• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Reconfigurable Mott electronics for homogeneous neuromorphic platform

    2023-12-15 11:48:26ZhenYang楊振YingMingLu路英明andYuChaoYang楊玉超
    Chinese Physics B 2023年12期
    關鍵詞:英明

    Zhen Yang(楊振), Ying-Ming Lu(路英明), and Yu-Chao Yang(楊玉超),2,3,4,?

    1Beijing Advanced Innovation Center for Integrated Circuit,School of Integrated Circuits,Peking University,Beijing 100871,China

    2School of Electronic and Computer Engineering,Peking University,Shenzhen 518055,China

    3Center for Brain Inspired Chips,Institute for Artificial Intelligence,Frontiers Science Center for Nano-optoelectronics,Peking University,Beijing 100871,China

    4Center for Brain Inspired Intelligence,Chinese Institute for Brain Research(CIBR),Beijing 102206,China

    Keywords: Mott electronics,reconfigurable,neuromorphic computing,VO2

    1.Introduction

    With the rapid developments of deep learning (DL),[1-3]the conventional hardware systems based on the CMOS circuits and von Neumann architecture suffered from severe delay and huge energy costs, especially when processing more huge volume of data.[4-7]To solve the problems, researchers start to learn from the human brain, which is better at processing complex cognitive issues with tiny energy costs.[8-10]These new computing paradigms are referred to as neuromorphic computing.[11,12]For instance, one important feature of computing in the brain is the integration of storage and processing, and lots of research has been devoted to constructing crossbar arrays based on emerging nonvolatile memories,which aim to accelerate multiplyaccumulate operations that dominated mostly in DL.[13-16]

    The mostly studied artificial neural network (ANN) is a high level of abstraction of real neural networks in the human brain.To fully tap the potential of the brain, an SNN model was proposed,which has more similar structures to the brain than that of ANN.[17-20]Recently, there was some related hardware-accelertation of SNN or ANN.[21-27]The most obvious advantage of SNN is the ultra-low energy cost for the event-triggered characteristic.In the hardware implementation of SNN,the main components,synapses and neurons,are usually based on different materials and structures.The differenthardware based units will constrain the extension of network structures and functions.[28]Recently, there were some studies about reconfigurable neuromorphic devices for adaptive computing.[29-32]Through the same material system,the fabrication process of the neuromorphic systems can also be simplified.However,research on developing reconfigurable neuromorphic units for SNN is still scarce, and most of the existing approaches to reconfiguring still rely on extra electronic operations.[29,30]

    Based on the above background and challenge, we designed a novel reconfigurable Mott device,which mainly consists of a VO2channel and LiPON electrolyte.The mechanism of channel resistance switching was clarified by material characterization and DFT calculations.Under the different operation modes,the EC-VO2device could be configured as synapses and tunable LIF neurons, the reconfiguration between different roles does not require any extra operations.At last,image classification was successfully implemented on the reconfigurable-EC-VO2-based platform.

    2.Experimental detail

    The studied EC-VO2device was fabricated on the Al2O3substrates.Firstly,40 nm VO2films were epitaxially grown by pulsed-laser deposition (PLD) technique; after that, 5 nm Ti and 25 nm Au were deposited on VO2films through electronbeam evaporation, in which electron-beam lithography was used for patterning.Then, the second electron-beam lithography process was carried out to pattern the active region,180 nm LiPON and 20 nm SiOxwere sequentially deposited by magnetron sputtering.After the lift-off process, 10 nm Ti and 220 nm Au were deposited using electron-beam evaporation to form testing pads.Finally, the three-terminal ECVO2device was completed after the last lift-off process.All the electrical measurements were performed using an Agilent B1500A semiconductor parameter analyzer.

    Fig.2.Material characterization and DFT calculations of electrochemical doping.(a)Optical photograph of fabricated EC-VO2 device.(b)The cross-sectional TEM image of the active region in the EC-VO2 device, as indicated within the red box in panel (a).(c) Elemental mapping of different layers within the device through the red arrows in panel(b).(d)The initial conductance DC sweep of the EC-VO2 channel before LiPON deposition and after programming under positive gate voltages.(e)TOF-SIMS results of the EC-VO2 device after programming,in which the Li ions are intercalated into the VO2 layer.DFT calculations of the energy band structure of(f)pure M1 phase VO2 and(g)Li-doping VO2,which verifies the increase of electrical conductivity after ionic doping.

