• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Controllable Formation of the α and γ Crystalline Phases of Nylon-6

    2016-03-17 01:03:25
    關(guān)鍵詞:晶型

    ?

    Controllable Formation of theαandγCrystalline Phases of Nylon-6

    HUANGYing-shan1a,2,JIANGFeng2,LIJie2,PENGShu-min1a,RENXi1a,LUOYu-hang1a,2,YIChun-wang1a,b*

    (1a. Key Laboratory of Sustainable Resources Processing and Advanced Materials of Hunan Province, b. National and Local Joint Engineering Lab. for New Petro-Chemical Materials and Fine Utilization of Resources, Hunan Normal University, Changsha 410081, China;2. State Key Laboratory of Biobased Fiber Manufacturing Technology, China Textile Academy, Beijing 100025, China)

    AbstractIn this paper, controllable formation and characterization ofαandγcrystalline phases of nylon-6 are reported. Differential scanning calorimetry results illustrate that theγ-phase shows a sharp melting peak at about 210 ℃(tm1), with a small shoulder melting peak appearing at about 219 ℃(tm2). Theα-phase is formed above 70 ℃ after 8 h, which appears to be more stable with double melting peaks. FT-IR results further confirm that the obtained sample is indeedγ-phase,α-phase andα&γ-phase structures. From scanning electron microscopy images, we can see that theγ-phase is composed of many holes with different diameters and these holes are stack assembly with very smooth surface, whereas for theα-phase structure we observed irregular lamellae structures with the stack assembly.

    Key wordsnylon-6;α-phase;γ-phase; controllable formation

    Poly(e-caprolactam)s, known as polyamide-6 (PA6) or nylon 6, is a kind of typical polycrystalline or semicrystalline polymers with the main chain containing amide groups[1-2]. There are strong hydrogen bonds among adjacent polymer chains in both crystalline and amorphous regions, which is the determining factor that nylon-6 have good chemical stability and mechanical properties. Because of this, the structure and morphology of nylon-6 have been of widespread study and use in plastics and synthetic fiber industry[3-8]. Currently,α-phase andγ-phase structures are widely recognized as major crystalline nylon-6[9-12]. Theα-phase, which was first characterized by Holmes[13], has a monoclinic structure, with hydrogen bonds formed between molecular chains in parallel arrangement[9,14]. It is generally believed that theα-phase structure is thermodynamically more stable and can be observed by solution crystallization, annealing, crystallization at high temperatures, or slow cooling of nylon-6 melt. In addition, theγ-phase structure is most commonly observed by melt rapid cooling, high speed spinning, phosphoric acid-ammonia solution steam precipitation method and treating in aqueous potassium iodide-iodine solution[15-21]. Theγ-phase also has monoclinic structure that arranges in parallel between the molecular chains in the (200) plane to form hydrogen bonds and twists at an angle between the amide group and carbonitride molecular chain backbone methylene[22-24]. Changes of conditions such as heat, pressure, or solvent can transform theγ-phase into theα-phase. Based on the understanding from the current literature[25-30], there are many ways to prepare a single crystal form, but these methods can only be suitable for the preparation of theα-phase or only for forming theγ-phase. For example, nylon-6 powders precipitated from a formic acid solution trend to form a highly crystallineα-phase, without the trait of theγ-phase. Henceforth, a highly efficient and controllable method for the preparation of bothαandγphases of nylon-6 is desirable.

    In this paper, by using the phosphoric acid-ammonia solution method, we preparedα-phase andγ-phase structures through adjusting the preparation temperature and duration time, and then the crystalline structures and melting behavior of nylon-6 are studied carefully by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). Our results showed that this method is not only highly efficient, facile and greatly reducing the reaction time, but also suitable for the controllable formation of single crystal phases.

    1Experimental Section

    1.1Materials

    Nylon 6 pellets with a relative viscosity of 2.50 were obtained from Guangdong Xinhui Meida Nylon Co.,Ltd (Guangdong, China); Phosphate acid(A.R.) were purchased from Beijing Yili Fine Chemicals Co.,Ltd (Beijing, China); Ammonia solution(A.R.) were purchased from Sinopharm Chemical Reagent Co.,Ltd. All other agents used in this study are commercially available.

    1.2Preparation of theαandγphases of nylon-6

    Firstly, a solution of phosphate acid was added to nylon-6 pellets to form the concentration of 6% clear solution, which was placed in a digital electric heated water bath maintained at 80 ℃ for 2 days. Then 15 g Nylon-6/phosphate acid solution was shifted in a 50 mL beaker with a sufficient amount of ammonia solution added into a 100 mL beaker. The two beakers were put in a sealed container. Finally the sealed container was placed in a water bath, where the vapor of the ammonia solution diffuses into the nylon-6/phosphate acid solution and induces the expected crystallization of nylon-6 through controlling the water temperature and diffusing time. The precipitate was filtered, washed with ammonia solution and distilled by water three times. Then the product was oven-dried in vacuo at 50 ℃ for 24 h.

    1.3Characterization of theαandγphases of nylon-6

    XRD experiments were carried out on a PANalytical X’Pert Pro MPD X-ray diffraction with nickel-filtered Cu-Kαradiation (λ=1.54 ?) at 45 kV and 40 mA. X-ray scanning was collected in the range 5°<2θ<50° with a scan rate at 2° (2θ)/min. DSC measurements of theαandγphases of nylon-6 samples were performed on a DSC 8000 Instrument. The samples were heated from room temperature to 240 ℃ at a constant heating rate of 20 ℃/min under a nitrogen atmosphere. FT-IR analysis was conducted on a Nicolet Magna IS10 spectrometer at a resolution of 4 cm-1and 32 cm-1scans. The surface morphology was examined by a scanning electron microscopy (JSM 6306).

    2Results and Discussion

    2.1Crystal structures of the samples

    For theαphase structure, its characteristic peaks appear at about 20° and 24°, corresponding to (200) and (002)/(202) reflections. The characteristic peaks of theγphase are assigned at about 10° and 21.5° and is attributed to (001) reflections[30].

