楊紹臻 杜國(guó)盛
解放軍第三〇九醫(yī)院器官移植研究所肝膽外科,北京 100091
調(diào)節(jié)性B細(xì)胞與腫瘤免疫△
楊紹臻杜國(guó)盛#
解放軍第三〇九醫(yī)院器官移植研究所肝膽外科,北京100091
調(diào)節(jié)性B細(xì)胞(Breg)是繼調(diào)節(jié)性T細(xì)胞后免疫領(lǐng)域研究的新熱點(diǎn),Breg是通過(guò)白細(xì)胞介素(IL)-10、IL-35,轉(zhuǎn)化生長(zhǎng)因子(TGF)-β產(chǎn)生免疫抑制作用的一類(lèi)細(xì)胞。Breg通過(guò)阻止致病性T細(xì)胞和其他促炎性淋巴細(xì)胞擴(kuò)增,從而發(fā)揮抑制免疫病理?yè)p傷作用。研究已證實(shí),Breg在炎癥、自身免疫性疾病以及癌癥進(jìn)展、轉(zhuǎn)歸和預(yù)后中發(fā)揮一定作用。本文就Breg與癌癥的關(guān)系及其研究進(jìn)展作一綜述。
癌癥;B細(xì)胞;調(diào)節(jié)性B細(xì)胞;腫瘤免疫
B細(xì)胞作為產(chǎn)生免疫球蛋白漿細(xì)胞的祖細(xì)胞,可以將抗原呈遞給T細(xì)胞、iNKT細(xì)胞,并且產(chǎn)生Th1和Th2細(xì)胞因子以促進(jìn)其他淋巴細(xì)胞的激活和分化。研究表明,在某些環(huán)境中,有一類(lèi)特殊的具有調(diào)節(jié)功能的B細(xì)胞亞群對(duì)控制炎癥進(jìn)展發(fā)揮一定作用,這一類(lèi)B細(xì)胞被稱作調(diào)節(jié)性B細(xì)胞(regulatory B cell,Breg)[1-2]。Breg可通過(guò)產(chǎn)生白細(xì)胞介素(IL)-10和(或)IL-35,轉(zhuǎn)化生長(zhǎng)因子(TGF)-β等細(xì)胞因子,進(jìn)而產(chǎn)生免疫抑制作用[3-4]。將產(chǎn)生IL-10的Breg稱為Br1細(xì)胞,產(chǎn)生TGF-1的Breg稱為Br3細(xì)胞[5-6]。
早在1970年Katz等[7]提出假說(shuō),認(rèn)為B細(xì)胞可以通過(guò)產(chǎn)生抗體來(lái)阻止超敏反應(yīng)發(fā)生。隨后在20世紀(jì)80年代中期,有研究報(bào)道B細(xì)胞與抗原特異性抑制性T細(xì)胞產(chǎn)生有關(guān)。1996年,Wolf等[8]在B細(xì)胞缺陷小鼠(μMT)和野生型小鼠(WT)中分別誘導(dǎo)實(shí)驗(yàn)性自身免疫性腦脊髓炎(experimental autoimmune encephalomyelitis,EAE)以建立其小鼠模型時(shí)發(fā)現(xiàn),前者會(huì)產(chǎn)生疾病進(jìn)展傾向,而后者有部分自愈傾向。這項(xiàng)研究表明小鼠體內(nèi)可能存在對(duì)炎癥具有抑制性作用的B細(xì)胞亞群[8]。1997年,M izoguchi等[9]在炎性腸?。╥nflammatory bowel disease,IBD)小鼠模型中證明Breg存在,并首次將這些具有免疫調(diào)節(jié)功能的B細(xì)胞定義為“調(diào)節(jié)性B細(xì)胞”。
這種具有免疫抑制或調(diào)節(jié)能力的B細(xì)胞已經(jīng)被證實(shí)多年,但近幾年Breg的概念才被明確定義為免疫調(diào)節(jié)網(wǎng)絡(luò)中的一個(gè)細(xì)胞系[10-11]。哺乳動(dòng)物B細(xì)胞分為兩個(gè)亞群,分別為B1和B2細(xì)胞亞群。B1細(xì)胞主要由胎兒前體細(xì)胞產(chǎn)生,可分為B1-a(CD11b+CD5+)細(xì)胞和B1-b(CD11b+CD5-)細(xì)胞,主要集中于胸膜、腹膜及腸黏膜組織;B2細(xì)胞主要由骨髓源性前體細(xì)胞產(chǎn)生,主要集中于次級(jí)淋巴器官。