    3.Results and discussion

    The fabricated EC-VO2devices are shown in Fig.2(a),the gate pad is limited within the electrolyte region to avoid interferences with channel areas.The cross-sectional transmission electron microscope image of the device’s active region is presented in Fig.2(b),and the corresponding line scan of elemental mappings(Fig.2(c))verifies the material components.To form an amorphous LiPON fast ion conductor, we introduce nitrogen atoms into the initial lithium phosphate crystals,aiming to increase the reticular crosslinking structure.[32]To clarify the mechanisms of channel conductance modulation,material characterization with DFT calculation is employed to unveil that.As shown in Fig.2(d), the conductance of the programmed device increases 34 times more than the device without electrolyte capped,both active regions of devices are kept at 60 μm×60 μm.Time-of-flight secondary ion mass spectrometry (ToF-SIMS) characterization (Fig.2(e)) of the programmed EC-VO2device demonstrates the intercalation of Li ions into the VO2lattice.Given the small volume of Li ions,the doping positions are most probably at the interstitial sites.[33]The two material models are constructed in Figs.2(f)and 2(g).In Fig.2(f), the energy band structure of pure M1 phase VO2indicates a 0.6 eV gap, however, after introducing Li ions,the vanish of the band gap illustrated the increase of the electrical conductivity (Fig.2(g)).According to previous related research,[26]the introduction of Li ions can help weaken the binding strength between V ions and O ions,which can increase the concentration of free V3delectrons and overall carriers in the material systems.

    3.1.Multi-tunable states for configuring as synapses

    By utilizing dynamic ionic doping,the reversible channel conductance modulation can be realized,which can be configured as synapses in neural networks to implement in-memory computing.Figure 3(a) shows the typical testing schematics,the modulation signal in the gate terminal can control the doping or dedoping of Li ions in the VO2channel.As demonstrated in Figs.3(b)and 3(c),under the positive(or negative)gate voltage sweep,the channel conductance will get increased(or decreased) with Li ions moved into (or extracted from)the channel.The long-term potentiation and depression under continuous gate pulses are performed in Fig.3(d), the multi states can be employed to accelerate the matrix-vector product through Ohm’s law and Kirchhoff’s law.The retention tests in Fig.3(e)indicate the nonvolatile state changes under ionic doping,which can help hardware systems store the neural network weights even after the blackout.To realize full-analog computing,the linearity of different states under small reading bias is also tested in Fig.3(f),further proving the feasibility of EC-VO2configured as synaptic devices.

    Fig.3.Electrical characteristics of EC-VO2 devices configured as synapses.(a) Typical testing schematics of synaptic properties, in which modulating signal is applied on the gate terminal and monitoring bias is applied on the drain terminal with source terminal grounded.The transfer curves of a(b)positive Vg sweep or(c)negative Vg sweep,with 0.1 V bias monitoring the channel conductance changes.(d)Long-term potentiation and depression under 50 pulses of 8 V and-5 V,whose widths are both set as 10 ms and monitoring read voltage is set at 0.1 V.(e) The retention performances of four distinguished states with a recording time of 600 s.(f) Linear-reading tests of 4-bit states for analog in-memory computation.

    3.2.Tunable threshold-switching (TS) properties for configuring as neurons

    There was plenty of research about utilizing VO2as LIF neurons,[34-36]so we can also change the role of EC-VO2from synapses to neurons.As shown in Fig.4(a),when testing ECVO2as neurons, the gate terminal and source terminal are both grounded, and the signals or connections with load resistors are placed at the drain terminal.Different from most of the previous two-terminal VO2devices, the third terminal can be used to modulate the channel resistances and further tune the TS behaviors.As demonstrated in Figs.4(b) and 4(c),the threshold voltage(Vth)will get reduced along with the lowering of initial channel resistances,while the hold voltage(Vhold)keeps still regardless of the initial states.Based on the previous research explaining the threshold-switching mechanisms, the insulator-metal transition (IMT) after the internal temperature reaches a critical point dominates.Ionic doping can only change the high-resistance states(HRS)before IMT while the low-resistance states(LRS)all keep almost the same at the conductive rutile phase.As the HRS decreases,to keep the heating power at the same level, the applied voltage will also be lower,which corresponds to the decrease ofVth;under the same LRS,theVholdwill keep almost unchanged when the heating power is below a certain level.The tunableVthprovides a more degree of freedom in designing the LIF neurons in neural networks.

