresyl phosphate (TCP), a phosphorus-containing extreme pressure and anti-wear additive, has been widely used in many lubrication applications[14]. In the present paper, the tribological properties of lubricating oils with different contents of TCP were tested and compared with those of neat mineral base oil under magnetic conditions. Furthermore, the possible mechanisms of magnetic feld on infuencing the tribological performance of lubricating oils were also analyzed.

    2 Experimental

    2.1 Base oil and additive

    150 SN base oil: a non-polarized paraffinic base oil obtained from the Shenzhen Lubricating Oil Industry Company, with its kinematic viscosity at 40 ℃ being equating to 31.85 mm2/s.

    Additive: Tricresyl phosphate (TCP) was obtained from the Beijing Benzene Ring Fine Chemicals Co., Ltd. The chemical structure and some physicochemical indices of TCP are shown in Figure 1 and Table 1, respectively.

    Table 1 The physicochemical properties of TCP

    2.2 Friction and wear test

    To evaluate the effect of magnetic field on tribological properties of lubricating oils with and without TCP, different mass fraction values of TCP, viz.: 0, 0.5%, 1.0%, 1.5%, 2.0% and 2.5%, respectively, were incorporated into the 150 SN base oil. The tribological tests were performed on a MMW-1 universal four-ball tribotester following the procedures of SH/T 0189—1992, a Chinese standard method for testing friction and wear properties of lubricants. To investigate the effect of magnetic feld on tribological performance of the lubricants, a copper loop of 800 windings was wrapped on an aluminium alloy sleeve and then placed around the friction region as shown in Figure 2(a). During the friction testing, the loop was electrifed to produce a specifc intensity of magnetic field by controlling the current intensity, with magnetic induction lines being mostly perpendicular to the frictional contact surfaces, as shown in Figure 2(b). The friction and wear tests were conducted under a magnetic feld intensity of 0.1 Tesla (0.1 T) and a load of 392 N, at a rotary speed of 1 200 r/min for 30 minutes. After each test run, the wear scar diameters (WSD) and the friction coeffcients were measured to evaluate the anti-wear and friction-reducing ability of the tested lubricants. The balls used in the tests are GCr15 standard steel balls, 12.7 mm in diameter and 59—61 HRC in hardness. The magnetic intensity was measured by a HT201 portable digital Tesla meter.

    Figure 2 Assembly of tribotester

    2.3 Surface analysis

    Prior to the analysis, the steel balls lubricated with 150 SN base oil and oils formulated with 2.0% of TCP, respectively, under magnetic or non-magnetic fields were ultrasonically cleansed with petroleum ether for 10 minutes, respectively. Then the morphology of the worn surfaces was observed by a TESCAN Vega 3 LMH scanning electron microscope (SEM). The chemical characteristics of typical elements on the worn surfaces were analyzed on a Thermo ESCALab250 X-ray photoelectron spectroscope (XPS), with the Al Kα radiation used as the exciting source and a binding energy of contaminated carbon (C1s: 284.80 eV) used as the reference.

    3 Results and Discussion

    3.1 Anti-wear capacity

    Figure 3 shows the variation of wear scar diameters with the change in mass fraction of TCP under different magnetic fields. It can clearly be observed from Figure 3 that WSDs of the worn surfaces under magnetic felds were much smaller than those under non-magnetic feld, demonstrating that magnetic field could contribute to the improvement of the anti-wear property of lubricating oils.

    Figure 3 Variation of WSD with TCP contents under magnetic or non-magnetic fi eld

    3.2 Friction-reducing ability

    Figure 4 Friction coef fi cient against mass fraction of TCP under magnetic or non-magnetic fi eld

    Figure 5 Variation of friction coef fi cient with test duration under magnetic or non-magnetic fi eld conditions

    Figure 4 shows the variation of friction coeffcients with the mass fraction of TCP under different magnetic felds. Also shown in Figure 5 is the variation of friction coefficient versus test duration of lubricant oil containing 2.0% of TCP. It can be seen from Figure 4 and Figure 5 that the friction coefficients of the tested oils increased with an increasing content of TCP. In addition, the friction coefficients under magnetic conditions were higher than those under non-magnetic conditions. Furthermore, in the whole test process of 30 minutes, the friction coeffcient of oil containing 2.0% of TCP under the magnetic feld condition fuctuated more obviously than that under non-magnetic feld condition as shown in Figure 5. The results indicated that the magnetic impact could impair the friction-reducing ability of lubricants.