B2細(xì)胞分化為過(guò)渡1型(T1,CD24hiCD21-B220+)和過(guò)渡2型(T2,CD24hiCD21+B220+)B細(xì)胞,其中過(guò)渡2型B細(xì)胞又分化為存在于脾臟和淋巴結(jié)中的成熟濾泡B細(xì)胞(FOB,CD24hiCD21+B220+)或者僅存在于脾臟中的邊緣區(qū)B細(xì)胞(MZB,CD1dhiCD21hi),邊緣區(qū)B細(xì)胞前體為邊緣區(qū)前B細(xì)胞(T2-MZP,CD1dhiCD23+)[12]。B1-a、成熟濾泡B細(xì)胞、邊緣區(qū)B細(xì)胞和邊緣區(qū)前B細(xì)胞可產(chǎn)生IL-10,均具有潛在調(diào)節(jié)功能。Breg可分為由多克隆刺激誘導(dǎo)IL-10生成的“固有型”和抗原特異性IL-10生成的“獲得型”。其中,“固有型”Breg來(lái)自MZB細(xì)胞和B1-a細(xì)胞,“獲得型”Breg來(lái)自FOB細(xì)胞。MZB和B1-a細(xì)胞在脂多糖(LPS)和CpG等Toll樣受體(TLR)激動(dòng)劑作用下可分化為“固有型”Breg;FOB細(xì)胞BCR與自身抗原和CD40/CD40L相互作用分化為“獲得型”Breg。
目前研究證實(shí)已有多種具有相同表型與效應(yīng)功能的Breg亞群。但這些Breg亞群的區(qū)別在于以不同Breg細(xì)胞系存在還是對(duì)免疫環(huán)境的改變不同,目前對(duì)此仍無(wú)定論。
2.1小鼠Breg亞群
在小鼠中,已經(jīng)發(fā)現(xiàn)多種能產(chǎn)生IL-10的Breg,它們包括T2-MZP細(xì)胞、MZ細(xì)胞、B10細(xì)胞、漿細(xì)胞、Tim-1+B細(xì)胞。
在脾臟中發(fā)現(xiàn)的CD19+、CD21+、CD23+、CD24+、IgM+、IgD+B細(xì)胞被稱作T2-MZP細(xì)胞,在體外實(shí)驗(yàn)中被證實(shí)可抑制T細(xì)胞激活,并且在體內(nèi)可以通過(guò)過(guò)繼性轉(zhuǎn)移抑制關(guān)節(jié)炎、系統(tǒng)性紅斑狼瘡等疾病發(fā)生[2]。CD5+CD1dhiB細(xì)胞的過(guò)繼性轉(zhuǎn)移被稱為B10細(xì)胞,有研究表明B10細(xì)胞可以控制超敏反應(yīng)、腦脊髓炎(EAE)和系統(tǒng)性紅斑狼瘡等疾病發(fā)生[1]。T2-MZP細(xì)胞與B10細(xì)胞間存在重疊的表型:它們共同表達(dá)CD19、CD21、CD24和CD1d,并且都可以從小鼠脾臟B細(xì)胞中分離出來(lái)。
在其他自身免疫模型中也發(fā)現(xiàn)了部分Breg表型,經(jīng)結(jié)腸的TCRα-/-模型研究推測(cè)CD1d、IgM、CD21和CD23表達(dá)與Breg有關(guān),但根據(jù)這種表型提取的B細(xì)胞并未在抑制性功能分析中得到直接驗(yàn)證。在風(fēng)濕性關(guān)節(jié)炎、多發(fā)性硬化癥中,MZ細(xì)胞、漿細(xì)胞也被認(rèn)為有抑制性功能[13]。其中MZ細(xì)胞表型為CD19+CD21hiCD23-[14-16],漿細(xì)胞表型為CD138+MHC-11loB220+[17-18],它們均被發(fā)現(xiàn)于脾細(xì)胞中。
近期有關(guān)移植方面的研究提供了小鼠中另一種Breg表型[19]。對(duì)小鼠胰島移植接受者,通過(guò)T細(xì)胞免疫球蛋白及黏蛋白域蛋白1(Tim-1)相關(guān)抗體治療可導(dǎo)致Tim-1+B細(xì)胞擴(kuò)增,這些Tim-1+B細(xì)胞表型為T(mén)im-1+CD19+,發(fā)現(xiàn)于小鼠脾臟中[18-19]。
2.2人類(lèi)Breg亞群
目前,對(duì)人類(lèi)Breg亞群的研究尚處于初期階段。已被認(rèn)知的Breg亞群有CD19+CD24hiCD38hi細(xì)胞、CD19+CD24hiCD27+細(xì)胞、CD24hiCD27+細(xì)胞、CD19+CD25hiCD71hi細(xì)胞。