    Fig.4.Electrical characteristics of EC-VO2 devices configured as neurons.(a) Typical measurement schematics of testing neuronic properties, for which multi stimuli are applied at drain terminal with gate and source grounded.(b)Different I-V curves for different initial channel resistances,each state was tested 25 cycles and exhibited stable TS behaviors.(c) Average Vth and Vhold in panel (b) for corresponding initial resistance, which shows different relationships.The LIF neuron functions of different Vth at(d)3.6 V,(e)2.8 V and(f)1.9 V,with load resistance fixed at 4 k?.

    The LIF neuron function tests of differentVthat 3.6 V,2.8 V and 1.9 V are shown in Figs.4(d),4(e)and 4(f),respectively.The following equation can describe the LIF neuron circuits:

    whereCmis the capacitance in parallel to the VO2device or can be parasitic capacitance,Voutis the output voltage in Fig.4(a) or membrane voltage,Vinis the input voltage in Fig.4(a).RVO2represents the channel resistance of ECVO2andRLdenotes the load resistance of the LIF neuron circuits.When theVoutreaches beyondVth, theRVO2will change from HRS to LRS sharply, along with a sudden increase of current flowing from VO2, which is also termed as firing.From Figs.4(d)-4(f), the different firing frequencies and leaky-integrate behaviors result from differentVthand initial HRS,which can be adaptive to different realistic environments.

    3.3.Large-scale SNN based on the reconfigurable Mott electronics

    Based on the above discussions, we construct an SNN model based on the reconfigurable Mott electronics(Figs.1(b)and 5(a)), whose structure is set as a 748-10 fully connected network.The Poisson encoder is employed to encode the image intensities of Modified National Institute of Standards and Technology (MNIST) datasets to a set of spike trains, which follow the Poisson distribution.The subthreshold dynamics of output LIF neurons are defined as

    whereVmdenotes the membrane voltage of the LIF neurons,Vrestrepresents the resting potential,τis the membrane time constant,andI(t)is the input to neurons at timet.When the membrane voltageVmexceeds the threshold voltageVth, the neuron will elicit a spike.Compared with the dynamic equation of the LIF neuron circuits based on VO2, the similarity enables direct hardware realization.To update the connected weights,the backpropagation through time(BPTT)and surrogate function are used to calculate the gradients.

    When using the ECVO2as weights, the realistic state number needs to be considered (Figs.3(d) and 3(f)), so we adopt the symmetrically uniform quantized methods and differential cell structure, the Gaussian noises of 0.01 standard variation are also added into the quantized weights while keeping theVthat 1.0, the final testing accuracies of different weight precision are presented in Fig.5(b).When the weight precision exceeds 2 bits, the performances will reach saturation,and the state of EC-VO2can realize more than 16 distinguished states(4 bits),so it can easily meet the requirement of quantized weight precision.In Fig.5(c), the final testing accuracy of 3-bit precision can reach 91.92%,and the quantized weights also have an apparent boundary.In conventional twoterminal TS devices,the threshold voltage is usually fixed after fabrication, so it is hard to change theVthto realize devicealgorithm co-optimization in different situations.Based on our electrochemical modulation of the VO2parameters, theVthcan be tuned continuously by lowering the initial states(Fig.5(d)).The network performances of different threshold voltages and fixed 3-bit weight precision are demonstrated in Fig.5(e), which indicates the accuracies can be enhanced by setting the proper threshold voltage.Specifically,the threshold voltage value is different from theVthof EC-VO2,in which a linear scaling factor relates them,so in the realistic mapping of model parameters into hardware platforms, the scaling factor is worth carefully considering.

    Finally, after finishing training the SNN in Fig.5(c), the number 5 is used to test the performances.As shown in Figs.5(f)and 5(g),the frequency of spike firing in neuron 5 is the maximum among all the output neurons,which proved the model realizes the successful classification.