    Figures 1~6 display the XRD patterns of the preparedαandγphases of nylon-6 samples. As are shown in Figs. 1 and 2, it is clear that the crystal form is mainlyγ-phase crystals of nylon-6, with two diffraction peaks at about 10.9° and 21.6°, which can be assigned to the (001) reflections ofγ-phase[30]. We do not see any notable diffraction peaks at 20.0° and 23.6°, which are allocated to the (200) and (002)/(202) reflections of theα-phase. The XRD patterns at 60 ℃ shown in Fig.3 indicate that there are two distinctive peaks at 20.0° and 23.6°, with a diffraction peak at 21.6° with a shoulder at 10.9°, implying that there is the co-existence of bothα-phase andγ-phase structures at 60 ℃. With an increasing preparation time, the intensity ofα-phase diffraction characteristic peaks gradually increases, while the diffraction peaks characteristic ofγ-phase the gradually decreases. The longer the preparation time was, the more the content ofα-phase formed. As shown in Fig.4, the peaks ofα-phase diffraction peaks become smaller than those ofγ-phase diffraction at 70 ℃ for 6 h. At 70 ℃ and longer than 8 h,γ-phase trends to be transformed toα-phase, and, as a result, the diffraction peaks ofγ-phase are disappeared. From Fig.5, the intensity ofα-phase diffraction peaks are stronger than that ofγ-phase with 80 ℃ and 6h. It can be seen that there was onlyα-phase at 80 ℃ above 8h.The XRD patterns from 90 ℃ at different reaction times are shown in Fig.6. From the Figure, we can see thatγ-phase is almost all transformed intoα-phase at 90 ℃.

    Fig.1 XRD patterns of 40 ℃ at different times          Fig.2 XRD patterns of 50 ℃ at different times

    Fig.3 XRD patterns of 60 ℃ at different times          Fig.4 XRD patterns of 70 ℃ at different times

    Fig.5 XRD patterns of 80 ℃ at different times          Fig.6 XRD patterns of 90 ℃ at different times

    Temperature/℃time/h6810121440γγγγγ50γγγγγ60γ αγ αγ αγ αγ α70γ ααααα80γ ααααα90ααααα

    The presence of crystals form as a function of the preparation temperature and reaction duration time is summarized in Tab.1. It has been well known that, in general, temperature is one of the most important factors affecting the crystal formation of nylon 6. Theγ-phase structure could be obtained when the temperature is below 60 ℃ andα-phase is formed when temperature is over 70 ℃. Under the same reaction time,γ-phase is more likely to be transformed intoα-phase as temperature increases, suggesting thatα-phase is thermodynamically more stable. Tab.1 also reveals that the reaction time plays a vastly important role during the course of crystal formation. For example, bothαandγ-phases are formed in 6h at temperatures of 70 ℃ and 80 ℃. However, by elongating the preparation time to 8 h, onlyα-phase is left over.

    FT-IR spectra can be used to distinguish betweenγandαphase. Further study using FT-IR was conducted forγ-phase (50 ℃,8 h),α&γ-phase (60 ℃,10 h) andα-phase (80 ℃,12 h).

    As are apparent in the FTIR spectra presented in Figs.(7~9), it can be clearly seen that there exist significant differences of characteristic absorption peaks for each crystalline phase of nylon-6 between 900 and 1 050 cm-1, which is the most important range for the popular marker bands ofαandγ-phases. The spectra for the single crystalline phase prepared at different conditions are significantly similar, so only one of them was selected to show in above Figures. The corresponding areas where characteristic peaks are located are marked by a red circle and magnified in the lower right corner of the Figure. Taking Fig.7 as an example, we find one forced marker band at 973 cm-1that belongs to theγ-phase. Nevertheless, three strong marker bands at 929, 952 and 960 cm-1are attributed toα-phase (see also Fig.9). Some similar marker bands were found as the evidence of the co-existence of bothα&γphases shown in Fig.8, where the bands were found at 929, 952, 960 cm-1and 973 cm-1for theα-phase andγ-phase, respectively[19,31]. These FTIR results confirm that the formation of singleαandγ-phases could be controlled by adjusting preparation temperature and time.

    Fig.7 FTIR spectra of γ-phase (50 ℃,8 h)          Fig.8 FTIR spectra of α&γ-phase (60 ℃,10 h)

    Fig.9 FTIR spectra of α-phase (80 ℃,12 h)         Fig.10 DSC melting traces of γ-phase (50 ℃,8 h)

    2.2Melting behavior of samples

    The thermal behavior ofγ-phase (50 ℃,8 h)、α&γ-phase (60 ℃,10 h) andα-phase (80 ℃,12 h) were further investigated using DSC. This is an clear-cut to distinguish betweenγandαphase structures.