有報(bào)道證實(shí),從健康人體外周血提取的CD19+CD24hiCD38hi細(xì)胞可以在離體試驗(yàn)中抑制T細(xì)胞活化,這主要是由CD40驅(qū)動(dòng),IL-10調(diào)節(jié)的抑制作用所致。此外,CD19+CD24hiCD38hi細(xì)胞與從多發(fā)性硬化癥患者中分離的CD27-B細(xì)胞有共同表型的CD1d和IgD[20]。
人類(lèi)外周血中CD24hiCD27+細(xì)胞可隨LPS刺激產(chǎn)生高水平的IL-10,它與小鼠中B10細(xì)胞假設(shè)結(jié)果相似。此外該細(xì)胞可通過(guò)單核細(xì)胞抑制TNF-α產(chǎn)生發(fā)揮其抑制性作用[21-22]。
Breg主要通過(guò)產(chǎn)生IL-10、IL-35、轉(zhuǎn)化生長(zhǎng)因子TGF-β,抑制促炎性淋巴細(xì)胞分化,以發(fā)揮其抑制性作用。有研究發(fā)現(xiàn)[23-24],在缺乏B細(xì)胞的μMT小鼠中,Breg也相應(yīng)減少,Carter等[25-26]對(duì)此深入研究后分析原因?yàn)镮L-10大量缺乏。Breg還可通過(guò)抑制樹(shù)突細(xì)胞分泌促炎性因子來(lái)間接抑制Th1、Th17的分化[27-28]。Breg除產(chǎn)生IL-10外,還可產(chǎn)生TGF-β和IL-35,在TGF-β作用下,LPS活化的B細(xì)胞可引起CD4+效應(yīng)T細(xì)胞凋亡[29]以及CD8+效應(yīng)T細(xì)胞失能[30],有關(guān)研究分析其原因與Breg可產(chǎn)生IL-35密切相關(guān)。在沙門(mén)菌模型中,B細(xì)胞缺乏IL-35會(huì)導(dǎo)致Th1細(xì)胞反應(yīng)增強(qiáng)以及脾臟中巨噬細(xì)胞數(shù)量增多[18]。另一項(xiàng)實(shí)驗(yàn)表明,IL-35激活的B細(xì)胞可以產(chǎn)生IL-35,并且可以通過(guò)過(guò)繼轉(zhuǎn)移抑制實(shí)驗(yàn)性葡萄膜炎的發(fā)生[31]。Breg對(duì)維持人體內(nèi)iNKT細(xì)胞平衡亦發(fā)揮關(guān)鍵性作用[32]。
Breg作為B細(xì)胞的獨(dú)立亞群主要在自身免疫性和炎癥疾病中發(fā)揮作用[33]。鑒于B細(xì)胞的腫瘤促進(jìn)和Breg免疫調(diào)節(jié)作用,Breg在腫瘤中的作用為目前研究重點(diǎn)。對(duì)此前期研究闡述了T細(xì)胞的腫瘤抑制作用,這種作用由IL-10調(diào)控,提示Breg與腫瘤緊密相關(guān)[34]。
有研究發(fā)現(xiàn)IL-10可以抑制Th1和Th2表達(dá)[35]。另外相關(guān)研究發(fā)現(xiàn)Breg以被激活的漿細(xì)胞形式存在時(shí),仍可分泌抗體。免疫球蛋白也可以通過(guò)調(diào)節(jié)炎性反應(yīng)來(lái)促進(jìn)腫瘤發(fā)生[36-37]。
在小鼠乳腺癌4T1模型中,CD19+B220+CD25+B2淋巴細(xì)胞作為Breg亞群之一,對(duì)乳腺癌細(xì)胞肺部轉(zhuǎn)移發(fā)揮促進(jìn)作用[38]。由于CD25于所有激活的T細(xì)胞、B細(xì)胞中高表達(dá),尤其在調(diào)節(jié)性T細(xì)胞(Treg)中高表達(dá),因此將其定義為新型Breg亞群——tBreg。tBreg的比例在外周血和外周淋巴器官中表現(xiàn)增多。4T1乳腺癌細(xì)胞可以抑制未激活和預(yù)激活的T細(xì)胞增生。有研究證實(shí),tBreg在人體內(nèi)也有相似作用[39]。