    Fig.5.The network-level performances based on the reconfigurable Mott electronics.(a)The network structure of the designed SNN,in which the Poisson encoder was employed to encode the MNIST images into a sequence of pulses.(b)The final test accuracies of different weight precision from 2 bits to 5 bits,with threshold voltage fixed at 1.0.(c)The evolution of test accuracy with training epochs,where the weight precision was chosen at 3 bits and threshold voltage was set at 1.0,the inset shows the final weight distribution after finishing the network training.(d)The measured multi I-V curves of different Vth,show the capacity of continuously modulating threshold voltages,which provide a more tunable parameter in enhancing the neural network performances.(e) The final testing accuracies of different defined threshold voltage in output neurons.(f) Testing results of classifying the number 5 after training in panel(c),both the evolution of(f)membrane voltages and(g)firing spikes with time steps can verify the successful classification.

    4.Conclusion and perspectives

    We propose and fabricate a kind of novel reconfigurable Mott electronics for constructing a homogeneous neuromorphic platform.By utilizing electrochemical ionic doping, the resistance of VO2can be reversibly modulated.On one hand,the nonvolatile resistance switching can be used as synapses to accelerate matrix-vector multiplication; on the other hand,the TS switching with electrochemical modulation can be configured as tunable LIF neurons.Based on the versatile ECVO2,a low-precision SNN model is developed,and combined with a properly designed threshold voltage, we successfully achieve high accuracy of image classification.Our work paves a new way for designing a homogeneous neuromorphic hardware platform to reduce process costs and enhance the flexibility of reconfiguration.

    Acknowledgments

    Project supported by the National Natural Science Foundation of China(Grant Nos.61925401,92064004,61927901,and 92164302) and the 111 Project (Grant No.B18001).Y.Y.acknowledges support from the Fok Ying-Tong Education Foundation and the Tencent Foundation through the XPLORER PRIZE.The authors acknowledge the support of TOF-SIMS characterization by Dr.Tinglu Song and the firstprincipal computation by Dr.Bing Zheng from Beijing Institute of Technology.