    The DSC analysis was treated like FTIR with only one representative curve for each type of crystalline phase shown in the Figures. The DSC heating curve ofγ-phase (50 ℃,8 h) in Fig.10 shows that there is only one main melting peak at about 210 ℃ (tm1), with one shoulder melting peak at about 219 ℃ (tm2). According to the literature[30,32-35], the reason for these two melting peaks ofγ-phase can be interpreted as (1) the co-existence of theα-phase andγ-phase and (2) a crystal with different degrees of perfection. However, as can be seen from the results of XRD and FT-IR, the sample of nylon-6 prepared at 50 ℃ for 8 h only exhibits characteristic diffraction peaks ofγ-phase in Figs.2 and 7. Figures 1~6 and Tab.1 clearly demonstrate the impact of temperature on the transformation of nylon-6 crystal phases and a good agreement has been obtained with the experimental findings. That is, part of theγ-phase was irreversibly converted to theα-phase at 60 ℃ for 6 h. In addition, according to the literature report, the transformation fromγ-phase toα-phase should be below the melting temperature[28,38]. Therefore, at a scan rate of 20 ℃/min, the instability ofγ-phase might lead to a partial irreversible conversion ofγ-phase intoα-phase as temperature increases. Based on this analysis, we suggest thattm1(210.8 ℃) can be attributed to the melting point ofγ-phase(50 ℃,8 h) andtm2(219 ℃) is the melting peak ofα-phase. Furthermore, the DSC heating curve ofα&γ-phase (60 ℃,10 h) in Fig.11 manifested the existence of double melting peaks at 209 ℃(tm1)and 216 ℃(tm2). The difference between the two melting peaks was only 10 ℃ so the two melting peaks overlap with each other. As shown by the XRD pattern of this sample obtained at 60 ℃,10 h in Fig.4, it has been known that there are two distinctive peaks at 20.0° and 23.6°, and a diffraction peak at 21.6° with a shoulder at 10.9°, indicating thatα-phase andγ-phase were co-existed at 70 ℃ for 6 h. The DSC heating cure ofα-phase (80 ℃,12 h) is shown in Fig.12, with the main melting peak at 217.5 ℃(tm1)coming fromα-phase, which is consistent with the literature report[29-30]. Because no obviousγ-phase characteristic diffraction peaks at about 10.9° and 21.6° were observed in Fig.5, the shoulder melting peak at 202.2 ℃ (tm2) might be contributed toα-phase with different thickness of the crystalline. These results further confirm that the obtainedα-phase is thermodynamically more stable and the transformation fromγtoαoccurs below the melting point.

    Fig.11 DSC melting traces of α&γ-phase (60 ℃,10 h)       Fig.12 DSC melting traces of α-phase (80 ℃,12 h)

    2.3Morphological Characterization

    SEM experiments was also carried out for the same samples,γ-phase (50 ℃,8 h),α&γ-phase (60 ℃,10 h) andα-phase (80 ℃,12 h).

    Fig.13 SEM images of γ-phase(a and b), α&γ-phase(c and d) and α-phase(e and f) with various morphologies

    The morphology ofαandγphases of nylon 6 samples are examined by SEM, whose images are shown in Fig.13. From these SEM images, it is clear thatγ-phase is composed of many holes with different diameters. These holes are stacked assembly with very smooth surface (shown in Fig.13 (a and b)). Fig.13 (c and d) present the co-existence morphology ofα&γ-phase. It is interesting that not all holes with different diameters can clearly be seen in those images and a portion of the irregular lamellae with stack assembly also can be observed in them. Fig.13(e and f) are SEM images ofα-phase, which are irregular lamellae with stack assemble. These results suggest that the morphology ofα-phase andγ-phase are markedly different, with the appearance ofγ-phase vesicular andα-phase as the accumulation of irregular lamellae.

    3Conclusions

    Based on the results obtained from this work, we presented a highly efficient and facile method for the preparation ofαandγphases of nylon-6. By using this controllable formation, singleαandγphases of nylon-6 could be prepared. Based on the information from XRD, FT-IR and DSC analysis, the temperature is one of the most important factors affecting the crystal formation of nylon 6. Theγ-phase was obtained below 60 ℃ by the vapor of the ammonia solution diffuses into nylon-6/phosphate acid solution, which can be transformed toα-phase above 60 ℃. The co-existence of theα-phase andγ-phase was found at 60 ℃ and 70 ℃ by extending the preparation duration time. With the time increased, the content of theα-phase gradually increased, while the content of theγ-phase gradually reduced. Finally, allγ-phase could be transformed intoα-phase as long as the preparation time is long enough. Besides, at a certain temperature, the higher the preparation temperature, the shorter the transition time. As forα-phase, it is more thermal-stable and could be formed above 70 ℃ for 8 h. From the images of SEM, theγ-phase is composed of holes with many different sizes, but theα-phase is the accumulation of irregular lamellae. These morphology features are important in the sense that the pore structure ofγ-phase could facilitate the penetration of colorings in nylon-6 and improve dying properties. In the study ensued, we will focus on the impact ofα-andγ-phase structures on the dying.

    References:

    [1]LI Y, GODDARD W A. Nylon 6 crystal structures, folds, and lamellae from theory[J]. Macromolecules, 2002,35(22):8440-8455.

    [2]PENEL-PIERRON L, DEPECKER C, SEGUELA R,etal. Structural and mechanical behavior of nylon 6 films part I. Identification and stability of the crystalline phases[J]. J Polym Sci Part B: Polym Phys, 2001,39(5):484-495.

    [3]LIU T X, LIU Z H, MA K X,etal. Morphology, thermal and mechanical behavior of polyamide 6/layered-silicate nanocomposites[J]. Compos Sci Technol, 2003,63(3):331-337.

    [4]DASGUPTA S, HAMMOND W B, GODDARD W A. Crystal structures and properties of nylon polymers from theory[J]. J Am Chem Soc, 1996,118(49):12291-12301.

    [5]ABU-ISA I.α-γtransition in nylon 6[J]. J Polym Sci Part A: Polym Chem, 1971,9(1):199-216.

    [6]HATFIELD G R, GLANS J H, HAMMOND W B. Characterization of structure and morphology in nylon 6 by solid-state carbon-13 and nitrogen-15 NMR[J]. Macromolecules, 1990,23(6):1654-1658.

    [7]WEI M, DAVIS W, URBAN B,etal. Manipulation of Nylon-6 crystal structures with itsαCyclodextrin inclusion complex[J]. Macromolecules, 2002,35(21): 8039-8044.

    [8]MURTHY N S. Hydrogen bonding, mobility, and structural transitions in aliphatic polyamides[J]. J Polym Sci Part B: Polym Phys, 2006,44(13):1763-1782.

    [9]HOLMES D R, BUNN C W, SMITH D J. The crystal structure of polycaproamide: Nylon 6[J]. J Polym Sci, 1955,17(84):159-177.