    3.3 Morphology of worn surfaces

    The SEM morphology of worn surfaces lubricated with 150 SN mineral oil and the oils formulated with 2.0% of TCP under a load of 392 N for 30 minutes in the presence of different magnetic felds are shown in Figure 6. It can be seen from Figure 6(a) and Figure 6(b) that smoother wear scar could be observed on surfaces lubricated with base oil under magnetic condition, a similar situation of surfaces lubricated with TCP-doped oils could be observed from Figure 6(c) and Figure 6(d), indicating the positive effect of magnetic feld on anti-wear property of tested oils. The results are well correlated with the antiwear test results shown in Figure 3.

    3.4 Tribochemical characteristics

    Figure 7 shows the XPS spectra of worn surface lubricated with oil samples containing 2.0% of TCP under the influence of magnetic or non-magnetic field. The XPS spectrum of C1s (Figure 7a) showed a peak in the binding energy range of 284.7—288.4 eV, which was assigned to organic species of C—C bonds, indicating that the lubricant molecules were adsorbed on the metal surfaces. In Figure 7b, the peak of Fe2p at a binding energy of 710.5 eV indicated that iron was oxidized to Fe3O4or Fe2O3. In the spectrum of P2p (Figure 7c), the peak at a binding energy of 133.4 eV might be attributed to the chemical species of FePO4. The peak of O1s (Figure 7d) around a binding energy of 531.4 eV might be attributed to P=O or iron oxide, in combination with the peak of Fe2p and P2p. It can be inferred from the results of XPS that a composite boundary lubrication film was mainly composed of FePO4, Fe2O3, and Fe3O4.

    Figure 6 SEM images of worn surfaces lubricated with base oil and TCP-doped oil.

    Figure 7 XPS spectra of worn surfaces lubricated by oil containing 2% of TCP under magnetic or non-magnetic fi eld

    Table 2 Atomic percentage of typical elements on the worn surfaces

    To further explore the magnetic effect on tribological property of lubricating oils formulated with TCP, the elemental compositions of worn surfaces obtained during testing in different magnetic felds were also determined by XPS analysis. The atomic concentrations of typical elements in the worn surfaces are listed in Table 2. As it can be seen from Table 2, the atomic contents of oxygen and phosphorus contained in the surface film under a magnetic feld of 0.1 T were higher than those under nonmagnetic feld. After sputtering for 5 minutes, higher concentrations of oxygen and phosphorus were detected in the sub-surface, indicating that tribo-diffusion of oxygen and phosphorus was promoted by magnetic affection. The higher content of oxygen obtained under magnetism quite well complied with the phenomenon that oxygen tends to gather around the magnetic feld because of its paramagnetic property[15]. Tribo-diffusion of oxygen and phosphorus into the sub-surface under magnetic condition can be an attribute of TCP to fortify anti-wear performance and impair friction-reducing ability of lubricating oils. Zhou[16]reported that the π bond structure of graphite exhibited good magnetization performance under the infuence of magnetic felds. Higher concentrations of oxygen and phosphorus on the surface and in the sub-surface of metal under magnetic condition can also be explained on the basis of the structural characteristics of TCP. The molecule of TCP contains a conjugated π bond structure because of three benzene rings (as can be seen from Figure 1), which can be a positive factor for TCP to exhibit good magnetization performance in the perpendicular direction of molecular plane with magnetic affection to improve the adsorption of TCP on the metal surfaces.

    4 Conclusions

    Based on the results given above, the following conclusions can be drawn.

    (1) The wear scar diameters of steel balls lubricated with 150 SN mineral oil or oils formulated with TCP under magnetic fields were smaller than those obtained under non-magnetic condition, while the friction coefficients of the tested oils under magnetic field were higher than those under non-magnetic field condition. Magnetic field to some extent improved the anti-wear properties but impaired the friction-reducing properties of 150 SN mineral oil and TCP-doped oils.

    (2) Composite boundary flms mainly were composed of FePO4, Fe2O3, and Fe3O4generated on the worn surfaces, and tribo-diffusion of phosphorus and oxygen into the sub-surfaces of metal under magnetic field might be an attribute for the improved anti-wear performance and impaired friction-reducing ability of TCP-doped oils with magnetic affection.