tBreg可高表達(dá)TGF-β、CD40、CD86、MHCⅠ、MHCⅡ分子促進(jìn)Foxp3+Treg產(chǎn)生,CD4+T細(xì)胞向Treg轉(zhuǎn)變依賴于T細(xì)胞、B細(xì)胞和TGF-β的分泌,在注射4T1細(xì)胞的BALBc小鼠腫瘤細(xì)胞肺轉(zhuǎn)移過(guò)程中,Treg可抑制NK細(xì)胞的抗腫瘤作用[40]。綜上所述,tBreg可通過(guò)分泌TGF-β促進(jìn)CD4+T細(xì)胞向Treg轉(zhuǎn)變,反之抑制T細(xì)胞增生將會(huì)增加腫瘤轉(zhuǎn)移率[39,41]。與此同時(shí),腫瘤細(xì)胞也會(huì)促進(jìn)B細(xì)胞轉(zhuǎn)化為Breg,因此當(dāng)腫瘤細(xì)胞持續(xù)存在時(shí),就會(huì)促進(jìn)tBreg產(chǎn)生,并抑制抗腫瘤反應(yīng)[42-43]。有研究發(fā)現(xiàn),腫瘤細(xì)胞可通過(guò)表達(dá)并且利用5-脂氧合酶代謝通路以促進(jìn)tBreg生成[44]。5-脂氧合酶激活蛋白抑制劑的存在將會(huì)減少tBreg相關(guān)表型表達(dá),如CD25、CD81、BAFFR和B7-H1以及STAT3磷酸化作用[44]。
用抗CD20去除B細(xì)胞可用來(lái)治療非霍奇金淋巴瘤和慢性淋巴細(xì)胞白血病,但一些患者對(duì)抗CD20治療抵抗并很快復(fù)發(fā)。近期研究顯示,Breg及其產(chǎn)物IL-10的存在可抑制其療效[45]。通過(guò)小鼠和人體實(shí)驗(yàn)發(fā)現(xiàn),tBreg低表達(dá)CD20,用抗CD20、去除B細(xì)胞后,tBreg所占細(xì)胞總數(shù)的比例亦相對(duì)增加[46]。在淋巴瘤的研究中,接受抗CD20治療并且隨后進(jìn)行Breg過(guò)繼轉(zhuǎn)移的小鼠,會(huì)導(dǎo)致腫瘤負(fù)荷增加[45,47]。
在7,12-二甲基苯蒽/對(duì)苯二酸誘導(dǎo)鱗狀上皮細(xì)胞癌的研究中發(fā)現(xiàn),于B細(xì)胞去除的小鼠中(Rag2-/-),腫瘤細(xì)胞增長(zhǎng)減緩[48],而予B細(xì)胞回輸后恢復(fù)。然而,在缺乏TNF-α的Rag2-/-小鼠中經(jīng)B細(xì)胞回輸后,腫瘤細(xì)胞增長(zhǎng)仍維持不變。上述結(jié)果表明,Breg可促進(jìn)腫瘤細(xì)胞數(shù)量增多且分泌的TNF-α可能會(huì)導(dǎo)致其在癌癥病灶中的產(chǎn)生和聚集。
Breg的發(fā)現(xiàn)為B細(xì)胞的認(rèn)知開(kāi)辟了新的道路,Breg在自身免疫性疾病、炎性反應(yīng)和腫瘤中均發(fā)揮免疫調(diào)節(jié)作用,且在腫瘤發(fā)生、發(fā)展、轉(zhuǎn)歸中亦具有加速腫瘤轉(zhuǎn)移的作用,然而其作用機(jī)制復(fù)雜,對(duì)此仍有待進(jìn)一步研究,以便對(duì)腫瘤的臨床治療提供新方法,為腫瘤的臨床預(yù)防和治療開(kāi)辟一個(gè)全新的領(lǐng)域。
[1]Dilillo DJ,Matsushita T,Tedder TF.B10 cells and regulatory B cells balance immune responses during in flammation,autoimmunity,and cancer[J].Ann N Y Acad Sci,2010,1183:38-57.
[2]MauriC,BosmaA.Immune regulatory function of B cells[J]. Annu Rev Immunol,2012,30:221-241.
[3]Lee KM,Stott RT,Zhao G,et al.TGF-β-producing regulatory B cells induce regulatory T cells and promote transplantation tolerance[J].Eur J Immunol,2014,44(6):1728-1736.