    [10]ARIMOTO H.α-γTransition of nylon 6[J]. J Polym Sci Part A: Polym Chem, 1964,2(5):2283-2295.

    [11]ARIMOTO H, ISHIBASHI M, HIRAI M,etal. Crystal structure of theγ-form of nylon 6[J]. J Polym Sci Part A: Polym Chem, 1965,3(1):317-326.

    [12]MURTHY N S, BRAY R G, CORREALE S T,etal. Drawing and annealing of nylon-6 fibres: studies of crystal growth, orientation of amorphous and crystalline domains and their influence on properties[J]. Polymer, 1995,36(20):3863-3873.

    [13]BRILL R. On relations between the structure of polyamids and of silk fibroin[J]. Phys Chem B, 1943,53(2):61-74.

    [14]WALLNER L G. Uber den einfluss der kristallitlange auf die rontgeninterferenzen der polyamide[J]. Monatsh Chem, 1948,79(3-4):279-295.

    [15]MURTHY N S, AHARONI S M, SZOLLOSI A B. Stability of theγform and the development of theαform in nylon 6[J]. J Polym Sci Part B: Polym Phys, 1985,23(12):2549-2565.

    [16]WANG X, HOU W, ZHOU J,etal. Melting behavior of lamellae of isotactic polypropylene studied using hot-stage atomic force microscopy[J]. Colloid Polym Sci, 2007,285(4):449-455.

    [17]MIYASAKA K,etal. Effects of temperature and water on theγ→αcrystalline transition of nylon 6 caused by stretching in the chain direction[J]. J Polym Sci Part A-2: Polym Phys, 1968,6(7):1317-1329.

    [18]MURTHY N S, WANG Z G, HISAO B S. Interactions between crystalline and amorphous domains in semicrystalline polymers: small-angle X-ray scattering studies of the Brill transition in nylon 6, 6[J]. Macromolecules, 1999,32(17):5594-5599.

    [19]QUARTI C, MILANI A, CIVALLERI B,etal. Ab initio calculation of the crystalline structure and IR spectrum of polymers: nylon 6 polymorphs[J]. J Phys Chem B, 2012,116(28):8299-8311.

    [20]HABERKORN H, HAHN K, BREUER H,etal. On the neck‐like deformation in high‐speed spun polyamides[J]. J Appl Polym Sci, 1993,47(9):1551-1579.

    [21]RAMESH C, GOWD E B. High-temperature X-ray diffraction studies on the crystalline transitions in theαandγforms of nylon-6[J]. Macromolecules, 2001,34(10):3308-3313.

    [22]TSURUTA M, ARIMOTO H, ISHIBASHI M. The appearance of the new crystal structures in nylon 6[J]. Kobunshi Kagaku, 1958,15(162):619-627.

    [23]BALDRIAN J. Structural changes inα→γphase transformations of polycaprolactam[J]. Cechoslovackij Fiziceskij Zurnal B, 1965,15(11):838-847.

    [24]KINOSHITA Y. An investigation of the structures of polyamide series[J]. Makromolekulare Chemie, 1959,33(1):1-20.

    [25]MURTHY N S, CURRAN S A, AHARONI S M,etal. Premelting crystalline relaxations and phase transitions in nylon 6 and 6, 6[J]. Macromolecules, 1991,24(11):3215-3220.

    [26]MURTHY N S. Structure of iodide ions in iodinated nylon 6 and the evolution of hydrogen bonds between parallel chains in nylon 6[J]. Macromolecules, 1987,20(2):309-316.

    [27]MATHIAS L J, DAVIS R D,etal. Observation ofαandγcrystal forms and amorphous regions of nylon 6-clay nanocomposites using solid-state 15N nuclear magnetic resonance[J]. Macromolecules, 1999,32(23):7958-7960.

    [28]MEDELLIN-RODRIGUEZ F J, LARIOS-LOPEZ L,etal. Melting behavior of polymorphics: molecular weight dependence and steplike mechanisms in nylon-6[J]. Macromolecules, 2004,37(5):1799-1809.

    [29]LI H, WU Y, SATO H,etal. A new facile method for preparation of Nylon-6 with high crystallinity and special morphology[J]. Macromolecules, 2009,42(4):1175-1179.

    [30]ZHANG Y, ZHANG Y, LIU S,etal. Phase stability and melting behavior of theαandγphases of nylon 6[J]. J Appl Polym Sci, 2011,120(4):1885-1891.

    [31]VASANTHAN N, SALEM D R. FTIR spectroscopic characterization of structural changes in polyamide‐6 fibers during annealing and drawing[J]. J Polym Sci Part B: Polym Phys, 2001,39(5):536-547.

    [32]ZHAO X. Thermal history dependence of polymorphic transformation of polyamide 6/silicate nanocomposites[J]. Polym Int, 2009,58(5):469-474.

    [33]MIRI V, ELKOUN S, PEURTON F,etal. Crystallization kinetics and crystal structure of nylon6-clay nanocomposites: combined effects of thermomechanical history, clay content, and cooling conditions[J]. Macromolecules, 2008,41(23):9234-9244.

    [34]CHENG L P, LIN D J, YANG K C. Formation of mica-intercalated-Nylon 6 nanocomposite membranes by phase inversion method[J]. J Membr Sci, 2000,172(1):157-166.

    [35]YEBRA-RODRIGUEZ A, ALVAREZ-LLORET P, RODRIGUEZ-NAVARRO A B,etal. Thermo-XRD and differential scanning calorimetry to trace epitaxial crystallization in PA6/montmorillonite nanocomposites[J]. Mater Let, 2009,63(13):1159-1161.