    Acknowledgements: The authors gratefully acknowledge the financial support provided by the National Natural Science Foundation of China (Project No. 51375491), the Natural Science Foundation of Chongqing (Project No. CSTC, 2014JCYJAA50021) and the Innovation Fund of Logistical Engineering University of PLA (Project No. YZ13-43703).

    [1] Zhang M, Feng Y. Effect of electric current on the friction and wear behavior of carbon nanotubes-silver-graphite composite[J]. Tribology, 2005, 25(4): 328-332

    [2] Hu B, Meng Y G, Wen S Z. A preliminary experimental study on voltage-controlled friction clutch[J]. Tribology, 2004, 24(1): 46-49

    [3] Senouci A, Zaidi H, Frene J, et al. Damage of surfaces in sliding electrical contact copper/steel[J]. Applied Surface Science, 1999, 144: 287-291

    [4] Jiang Z Q, Zheng Z, Fang J H, et al. Effect of magnetic field on frictional and wearing properties[J]. Synthetic Lubricants, 2016, 43(1): 23-25 (in Chinese)

    [5] Muju M K, Radhakrishna A. Wear of non-magnetic materials in the presence of a magnetic feld[J]. Wear, 1980, 58(1): 49-58

    [6] Dong X L, Chen J R, Jian X G. Research situation and prospects for effect of a magnetic feld on friction and wear of metals[J]. Materials Science and Engineering, 2000, 18(1): 116-120 (in Chinese)

    [7] Wei Y H, Zhang Z Y, Chen Y. Dry sliding friction and wearof high-speed steel/45 steel tribo-pair under direct current steady magnetic feld[J]. Tribology, 2010, 30(4): 399-403 (in Chinese)

    [8] Zhou Q, Li J P, Long H S. The friction and wear of sleevering pair lubricated by active lubricants in the presence of magnetic field[J]. Journal of Wuhan University of Technology, 2004(11): 69-71 (in Chinese)

    [9] Han H B, Gao Y K, Zhang Y Z, et al. The magnetic flux density and magnetic attraction force on the contact surface of pin-disk friction pair under DC magnetic feld[J]. Chinese Mechanical Engineering, 2015, 26(4): 503-507 (in Chinese)

    [10] Han H B, Liu H, Zhang Y Z, et al. The electromagnetic induction phenomena in friction contact area of pin and disk under DC magnetic feld[J]. Tribology, 2015, 35(5): 557-562 (in Chinese)

    [11] Zhou Z Z, Xiao J J, Zheng W. Recent research of the triboelectrifcation mechanism between the friction surfaces[J]. Journal of Wenzhou Vocational and Technical College, 2005, 5(1): 28-30 (in Chinese)

    [12] Tang H B, Zhang M Q. Effect of magnetic felds on viscosity of alkane and alcohol[J]. Journal of Shenyang University of Technology, 2000, 22(5): 448-449 (in Chinese)

    [13] Zhai W J, Hao G P. Influence of externally applied electrical factors on friction coefficient of steel/steel pair with boundary oil lubrication[J]. Journal of Harbin Institute of Technology, 2003, 35(8): 946-949 (in Chinese)

    [14] Fang C M, Li M S, Liu X Q, et al. Research progress in synthesis and application situation of P-containing antiwear and extreme pressure additives[J]. Lubricating Oil, 2007, 22(1): 35-38 (in Chinese)

    [15] Hu H, Gao H, Jia S Y. Effect of magnetic feld on physical and chemical properties of matter[J]. J Magn Mater Devices, 2000, 6: 36-38 (in Chinese)

    [16] Zhou Q, Zheng Y J. Magnetizing friction and its boosting action on lubrication[J]. Tribology, 2002, 22(4): 479-482 (in Chinese)

    Received date: 2016-04-20; Accepted date: 2016-06-17.

    Prof. Fang Jianhua, Telephone: +86-23-86731410; E-mail: fangjianhua71225@sina.com.