[4]Manjarrez-Ordu?o N1,Quách TD,Sanz I.B cells and immunological tolerance[J].J Invest Dermatol,2009,129(2): 278-288.
[5]Yanaba K,Bouaziz JD,Matsushita T,et al.The development and function of regulatory B cells expressing IL-10(B10 cells)requires antigen receptor diversity and TLR signals[J]. JImmunol,2009,182(12):7459-7472.
[6]Lee JH,Noh J,Noh G,et al.A llergen-specific transform ing grow th factor-β-producing CD19 CD5 regulatory B-cell(Br3)response in human late eczematous allergic reactions to cow'sm ilk[J].InterferonCytokineRes,2011,31(5):441-449.
[7]Katz SI,Parker D,Turk JL.B-cell suppression of delayed hypersensitivity reactions[J].Nature,1974,251(5475):550-551.
[8]Wolf SD,Dittel BN,Hardardottir F,et al.Experimental autoimmune encephalomyelitis induction in genetically B celldeficient m ice[J].J Exp Med,1996,184(6):2271-2278.
[9]M izoguchi A,M izoguchi E,Sm ith RN,et al.Suppressive role of B cells in chronic colitis of T cell receptor alpha mutant m ice[J].J Exp Med,1997,186(10):1749-1756.
[10]Mauri C,Ehrenstein MR.The‘short'history of regulatory B cells[J].Trends Immunol,2008,29(1):34-40.
[11]Sattler S,Lepm VDV,Hussaarts L,et al.Regulatory B-cell induction by helm inths:implications forallergic disease[J]. J Allergy Clin Immunol,2011,128(4):733-739.
[12]Lund FE.Cytokine-producing B lymphocytes-key regulators of immunity[J].Curr Opin Immunol,2008,20(3):332-338.
[13]M izoguchi A,Bhan AK.A case for regulatory B cells[J].J Immunol,2006,176(2):705-710.
[14]Gray M,M iles K,Salter D,et al.Apoptotic cells protect mice from autoimmune in flammation by the induction of regulatory B cells[J].Proc Natl Acad Sci USA,2007,104(35):14080-14085.
[15]Bankoti R,Gupta K,Levchenko A,et al.Marginal zone B cells regulate antigen-specific T cell responses during infection[J].J Immunol,2012,188(8):3961-3971.