    (編輯WJ)

    α和γ晶型尼龍6的可控合成

    黃映珊1a,2,姜鋒2,李杰2,彭舒敏1a,任茜1a,羅玉航1a,2,易春旺1a,b*

    (1.湖南師范大學(xué) a.資源精細(xì)化與先進(jìn)材料湖南省高校重點(diǎn)實(shí)驗(yàn)室,

    b.石化新材料與資源精細(xì)利用國家地方聯(lián)合工程實(shí)驗(yàn)室,中國 長沙410081;

    2.中國紡織科學(xué)研究院生物源纖維制造技術(shù)國家重點(diǎn)實(shí)驗(yàn)室,中國 北京100025)

    摘要報導(dǎo)了可控晶型尼龍6的制備與表征.DSC結(jié)果顯示γ晶型在Tspan為210 ℃左右出現(xiàn)一個尖銳的熔融峰,同時在Tspan為219 ℃左右出現(xiàn)一個小肩峰.當(dāng)溫度高于70 ℃,反應(yīng)時間大于8 h時可以制備穩(wěn)定的α晶型,α晶型顯示雙熔融峰.FT-IR結(jié)果進(jìn)一步表明所獲得的樣品為γ晶型、α晶型和混晶.SEM結(jié)果顯示γ晶型表面是由孔徑大小不一樣的小孔組成,α晶型表面是由不同厚度的片晶堆積而成.

    關(guān)鍵詞PA6;α晶型;γ晶型;可控晶型

    中圖分類號TQ342+.11

    文獻(xiàn)標(biāo)識碼A

    文章編號1000-2537(2016)01-0035-08

    *通訊作者,E-mail:cwyi@hunnu.edu.cn

    基金項(xiàng)目:國家支撐計劃項(xiàng)目(2013BAE01B03);湖南省教育廳科研基金項(xiàng)目(12K031)