    女人高潮潮喷娇喘18禁视频| 亚洲国产av新网站| 国产成人免费观看mmmm| 嫩草影院入口| 晚上一个人看的免费电影| 国产日韩欧美在线精品| 国产男女超爽视频在线观看| 高清黄色对白视频在线免费看| 精品亚洲乱码少妇综合久久| 中国国产av一级| 精品免费久久久久久久清纯 | videos熟女内射| 捣出白浆h1v1| 亚洲熟女精品中文字幕| 国产人伦9x9x在线观看| 少妇 在线观看| 男女无遮挡免费网站观看| 国产av码专区亚洲av| 国产熟女午夜一区二区三区| 一区二区三区四区激情视频| 亚洲欧美一区二区三区国产| 精品一区二区三卡| 国产精品 国内视频| 日韩中文字幕视频在线看片| www日本在线高清视频| 伊人久久国产一区二区| 国产有黄有色有爽视频| 日韩中文字幕视频在线看片| 国产 精品1| 国产xxxxx性猛交| 啦啦啦 在线观看视频| 久久99精品国语久久久| 啦啦啦中文免费视频观看日本| 韩国高清视频一区二区三区| 亚洲精品美女久久av网站| 91国产中文字幕| 国产精品一区二区在线不卡| 黄色 视频免费看| 深夜精品福利| 在线观看免费午夜福利视频| 国语对白做爰xxxⅹ性视频网站| av线在线观看网站| 色94色欧美一区二区| av福利片在线| 美国免费a级毛片| 国产在线一区二区三区精| 19禁男女啪啪无遮挡网站| 国产精品一国产av| 91精品国产国语对白视频| 丝袜在线中文字幕| 国产精品一区二区在线观看99| 成人国产麻豆网| 啦啦啦视频在线资源免费观看| 欧美成人精品欧美一级黄| 欧美黑人欧美精品刺激| 制服诱惑二区| 久久韩国三级中文字幕| 欧美精品高潮呻吟av久久| 欧美xxⅹ黑人| 一级毛片电影观看| 国产无遮挡羞羞视频在线观看| 久久亚洲国产成人精品v| 国产极品天堂在线| 黄色毛片三级朝国网站| av在线老鸭窝| 日韩一本色道免费dvd| 国产精品三级大全| 亚洲精品在线美女| 午夜福利免费观看在线| 日日撸夜夜添| 国产 精品1| 少妇被粗大的猛进出69影院| 亚洲一区二区三区欧美精品| 91老司机精品| 黑人巨大精品欧美一区二区蜜桃| 99精国产麻豆久久婷婷| 国产精品亚洲av一区麻豆 | 色精品久久人妻99蜜桃| 青青草视频在线视频观看| 亚洲精品在线美女| 欧美日韩综合久久久久久| 极品人妻少妇av视频| 一本久久精品| 日韩欧美一区视频在线观看| 91aial.com中文字幕在线观看| 日韩成人av中文字幕在线观看| 国产无遮挡羞羞视频在线观看| 日本黄色日本黄色录像| 在线观看免费午夜福利视频| 热99国产精品久久久久久7| 国产色婷婷99| 欧美日韩成人在线一区二区| 午夜福利视频精品| 欧美在线黄色| 欧美日韩成人在线一区二区| 日本av手机在线免费观看| 亚洲国产成人一精品久久久| 一级毛片黄色毛片免费观看视频| 国产激情久久老熟女| 一边摸一边做爽爽视频免费| av有码第一页| 亚洲欧美成人综合另类久久久| netflix在线观看网站| 女人高潮潮喷娇喘18禁视频| 日韩av在线免费看完整版不卡| 亚洲av电影在线观看一区二区三区| 在线观看www视频免费| 亚洲成av片中文字幕在线观看| 哪个播放器可以免费观看大片| 啦啦啦视频在线资源免费观看| 国产乱人偷精品视频| 最近中文字幕2019免费版| 日韩中文字幕视频在线看片| 久久精品久久久久久久性| 日本黄色日本黄色录像| 国产男人的电影天堂91| 性色av一级| 看免费成人av毛片| 狂野欧美激情性xxxx| 国产精品久久久久久精品电影小说| 久热这里只有精品99| 