[16]M iles K,Heaney J,Sibinska Z,et al.A tolerogenic role for Toll-like receptor 9 is revealed by B-cell interaction w ith DNA complexes expressed on apoptotic cells[J].Proc Natl Acad Sci USA,2012,109(3):887-892.
[17]Neves P,Lampropoulou V,Calderon-Gomez E,et al.Signaling via the MyD88 adaptor protein in B cells suppresses protective immunity during Salmonella typhimurium infection[J].Immunity,2010,33(5):777-790.
[18]Shen P,Roch T,Lampropoulou V,et al.IL-35-producing B cells are critical regulators of immunity during autoimmune and infectious diseases[J].Nature,2014,507(7492): 366-370.
[19]Ding Q,Yeung M,Cam irand G,et al.Regulatory B cells are identified by expression of TIM-1 and can be induced through TIM-1 ligation to promote tolerance in m ice[J].J Clin Invest,2011,121(9):3645-3656.
[20]Blair PA,Norena LY,F(xiàn)lores-Borja F,et al.CD19(+)CD24(hi)CD38(hi)B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic lupus erythematosus patients[J].Immunity,2010,32(1):129-140.
[21]Horikawa M,Weimer ET,DiLillo DJ,et al.Regulatory B cell(B10 Cell)expansion during Listeria infection governs innate and cellular immune responses in mice[J].J Immunol,2013,190(3):1158-1168.
[22]Iwata Y,Matsushita T,Horikawa M,et al.Characterization ofa rare IL-10-competentB-cellsubsetinhumansthatparallelsmouseregulatory B10cells[J].Blood,2011,117(2):530-541.
[23]Sun JB,F(xiàn)lach CF,Czerkinsky C,et al.B lymphocytes promote expansion of regulatory T cells in oral tolerance: powerful induction by antigen coupled to cholera toxin B subunit[J].J Immunol,2008,181(12):8278-8287.
[24]Tadmor T,Zhang Y,Cho HM,et al.The absence of B lymphocytes reduces the number and function of T-regulatory cells and enhances the anti-tumor response in a murine tumor model[J].Cancer Immunol Immunother,2011,60(5): 609-619.
[25]Carter NA,Vasconcellos R,Rosser EC,et al.M ice lacking endogenous IL-10-producing regulatory B cellsdevelop exacerbated disease and present w ith an increased frequency of Th1/Th17 but a decrease in regulatory T cells[J].J Immunol,2011,186(10):5569-5579.
[26]CarterNA,RosserEC,MauriC.Interleukin-10produced by B cellsiscrucial for thesuppression of Th17/Th1 responses,induction of T regulatory type 1 cells and reduction of collagen-inducedarthritis[J].ArthritisResTher,2012,14(1):32.
[27]Matsumoto M,Baba A,Yokota T,et al.Interleukin-10-producing plasmablasts exert regulatory function in autoimmune inflammation[J].Immunity,2014,41(6):1040-1051.
[28]Sun CM,Deriaud E,Leclerc C,et al.Upon TLR9 signaling,CD5+B cells control the IL-12-dependent Th1-prim ing ca-pacity ofneonatalDCs[J].Immunity,2005,22(4):467-477.
[29]Tian J,Zekzer D,Hanssen L,et al.Lipopolysaccharide-activated B cells down-regulate Th1 immunity and prevent autoimmune diabetes in nonobese diabetic m ice[J].Immunol,2001,167(2):1081-1089.
[30]Parekh VV,Prasad DV,Banerjee PP,et al.B cells activated by lipopolysaccharide,butnotbyanti-Igandanti-CD40antibody,induceanergy in CD8+T cells:roleof TGF-beta1[J]. JImmunol,2003,170(12):5897-5911.
[31]Wang RX,Yu CR,Dambuza IM,etal.Interleukin-35 induces regulatory B cells that suppress autoimmune disease[J]. Nat Med,2014,20(6):633-641.