    收稿日期:2015-08-13

    DOI:10.7612/j.issn.1000-2537.2016.01.007

    猜你喜歡
    晶型
    拉伸過程中溫度和預(yù)成核對聚丁烯-1晶型轉(zhuǎn)變的影響
    聚偏二氟乙烯分子晶型結(jié)構(gòu)及熱變性研究
    聚偏二氟乙烯 β 晶型結(jié)構(gòu)三級中紅外光譜研究
    溫度對聚偏二氟乙烯α晶型、β晶型及γ晶型結(jié)構(gòu)的影響*
    彈性體(2021年6期)2021-02-12 09:04:58
    鈦酸鉍微米球的合成、晶型調(diào)控及光催化性能表征
    卡馬西平結(jié)晶工藝研究
    固體化學(xué)藥物的優(yōu)勢藥物晶型
    聚丁烯-1晶型轉(zhuǎn)變研究進(jìn)展
    鹽酸綠卡色林多晶型與穩(wěn)定性研究
    聚丙烯β晶型成核劑的研究進(jìn)展
    中國塑料(2015年6期)2015-11-13 03:02:34
    亚洲国产精品国产精品| 亚洲精品自拍成人| 免费不卡黄色视频| 91老司机精品| 日韩 亚洲 欧美在线| 亚洲专区中文字幕在线| 人妻一区二区av| 一二三四社区在线视频社区8| 亚洲av电影在线进入| 日韩av在线免费看完整版不卡| 波多野结衣一区麻豆| 亚洲国产欧美在线一区| 亚洲国产欧美网| 亚洲精品成人av观看孕妇| 韩国精品一区二区三区| 久久鲁丝午夜福利片| videosex国产| 美女主播在线视频| 国产日韩一区二区三区精品不卡| 丝袜脚勾引网站| 纯流量卡能插随身wifi吗| 日韩电影二区| 肉色欧美久久久久久久蜜桃| 桃花免费在线播放| 在线观看国产h片| 午夜福利影视在线免费观看| 18禁观看日本| 十八禁网站网址无遮挡| 久久免费观看电影| 各种免费的搞黄视频| av国产精品久久久久影院| 9热在线视频观看99| 伊人久久大香线蕉亚洲五| 在线观看免费视频网站a站| 亚洲av美国av| 免费高清在线观看视频在线观看| 啦啦啦在线观看免费高清www| 亚洲色图综合在线观看| 欧美亚洲日本最大视频资源| 午夜福利一区二区在线看| 国产av精品麻豆| 亚洲人成电影免费在线| 亚洲 欧美一区二区三区| 亚洲精品一卡2卡三卡4卡5卡 | 成人18禁高潮啪啪吃奶动态图| 亚洲中文日韩欧美视频| 中文字幕制服av| 80岁老熟妇乱子伦牲交| 亚洲欧美精品自产自拍| 最新在线观看一区二区三区 | 日韩视频在线欧美| 国产伦人伦偷精品视频| 18禁裸乳无遮挡动漫免费视频| av在线播放精品| 午夜两性在线视频| 考比视频在线观看| 欧美精品人与动牲交sv欧美| 亚洲伊人久久精品综合| 国产成人精品久久二区二区免费| 亚洲专区中文字幕在线| 在线精品无人区一区二区三| 男人操女人黄网站| 青青草视频在线视频观看| 色婷婷久久久亚洲欧美| 亚洲人成网站在线观看播放| 亚洲一卡2卡3卡4卡5卡精品中文| 王馨瑶露胸无遮挡在线观看| 久久精品国产a三级三级三级| 久久女婷五月综合色啪小说| 91麻豆av在线| 日韩一区二区三区影片| 九草在线视频观看| 十分钟在线观看高清视频www| 国语对白做爰xxxⅹ性视频网站| videos熟女内射| 欧美激情高清一区二区三区| 亚洲国产中文字幕在线视频| 妹子高潮喷水视频| 亚洲成色77777| 操美女的视频在线观看| 91老司机精品| 亚洲精品国产av蜜桃| av视频免费观看在线观看| 最近中文字幕2019免费版| 永久免费av网站大全| av福利片在线| 9色porny在线观看| 亚洲专区国产一区二区| 欧美97在线视频| 久久中文字幕一级| 操美女的视频在线观看| 亚洲欧美清纯卡通| 乱人伦中国视频| 欧美+亚洲+日韩+国产| 国产成人一区二区在线| 精品人妻在线不人妻| 丝袜美腿诱惑在线| 亚洲伊人久久精品综合| 狂野欧美激情性bbbbbb| 国产一区二区三区综合在线观看| 精品免费久久久久久久清纯 | av天堂久久9| 成人影院久久| 免费久久久久久久精品成人欧美视频| 又粗又硬又长又爽又黄的视频| 亚洲精品国产一区二区精华液| 多毛熟女@视频| 亚洲精品国产色婷婷电影| 久久热在线av| av在线播放精品| 无限看片的www在线观看| 在线观看免费高清a一片| 大片免费播放器 马上看| 欧美日韩av久久| 丰满饥渴人妻一区二区三| 亚洲精品国产av蜜桃| 一个人免费看片子| 老熟女久久久| 午夜免费成人在线视频| 欧美激情高清一区二区三区| 日本vs欧美在线观看视频| 99久久99久久久精品蜜桃| 18禁观看日本| 美女高潮到喷水免费观看| 国产熟女午夜一区二区三区| 在线观看国产h片| 亚洲五月色婷婷综合| 国产主播在线观看一区二区 | 五月天丁香电影| videos熟女内射| 丝袜美腿诱惑在线| 两人在一起打扑克的视频| 大片免费播放器 马上看| 老熟女久久久| 少妇裸体淫交视频免费看高清 | 又大又黄又爽视频免费| av国产久精品久网站免费入址| 狠狠精品人妻久久久久久综合| 日本黄色日本黄色录像| 一区二区三区精品91| 中国国产av一级| 亚洲欧美精品综合一区二区三区| 久久精品aⅴ一区二区三区四区| 叶爱在线成人免费视频播放| av福利片在线| 国产成人精品久久二区二区免费| 日韩视频在线欧美| 日韩大码丰满熟妇| av天堂久久9| 一级黄色大片毛片| 午夜福利,免费看| 大香蕉久久成人网| 在线观看国产h片| 中文字幕av电影在线播放| 午夜两性在线视频| 九草在线视频观看| 亚洲精品乱久久久久久| 大片免费播放器 马上看| 老熟女久久久| 99精国产麻豆久久婷婷| 久久久久国产一级毛片高清牌| 少妇猛男粗大的猛烈进出视频| 悠悠久久av| 国产精品九九99| 最黄视频免费看| 亚洲,一卡二卡三卡| 国产高清视频在线播放一区 | 国产又色又爽无遮挡免| 国产成人精品无人区| 久久久久国产一级毛片高清牌| 精品卡一卡二卡四卡免费| 日本五十路高清| 国产av精品麻豆| 国产精品欧美亚洲77777| 亚洲午夜精品一区,二区,三区| 巨乳人妻的诱惑在线观看| 麻豆av在线久日| 亚洲精品av麻豆狂野| 亚洲欧美色中文字幕在线| 视频在线观看一区二区三区| 一级毛片我不卡| 考比视频在线观看| 