亚洲精品日韩在线中文字幕| av电影中文网址| 天天影视国产精品| 亚洲美女黄色视频免费看| 国产成人免费无遮挡视频| videos熟女内射| 交换朋友夫妻互换小说| 亚洲精品久久午夜乱码| 国产色婷婷99| 99精品久久久久人妻精品| 9191精品国产免费久久| 久久毛片免费看一区二区三区| 只有这里有精品99| 国语对白做爰xxxⅹ性视频网站| 久久精品熟女亚洲av麻豆精品| 一级,二级,三级黄色视频| 国产精品女同一区二区软件| 新久久久久国产一级毛片| 亚洲一码二码三码区别大吗| 国产99久久九九免费精品| 99久久人妻综合| 99国产综合亚洲精品| 大片电影免费在线观看免费| 激情视频va一区二区三区| 丝袜喷水一区| 亚洲人成电影观看| 伦理电影免费视频| www日本在线高清视频| a级片在线免费高清观看视频| 日本色播在线视频| av国产久精品久网站免费入址| 搡老岳熟女国产| 色精品久久人妻99蜜桃| 午夜91福利影院| 亚洲国产看品久久| 少妇被粗大猛烈的视频| a级毛片黄视频| 免费在线观看完整版高清| 国产极品粉嫩免费观看在线| 国产精品99久久99久久久不卡 | 一区二区三区乱码不卡18| 美女中出高潮动态图| 亚洲人成电影观看| av不卡在线播放| 国产又色又爽无遮挡免| 国产麻豆69| 国产片特级美女逼逼视频| 人妻一区二区av| 免费不卡黄色视频| 侵犯人妻中文字幕一二三四区| 捣出白浆h1v1| 国产亚洲午夜精品一区二区久久| 如何舔出高潮| 亚洲av日韩在线播放| 欧美久久黑人一区二区| 亚洲伊人色综图| 交换朋友夫妻互换小说| 亚洲欧美一区二区三区久久| 99国产精品免费福利视频| 日日撸夜夜添| 国产精品久久久久久精品古装| 夫妻性生交免费视频一级片| 欧美久久黑人一区二区| 亚洲少妇的诱惑av| 免费观看a级毛片全部| 欧美人与性动交α欧美软件| 国产毛片在线视频| 亚洲综合色网址| 丰满饥渴人妻一区二区三| 午夜福利免费观看在线| 丰满乱子伦码专区| www.自偷自拍.com| 亚洲国产精品一区二区三区在线| 嫩草影院入口| 国产精品二区激情视频| 久久久久视频综合| 在线观看www视频免费| 免费观看人在逋| 久久久久人妻精品一区果冻| 国产色婷婷99| 99精品久久久久人妻精品| 国产老妇伦熟女老妇高清| 深夜精品福利| 又粗又硬又长又爽又黄的视频| 老司机靠b影院| 天堂中文最新版在线下载| 中国国产av一级| 女人高潮潮喷娇喘18禁视频| 日本午夜av视频| 免费日韩欧美在线观看| videosex国产| 欧美久久黑人一区二区| 久久精品aⅴ一区二区三区四区| 人人妻人人澡人人看| 黄色视频在线播放观看不卡| 久久久久久久久久久免费av| 国产日韩一区二区三区精品不卡| 国产亚洲av片在线观看秒播厂| 国产黄色免费在线视频| 免费日韩欧美在线观看| 亚洲av日韩精品久久久久久密 | 久久精品久久精品一区二区三区| 热99久久久久精品小说推荐| 中文字幕色久视频| 狠狠精品人妻久久久久久综合| 午夜福利网站1000一区二区三区| 99久久99久久久精品蜜桃| 久久天堂一区二区三区四区| 大码成人一级视频| 日日啪夜夜爽| 国产欧美日韩综合在线一区二区| 久久久久久免费高清国产稀缺| 大话2 男鬼变身卡| 人妻人人澡人人爽人人| 岛国毛片在线播放| 国产精品女同一区二区软件| 赤兔流量卡办理| 日韩一卡2卡3卡4卡2021年| 亚洲精品第二区| 黑丝袜美女国产一区| 久久久久久久久免费视频了| 久热这里只有精品99| 日本vs欧美在线观看视频| 久久精品久久久久久久性| 久久99一区二区三区| 