[32]Bosma A,Abdel-GadirA,Isenberg DA,etal.Lipid-antigen presentation by CD1d(+)B cells is essential for the maintenance of invariant natural killer T cells[J].Immunity,2012,36(3):477-490.
[33]Berthelot JM,Jam in C,Am rouche K,et al.Regulatory B cells play a key role in immune system balance[J].Joint Bone Spine,2013,80(1):18-22.
[34]Inoue S,Leitner WW,Golding B,et al.Inhibitory effects of B cells on antitumor immunity[J].Cancer Res,2006,66(15):7741-7747.
[35]Zhang Y,Eliav Y,Shin SU,et al.B lymphocyte inhibition of anti-tumor response depends on expansion of Treg but is independent of B-cell IL-10 secretion[J].Cancer Immunology Immunotherapy,2013,62(1):87-99.
[36]de Visser KE,Korets LV,Coussens LM.Denovo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent[J].Cancer Cell,2005,7(5):411-423.
[37]Townsend MJ,Monroe JG,Chan AC.B-cell targeted therapies in human autoimmune diseases:an updated perspective[J].Immunol Rev,2010,237(1):264-283.
[38]Olkhanud PB,Damdinsuren B,Bodogai M,et al.Tumorevoked regulatory B cells promote breast cancer metastasis by converting resting CD4+T cells to T-regulatory cells[J].Cancer Res,2011,71(10):3505-3515.
[39]Olkhanud PB,Rochman Y,Bodogai M,et al.Thymic stromal lymphopoietin is a key mediator of breast cancer progression[J].J Immunol,2011,186(10):5656-5662.
[40]Lelekakis M,Moseley JM,Martin TJ,et al.A novel orthotopic model of breast cancer metastasis to bone[J].Clin Exp Metastasis,1999,17(2):163-170.
[41]Olkhanud PB,Damdinsuren B,Bodogai M,et al.Tumorevoked regulatory B cells promote breast cancer metastasis by converting resting CD4+T cells to T-regulatory cells[J]. Cancer Res,2011,71(10):3505-3515.
[42]Olkhanud PB,Baatar D,Bodogai M,et al.Breast cancer lung metastasis requires expression of chemokine receptor CCR4 and regulatory T cells[J].Cancer Res,2009,69(14): 5996-6004.
[43]Song GZ,Wang J,Wang P,et al.Horw itz.IL-2 is essential forTGF-βto convertnaiveCD4+CD25-cellsto CD25+Foxp3+regulatory T cells and for expansion of these cells[J].J Immunol,2007,178(4):2018-2027.
[44]Wejksza K,Lee-Chang C,Bodogai M,et al.Cancer-produced metabolites of 5-lipoxygenase induce tumor-evoked regulatory B cells via peroxisome proliferator-activated receptor α[J].J Immunol,2013,190(6):2575-2584.
[45]Horikawa M,M inard-Colin V,Matsushita T,et al.Regulatory B cell production of IL-10 inhibits lymphoma depletion during CD20 immunotherapy in m ice[J].J Clin Invest,2011,121(11):4268-4280.
[46]Bodogai M,Lee-Chang C,Wejksza K,et al.Anti-CD20 antibody promotes cancer escape via enrichment of tumorevoked regulatory B cells expressing low levels of CD20 and CD137L[J].Cancer Res,2013,73(7):2127-2138.
[47]M inard-Colin V,Xiu Y,Poe JC,et al.Lymphoma depletion during CD20 immunotherapy inm ice ismediated bymacrophage FcgammaRI,F(xiàn)cgammaRIII and FcgammaRIV[J]. Blood,2008,112(4):1205-1213.
[48]Schioppa T,Moore R,Thompson RG,et al.B regulatory cellsand the tumor-promotingactionsof TNF-αduringsquamous carcinogenesis[J].Proc Natl Acad Sci U S A,2011,108(26):10662-10667.
R730.3
A
10.11877/j.issn.1672-1535.2016.14.04.02
2015-08-08)
北京市科技計(jì)劃“首都臨床特色應(yīng)用研究”課題(Z111107058811008)
(corresponding author),郵箱:duguosheng@medmail.com.cn