国产国语露脸激情在线看| 在线 av 中文字幕| 老汉色av国产亚洲站长工具| 日韩av免费高清视频| 啦啦啦啦在线视频资源| 永久免费av网站大全| 久久久久久久精品精品| 美女中出高潮动态图| 久久99精品国语久久久| 国产在视频线精品| 免费看不卡的av| 亚洲国产av新网站| 免费看av在线观看网站| 男的添女的下面高潮视频| 精品少妇久久久久久888优播| 国产精品久久久av美女十八| 最黄视频免费看| 国产片特级美女逼逼视频| 男女床上黄色一级片免费看| 亚洲精品国产一区二区精华液| 飞空精品影院首页| 男女下面插进去视频免费观看| 校园人妻丝袜中文字幕| 久久狼人影院| 日本一区二区免费在线视频| 建设人人有责人人尽责人人享有的| 精品久久久久久久毛片微露脸 | 天堂8中文在线网| 97在线人人人人妻| 免费人妻精品一区二区三区视频| 一本久久精品| 国产在线免费精品| 成人18禁高潮啪啪吃奶动态图| 国产日韩欧美亚洲二区| 在线观看免费午夜福利视频| 午夜两性在线视频| 欧美精品人与动牲交sv欧美| 又黄又粗又硬又大视频| 国产三级黄色录像| 9色porny在线观看| 久热这里只有精品99| 99热国产这里只有精品6| 手机成人av网站| 欧美激情极品国产一区二区三区| 国产视频首页在线观看| 欧美av亚洲av综合av国产av| 又大又黄又爽视频免费| 秋霞在线观看毛片| 国产精品久久久久久人妻精品电影 | 亚洲精品美女久久av网站| 中文字幕色久视频| 韩国精品一区二区三区| 69精品国产乱码久久久| 又紧又爽又黄一区二区| 人成视频在线观看免费观看| 午夜91福利影院| 熟女av电影| 可以免费在线观看a视频的电影网站| 超碰97精品在线观看| 亚洲欧美一区二区三区黑人| 亚洲欧美一区二区三区久久| 久久精品国产亚洲av涩爱| 亚洲国产欧美在线一区| videos熟女内射| 制服诱惑二区| 欧美精品亚洲一区二区| 国产男女超爽视频在线观看| 日日摸夜夜添夜夜爱| 热99久久久久精品小说推荐| 精品久久蜜臀av无| 极品少妇高潮喷水抽搐| bbb黄色大片| 日韩一区二区三区影片| 久久天躁狠狠躁夜夜2o2o | 电影成人av| 99九九在线精品视频| 国产精品二区激情视频| 激情五月婷婷亚洲| 晚上一个人看的免费电影| 女性生殖器流出的白浆| 91老司机精品| 国产亚洲精品第一综合不卡| 亚洲五月婷婷丁香| 99热全是精品| 久久人妻福利社区极品人妻图片 | 午夜福利免费观看在线| 脱女人内裤的视频| www.999成人在线观看| 啦啦啦在线观看免费高清www| 丝瓜视频免费看黄片| 99国产精品免费福利视频| 国产成人精品无人区| 看免费av毛片| 国产伦理片在线播放av一区| 精品久久久久久电影网| 自线自在国产av| 汤姆久久久久久久影院中文字幕| 欧美日韩av久久| 丝袜美腿诱惑在线| 天天躁日日躁夜夜躁夜夜| 国产在线视频一区二区| 久久人人爽av亚洲精品天堂| 国产欧美日韩一区二区三 | 熟女少妇亚洲综合色aaa.| 韩国精品一区二区三区| 国产国语露脸激情在线看| 久久久久久免费高清国产稀缺| 大型av网站在线播放| 99久久99久久久精品蜜桃| 国产精品一区二区在线观看99| 国产片内射在线| 日本欧美视频一区| 菩萨蛮人人尽说江南好唐韦庄| 免费在线观看影片大全网站 | 免费日韩欧美在线观看| 国产熟女欧美一区二区| 亚洲av片天天在线观看| 女性生殖器流出的白浆| 国产成人av激情在线播放| 国产精品久久久人人做人人爽| av片东京热男人的天堂| 老熟女久久久| 国产一区二区在线观看av| 蜜桃国产av成人99| 如日韩欧美国产精品一区二区三区| a 毛片基地| 久久人妻熟女aⅴ| 午夜日韩欧美国产| 国产成人一区二区在线| 久久久久久久久免费视频了| 深夜精品福利| 久久久久久久久免费视频了| 一区二区日韩欧美中文字幕| 色综合欧美亚洲国产小说| 国产亚洲av片在线观看秒播厂| 男人操女人黄网站| 每晚都被弄得嗷嗷叫到高潮| 麻豆国产av国片精品| 亚洲精品第二区| 欧美xxⅹ黑人| 久久精品亚洲熟妇少妇任你| 男女免费视频国产| 一边摸一边抽搐一进一出视频| 99精国产麻豆久久婷婷| 色播在线永久视频| 成人亚洲欧美一区二区av| 中文字幕最新亚洲高清| av视频免费观看在线观看| 18禁裸乳无遮挡动漫免费视频| 伊人久久大香线蕉亚洲五| 美女主播在线视频| 18禁观看日本| 亚洲国产av新网站| 涩涩av久久男人的天堂| 亚洲精品乱久久久久久| 国产又爽黄色视频| 一级片'在线观看视频| 精品亚洲成国产av| 成年女人毛片免费观看观看9 | 亚洲熟女精品中文字幕| 亚洲精品中文字幕在线视频| 婷婷色综合大香蕉| 三上悠亚av全集在线观看| 亚洲美女黄色视频免费看| 久久国产精品影院| 国产精品国产三级专区第一集| 国产精品一区二区精品视频观看| 久久天躁狠狠躁夜夜2o2o | 欧美日韩一级在线毛片| www.自偷自拍.com| 少妇人妻久久综合中文| 乱人伦中国视频| 国产精品秋霞免费鲁丝片| 久久久久久人人人人人| 久久这里只有精品19| 成人国产一区最新在线观看 | 国产淫语在线视频| √禁漫天堂资源中文www| 国产精品香港三级国产av潘金莲 | 国产精品二区激情视频| 国精品久久久久久国模美| 在线天堂中文资源库| 久久精品久久精品一区二区三区| 国产欧美亚洲国产| 好男人视频免费观看在线| 性高湖久久久久久久久免费观看| 午夜日韩欧美国产| 免费观看人在逋| 亚洲精品国产av成人精品| 免费观看人在逋| 我要看黄色一级片免费的| 国产伦人伦偷精品视频| 亚洲精品av麻豆狂野| 久久av网站| 青青草视频在线视频观看| 男女床上黄色一级片免费看| 亚洲精品av麻豆狂野| 国产在线免费精品| 99九九在线精品视频| 99精国产麻豆久久婷婷| www日本在线高清视频| 天堂中文最新版在线下载| 在现免费观看毛片| 男的添女的下面高潮视频| 水蜜桃什么品种好| 国产精品偷伦视频观看了| 久久久久久免费高清国产稀缺| 午夜av观看不卡| 亚洲精品中文字幕在线视频| 女警被强在线播放| 乱人伦中国视频| 操美女的视频在线观看| 欧美97在线视频| 男女边吃奶边做爰视频| 亚洲国产精品999| 青青草视频在线视频观看| 