久久国产亚洲av麻豆专区| 日韩一区二区视频免费看| 日本vs欧美在线观看视频| 亚洲成人一二三区av| 精品免费久久久久久久清纯 | 老熟女久久久| 哪个播放器可以免费观看大片| 欧美日韩av久久| 国产成人精品在线电影| 日日摸夜夜添夜夜爱| av视频免费观看在线观看| 操美女的视频在线观看| 亚洲精品国产av蜜桃| 久久免费观看电影| 一边摸一边抽搐一进一出视频| 伦理电影大哥的女人| av一本久久久久| av在线老鸭窝| 操美女的视频在线观看| 亚洲美女搞黄在线观看| 操出白浆在线播放| 亚洲成人一二三区av| 久久久久久久久久久久大奶| 日本欧美国产在线视频| 肉色欧美久久久久久久蜜桃| 91精品伊人久久大香线蕉| 久久亚洲国产成人精品v| 午夜激情久久久久久久| 少妇精品久久久久久久| 日韩制服骚丝袜av| 久久久久久人妻| 成人手机av| 男人爽女人下面视频在线观看| 国产男女超爽视频在线观看| 中国国产av一级| 巨乳人妻的诱惑在线观看| 久久精品久久久久久噜噜老黄| 建设人人有责人人尽责人人享有的| 在线看a的网站| 亚洲精品久久午夜乱码| 亚洲在久久综合| 精品一区在线观看国产| 午夜福利一区二区在线看| 一本—道久久a久久精品蜜桃钙片| 如何舔出高潮| 日本午夜av视频| 麻豆乱淫一区二区| 色精品久久人妻99蜜桃| 亚洲欧美精品综合一区二区三区| 欧美精品一区二区大全| 欧美日韩国产mv在线观看视频| 91精品三级在线观看| 国产人伦9x9x在线观看| 久久天堂一区二区三区四区| 久久ye,这里只有精品| 欧美在线黄色| 成人三级做爰电影| 亚洲第一av免费看| 色综合欧美亚洲国产小说| av线在线观看网站| 日韩伦理黄色片| 国产乱来视频区| 一级片免费观看大全| 中文字幕av电影在线播放| 人人妻,人人澡人人爽秒播 | 黄片无遮挡物在线观看| av电影中文网址| 国产成人精品在线电影| 好男人视频免费观看在线| 日韩,欧美,国产一区二区三区| 久久久久精品国产欧美久久久 | 国产 精品1| 制服丝袜香蕉在线| 国产老妇伦熟女老妇高清| 中文字幕人妻丝袜制服| 高清欧美精品videossex| 国产精品一区二区在线观看99| 国产av国产精品国产| 亚洲成av片中文字幕在线观看| 久久ye,这里只有精品| 秋霞伦理黄片| 国产精品 欧美亚洲| 搡老岳熟女国产| 最近最新中文字幕免费大全7| 99久久人妻综合| 国产欧美日韩综合在线一区二区| 熟妇人妻不卡中文字幕| 久久久久精品久久久久真实原创| 国产欧美日韩一区二区三区在线| 在线观看免费午夜福利视频| www.自偷自拍.com| 少妇人妻久久综合中文| 精品亚洲成国产av| 中国三级夫妇交换| 国产又爽黄色视频| 亚洲综合色网址| 国产日韩欧美在线精品| 熟女少妇亚洲综合色aaa.| 亚洲国产毛片av蜜桃av| 中国三级夫妇交换| 国产免费又黄又爽又色| 又粗又硬又长又爽又黄的视频| 天天躁狠狠躁夜夜躁狠狠躁| 自拍欧美九色日韩亚洲蝌蚪91| videos熟女内射| 操美女的视频在线观看| 亚洲欧美色中文字幕在线| 七月丁香在线播放| 国产又爽黄色视频| √禁漫天堂资源中文www| 欧美在线黄色| 国产精品欧美亚洲77777| 男人添女人高潮全过程视频| 免费久久久久久久精品成人欧美视频| 日韩电影二区| 国产精品欧美亚洲77777| 久久精品aⅴ一区二区三区四区| 日韩av免费高清视频| 国产xxxxx性猛交| 啦啦啦在线观看免费高清www| tube8黄色片| 七月丁香在线播放| 欧美在线黄色| 丰满乱子伦码专区| 国产成人一区二区在线| 精品少妇久久久久久888优播| 人人妻人人爽人人添夜夜欢视频| 天堂8中文在线网| 亚洲第一青青草原| av国产精品久久久久影院| www.av在线官网国产| 亚洲,一卡二卡三卡| 亚洲国产日韩一区二区| 久久韩国三级中文字幕| 国产熟女欧美一区二区| 女性被躁到高潮视频| 亚洲国产精品一区二区三区在线| 欧美精品亚洲一区二区| 亚洲精品,欧美精品| 青春草国产在线视频| 国产精品国产三级专区第一集| 一区二区三区激情视频| av免费观看日本| 欧美成人精品欧美一级黄| 免费在线观看黄色视频的| www.自偷自拍.com| 狂野欧美激情性xxxx| 男人添女人高潮全过程视频| 国产人伦9x9x在线观看| 老汉色av国产亚洲站长工具| 男男h啪啪无遮挡| 国产高清不卡午夜福利| 一本久久精品| 欧美精品人与动牲交sv欧美| 国产日韩欧美视频二区| 91国产中文字幕| 黄色 视频免费看| 操出白浆在线播放| 精品亚洲成国产av| 欧美中文综合在线视频| 亚洲成人国产一区在线观看 | 国产精品久久久久久精品古装| 国产熟女午夜一区二区三区| 乱人伦中国视频| 色吧在线观看| 日韩一区二区视频免费看| 国产亚洲最大av| 人人妻人人爽人人添夜夜欢视频| 久久国产亚洲av麻豆专区| 色网站视频免费| 亚洲欧美清纯卡通| 伊人亚洲综合成人网| 亚洲欧美日韩另类电影网站| 69精品国产乱码久久久| 国产亚洲精品第一综合不卡| 亚洲国产中文字幕在线视频| 欧美黄色片欧美黄色片| 久久 成人 亚洲| 老司机影院毛片| 不卡av一区二区三区| 国产精品 国内视频| 国产精品一二三区在线看| 国产熟女午夜一区二区三区| videos熟女内射| av网站在线播放免费| 热99久久久久精品小说推荐| 亚洲 欧美一区二区三区| 欧美最新免费一区二区三区| 欧美国产精品va在线观看不卡| 伊人亚洲综合成人网| 黄网站色视频无遮挡免费观看| 欧美人与性动交α欧美精品济南到| 黑人巨大精品欧美一区二区蜜桃| 色综合欧美亚洲国产小说| 久久久欧美国产精品| 久久久久久久久免费视频了| 欧美最新免费一区二区三区| 一边摸一边抽搐一进一出视频| 国产精品国产三级专区第一集| 欧美成人精品欧美一级黄| 日本vs欧美在线观看视频| 美女午夜性视频免费| www.熟女人妻精品国产| 国产探花极品一区二区| 国产在视频线精品| 久久久久久久久久久久大奶| 美女视频免费永久观看网站| 十分钟在线观看高清视频www| 午夜福利视频在线观看免费| 国产国语露脸激情在线看| 新久久久久国产一级毛片| 大片电影免费在线观看免费| 欧美黑人欧美精品刺激| 日韩欧美精品免费久久| 亚洲av欧美aⅴ国产| 黄网站色视频无遮挡免费观看| 欧美日韩福利视频一区二区| 一级爰片在线观看| 国产人伦9x9x在线观看| 欧美激情极品国产一区二区三区| 我的亚洲天堂| 久久亚洲国产成人精品v| 久久精品久久久久久噜噜老黄| www.自偷自拍.com| 最新的欧美精品一区二区| 老司机亚洲免费影院| 色94色欧美一区二区| 我的亚洲天堂| 午夜福利乱码中文字幕| 一级毛片 在线播放| 九九爱精品视频在线观看| 国产熟女午夜一区二区三区| 婷婷成人精品国产| 成人手机av| 天堂俺去俺来也www色官网| 最新的欧美精品一区二区| 秋霞在线观看毛片| 亚洲一区二区三区欧美精品| 一二三四在线观看免费中文在| 中文天堂在线官网| 色播在线永久视频| 亚洲,欧美,日韩| 天美传媒精品一区二区| 女人久久www免费人成看片| 久久久久久久精品精品| 亚洲国产精品999| 色视频在线一区二区三区| 