捣出白浆h1v1| av国产久精品久网站免费入址| 人体艺术视频欧美日本| 成年人午夜在线观看视频| 交换朋友夫妻互换小说| 欧美日韩精品网址| 欧美亚洲 丝袜 人妻 在线| 丰满饥渴人妻一区二区三| 波多野结衣一区麻豆| 三上悠亚av全集在线观看| 国产麻豆69| 亚洲成人免费av在线播放| 成人国语在线视频| 精品一品国产午夜福利视频| 成人18禁高潮啪啪吃奶动态图| 亚洲久久久国产精品| 高清不卡的av网站| 丝袜美腿诱惑在线| 水蜜桃什么品种好| 两性夫妻黄色片| 午夜精品国产一区二区电影| 性少妇av在线| 日本欧美视频一区| 国产精品一区二区在线不卡| www.av在线官网国产| 国产成人a∨麻豆精品| 欧美日韩亚洲综合一区二区三区_| 最近手机中文字幕大全| 欧美精品人与动牲交sv欧美| 妹子高潮喷水视频| 亚洲国产av影院在线观看| tube8黄色片| 国产激情久久老熟女| a级片在线免费高清观看视频| 欧美日韩视频高清一区二区三区二| 日韩,欧美,国产一区二区三区| 国产免费视频播放在线视频| 欧美日韩亚洲综合一区二区三区_| www日本在线高清视频| 久久久亚洲精品成人影院| 精品少妇一区二区三区视频日本电影| 亚洲一卡2卡3卡4卡5卡精品中文| 精品亚洲成a人片在线观看| 婷婷丁香在线五月| 国产91精品成人一区二区三区 | 一本色道久久久久久精品综合| 亚洲国产看品久久| 久久热在线av| 岛国毛片在线播放| 2021少妇久久久久久久久久久| 日韩熟女老妇一区二区性免费视频| 中文字幕av电影在线播放| 成在线人永久免费视频| 成年人午夜在线观看视频| 汤姆久久久久久久影院中文字幕| 黄色 视频免费看| 国产麻豆69| 巨乳人妻的诱惑在线观看| 国产高清videossex| 十八禁网站网址无遮挡| 午夜91福利影院| 欧美在线一区亚洲| 老汉色∧v一级毛片| 日韩制服骚丝袜av| 男人添女人高潮全过程视频| 9色porny在线观看| 黑丝袜美女国产一区| 亚洲午夜精品一区,二区,三区| 亚洲五月婷婷丁香| 精品亚洲乱码少妇综合久久| 日韩av免费高清视频| 十八禁人妻一区二区| 狂野欧美激情性bbbbbb| 观看av在线不卡| 国产亚洲av片在线观看秒播厂| 国产精品三级大全| 19禁男女啪啪无遮挡网站| 中文字幕高清在线视频| 在线看a的网站| 国产日韩欧美视频二区| 日本一区二区免费在线视频| 国产又爽黄色视频| 成人影院久久| 亚洲成色77777| 亚洲国产精品成人久久小说| 成人黄色视频免费在线看| 午夜福利免费观看在线| 99国产精品一区二区三区| 亚洲激情五月婷婷啪啪| 亚洲 国产 在线| 少妇的丰满在线观看| 亚洲视频免费观看视频| 丝袜美足系列| 日韩人妻精品一区2区三区| 亚洲精品国产区一区二| 最新在线观看一区二区三区 | 国产成人免费观看mmmm| 欧美变态另类bdsm刘玥| 精品高清国产在线一区| 国产淫语在线视频| 黄色怎么调成土黄色| 国产精品一区二区在线观看99| 手机成人av网站| 亚洲熟女精品中文字幕| 国产日韩欧美在线精品| 青青草视频在线视频观看| 美女脱内裤让男人舔精品视频| 久久国产精品影院| 国产麻豆69| 两个人免费观看高清视频| 久久青草综合色| 性色av乱码一区二区三区2| 日韩中文字幕欧美一区二区 | 人妻 亚洲 视频| 国产av国产精品国产| 亚洲欧美精品自产自拍| 婷婷成人精品国产| 精品久久蜜臀av无| 精品人妻熟女毛片av久久网站| 中文字幕精品免费在线观看视频| 91国产中文字幕| 久久久国产欧美日韩av| 久久久久久久久免费视频了| 肉色欧美久久久久久久蜜桃| 啦啦啦啦在线视频资源| 日韩中文字幕视频在线看片| www.999成人在线观看| 超碰成人久久| 日本色播在线视频| 男人添女人高潮全过程视频| 黄色怎么调成土黄色| 51午夜福利影视在线观看| 国产亚洲一区二区精品| 一本色道久久久久久精品综合| 免费在线观看完整版高清| 咕卡用的链子| 久久99精品国语久久久| 波多野结衣av一区二区av| 制服人妻中文乱码| 国产男女超爽视频在线观看| 麻豆乱淫一区二区| 成人国产av品久久久| 韩国高清视频一区二区三区| 日韩大片免费观看网站| 欧美黄色片欧美黄色片| 无限看片的www在线观看| 中文欧美无线码| 国产成人系列免费观看| 久久青草综合色| 99国产精品一区二区蜜桃av | xxx大片免费视频| 男女床上黄色一级片免费看| 老司机亚洲免费影院| 后天国语完整版免费观看| 欧美97在线视频| 日日摸夜夜添夜夜爱| 日韩人妻精品一区2区三区| 99久久人妻综合| 伦理电影免费视频| 久久中文字幕一级| 国产精品久久久久久精品古装| 日韩中文字幕视频在线看片| 欧美日本中文国产一区发布| 国产老妇伦熟女老妇高清| 欧美日韩福利视频一区二区| 成人午夜精彩视频在线观看| 久久精品国产综合久久久| 亚洲精品久久久久久婷婷小说| 女人高潮潮喷娇喘18禁视频| 久久综合国产亚洲精品| 久久99一区二区三区| 18禁观看日本| 中文字幕最新亚洲高清| 免费观看人在逋| 免费看av在线观看网站| 成人三级做爰电影| 久久久国产精品麻豆| 亚洲五月色婷婷综合| 国产精品亚洲av一区麻豆| 精品人妻熟女毛片av久久网站| 国产精品久久久久久精品电影小说| 免费在线观看黄色视频的| 另类亚洲欧美激情| 91九色精品人成在线观看| 青草久久国产| 男女无遮挡免费网站观看| 亚洲成人手机| 久久性视频一级片| 欧美精品高潮呻吟av久久| 亚洲精品av麻豆狂野| 电影成人av| 18禁观看日本| 精品一区在线观看国产| 免费观看人在逋| 欧美日韩亚洲高清精品| 久久久久精品国产欧美久久久 | 国产精品国产三级专区第一集| videos熟女内射| 脱女人内裤的视频| 电影成人av| 国产亚洲av片在线观看秒播厂| 亚洲av电影在线观看一区二区三区| 久久精品国产亚洲av高清一级| 美女视频免费永久观看网站| 一边亲一边摸免费视频| 成人亚洲欧美一区二区av| 亚洲精品中文字幕在线视频| √禁漫天堂资源中文www| 丝袜美腿诱惑在线| 久久久久久人人人人人| 国产高清国产精品国产三级| 黄频高清免费视频| 三上悠亚av全集在线观看| 久久午夜综合久久蜜桃| 国产福利在线免费观看视频| 亚洲伊人色综图| 人人妻人人添人人爽欧美一区卜|