十八禁网站网址无遮挡| 午夜久久久在线观看| 精品一区二区三卡| 国产麻豆69| 日韩制服丝袜自拍偷拍| 亚洲国产av新网站| 伊人久久大香线蕉亚洲五| 国产熟女午夜一区二区三区| 亚洲成人一二三区av| 91国产中文字幕| 色婷婷久久久亚洲欧美| 一级,二级,三级黄色视频| 日韩中文字幕欧美一区二区 | 天天躁夜夜躁狠狠久久av| 国产日韩欧美视频二区| 亚洲精品视频女| 久久久精品区二区三区| 男女边摸边吃奶| 欧美亚洲日本最大视频资源| 一区二区av电影网| 男人舔女人的私密视频| 亚洲国产av新网站| 国产乱人偷精品视频| 一本色道久久久久久精品综合| 日日啪夜夜爽| 国产成人免费观看mmmm| av在线老鸭窝| 午夜激情久久久久久久| 国产午夜精品一二区理论片| 欧美久久黑人一区二区| 国产欧美亚洲国产| 亚洲欧美一区二区三区久久| 美女脱内裤让男人舔精品视频| 日日爽夜夜爽网站| 最近中文字幕2019免费版| 中文乱码字字幕精品一区二区三区| 纵有疾风起免费观看全集完整版| 少妇 在线观看| 最新的欧美精品一区二区| 国产无遮挡羞羞视频在线观看| 国产精品偷伦视频观看了| 另类精品久久| 欧美日韩一区二区视频在线观看视频在线| 中文乱码字字幕精品一区二区三区| 十八禁人妻一区二区| 午夜福利视频精品| 日韩,欧美,国产一区二区三区| 中文字幕av电影在线播放| 色94色欧美一区二区| 亚洲精品国产av成人精品| 国产一区二区激情短视频 | 欧美成人精品欧美一级黄| 国产极品粉嫩免费观看在线| 午夜精品国产一区二区电影| 菩萨蛮人人尽说江南好唐韦庄| 日韩 欧美 亚洲 中文字幕| 男女边吃奶边做爰视频| 考比视频在线观看| 天美传媒精品一区二区| 九草在线视频观看| 午夜福利影视在线免费观看| 日本黄色日本黄色录像| 一区二区三区乱码不卡18| 国产精品 国内视频| 午夜激情av网站| 日本av免费视频播放| www.自偷自拍.com| 亚洲成国产人片在线观看| 亚洲第一av免费看| 一级毛片电影观看| 久久精品国产亚洲av涩爱| 卡戴珊不雅视频在线播放| 美女脱内裤让男人舔精品视频| 女性被躁到高潮视频| 亚洲精品久久久久久婷婷小说| 婷婷色av中文字幕| 国产极品粉嫩免费观看在线| 亚洲国产看品久久| 精品第一国产精品| 不卡视频在线观看欧美| 女人爽到高潮嗷嗷叫在线视频| 亚洲第一区二区三区不卡| 曰老女人黄片| 国产精品偷伦视频观看了| 女人被躁到高潮嗷嗷叫费观| 操美女的视频在线观看| 男人添女人高潮全过程视频| 国产高清国产精品国产三级| 老汉色av国产亚洲站长工具| 啦啦啦在线免费观看视频4| 肉色欧美久久久久久久蜜桃| 日韩一区二区三区影片| 亚洲色图 男人天堂 中文字幕| 亚洲美女搞黄在线观看| 最新在线观看一区二区三区 | 咕卡用的链子| 亚洲一区二区三区欧美精品| 一级a爱视频在线免费观看| 亚洲人成电影观看| 乱人伦中国视频| 久久久久视频综合| 80岁老熟妇乱子伦牲交| 国产视频首页在线观看| 国产成人精品在线电影| 一级a爱视频在线免费观看| 亚洲国产欧美一区二区综合| 国产亚洲一区二区精品| 亚洲国产av影院在线观看| 欧美精品高潮呻吟av久久| 一级片'在线观看视频| 国产一区二区三区综合在线观看| 午夜福利影视在线免费观看| 国产精品久久久久久人妻精品电影 | 久久午夜综合久久蜜桃| 亚洲国产日韩一区二区| 欧美 亚洲 国产 日韩一| 丝袜人妻中文字幕| 欧美亚洲日本最大视频资源| 亚洲免费av在线视频| 亚洲精品一二三| av国产久精品久网站免费入址| 久久99一区二区三区|