    猜你喜歡
    英明
    詩歌書法作品:偉大英明的黨國家領袖五軍統(tǒng)帥
    當代作家(2024年1期)2024-04-26 22:08:11
    明明家族歷險記
    ——辨析聰明、精明、高明、英明
    特別推薦欄目作者:吳煥唐、南城小圣、陳航、蔡英明
    椰城(2021年5期)2021-04-28 03:53:28
    隨份子的喜與憂
    國慶抒懷
    大江南北(2017年10期)2017-11-13 13:43:01
    “時差”會導致合同無效嗎
    金點子生意(2016年2期)2016-05-30 02:55:46
    梁武帝出家
    我在另一個遙遠的城市等你
    參花(上)(2015年2期)2015-10-28 10:51:23
    修改的傳真合同是否有效
    “時差”會導致合同無效嗎
    美女高潮到喷水免费观看| 可以在线观看毛片的网站| 变态另类丝袜制服| 亚洲国产精品999在线| 亚洲三区欧美一区| 看黄色毛片网站| 在线播放国产精品三级| 在线看三级毛片| 免费看十八禁软件| 亚洲av电影在线进入| 婷婷六月久久综合丁香| 国产亚洲av高清不卡| 成人精品一区二区免费| 99在线视频只有这里精品首页| 国内少妇人妻偷人精品xxx网站 | 精华霜和精华液先用哪个| 亚洲国产精品合色在线| 黄片播放在线免费| 久久草成人影院| 真人一进一出gif抽搐免费| 国产精品精品国产色婷婷| 国产私拍福利视频在线观看| 神马国产精品三级电影在线观看 | 日本免费a在线| 91麻豆精品激情在线观看国产| 精品国产亚洲在线| 又黄又粗又硬又大视频| 国产成人精品久久二区二区免费| 亚洲国产欧洲综合997久久, | 国产高清有码在线观看视频 | 久久中文看片网| 身体一侧抽搐| 熟妇人妻久久中文字幕3abv| 国产99久久九九免费精品| 亚洲国产精品久久男人天堂| av福利片在线| 国产精品久久久久久人妻精品电影| 日韩精品中文字幕看吧| 久久久久免费精品人妻一区二区 | 久久久久久大精品| 天天躁狠狠躁夜夜躁狠狠躁| 一区二区三区激情视频| 亚洲国产精品合色在线| www.熟女人妻精品国产| 日韩一卡2卡3卡4卡2021年| a级毛片在线看网站| 日韩三级视频一区二区三区| 久热这里只有精品99| 女人高潮潮喷娇喘18禁视频| 欧美激情久久久久久爽电影| 成人18禁在线播放| 国产精品美女特级片免费视频播放器 | 欧美另类亚洲清纯唯美| 亚洲人成伊人成综合网2020| 精品久久久久久久末码| 啦啦啦免费观看视频1| 久9热在线精品视频| 亚洲一区二区三区色噜噜| 看片在线看免费视频| 亚洲 欧美 日韩 在线 免费| 久久人妻av系列| 91av网站免费观看| 久久精品影院6| 国产精品免费一区二区三区在线| 日韩中文字幕欧美一区二区| 日本成人三级电影网站| 欧美精品啪啪一区二区三区| 韩国av一区二区三区四区| 在线国产一区二区在线| 色播在线永久视频| 亚洲 欧美一区二区三区| 99精品在免费线老司机午夜| 久久国产精品人妻蜜桃| 九色国产91popny在线| 99久久国产精品久久久| 1024手机看黄色片| 久久精品91无色码中文字幕| av超薄肉色丝袜交足视频| 亚洲精品国产精品久久久不卡| av欧美777| 午夜福利高清视频| 一区二区三区激情视频| 又黄又爽又免费观看的视频| 看片在线看免费视频| 欧美一级a爱片免费观看看 | 欧美亚洲日本最大视频资源| 色老头精品视频在线观看| 人妻丰满熟妇av一区二区三区| 欧美黄色淫秽网站| 亚洲成国产人片在线观看| 国产真实乱freesex| 欧美日韩乱码在线| 久久天堂一区二区三区四区| 搡老岳熟女国产| 麻豆久久精品国产亚洲av| 久久伊人香网站| 色尼玛亚洲综合影院| 性欧美人与动物交配| x7x7x7水蜜桃| 男人的好看免费观看在线视频 | 丝袜在线中文字幕| 女人爽到高潮嗷嗷叫在线视频| 国产精品一区二区免费欧美| 黄色丝袜av网址大全| 色av中文字幕| 久久久国产成人精品二区| 在线看三级毛片| 最新在线观看一区二区三区| 可以免费在线观看a视频的电影网站| 久久亚洲真实| 淫秽高清视频在线观看| 一a级毛片在线观看| 男女下面进入的视频免费午夜 | 美女大奶头视频| 久久久久亚洲av毛片大全| av天堂在线播放| 日韩欧美国产一区二区入口| 国内少妇人妻偷人精品xxx网站 | 日本 av在线| 亚洲国产精品sss在线观看| www日本黄色视频网| 国产精品香港三级国产av潘金莲| av天堂在线播放| 女人高潮潮喷娇喘18禁视频| 国产爱豆传媒在线观看 | 亚洲免费av在线视频| 日本撒尿小便嘘嘘汇集6| 日韩有码中文字幕| 国产亚洲av嫩草精品影院| 免费看a级黄色片| 黄色 视频免费看| 日本黄色视频三级网站网址| 国产精品一区二区精品视频观看| 丁香六月欧美| 美国免费a级毛片| 欧美日本视频| 韩国av一区二区三区四区| 精品国产国语对白av| 成人永久免费在线观看视频| 搡老熟女国产l中国老女人| 亚洲va日本ⅴa欧美va伊人久久| 一级毛片高清免费大全| 波多野结衣巨乳人妻| 黄色毛片三级朝国网站| 男男h啪啪无遮挡| 99久久99久久久精品蜜桃| 色哟哟哟哟哟哟| 免费在线观看视频国产中文字幕亚洲| 亚洲人成网站高清观看| 国产欧美日韩一区二区精品| 老鸭窝网址在线观看| 亚洲,欧美精品.| 99热只有精品国产| 亚洲国产欧洲综合997久久, | 欧美成人一区二区免费高清观看 | 国产日本99.免费观看| 亚洲黑人精品在线| 久久久久国内视频| 在线观看午夜福利视频| 嫁个100分男人电影在线观看| 亚洲成av片中文字幕在线观看| 欧美日韩精品网址| 激情在线观看视频在线高清| 中文在线观看免费www的网站 | 18美女黄网站色大片免费观看| 一区二区日韩欧美中文字幕| 男女下面进入的视频免费午夜 | 啦啦啦免费观看视频1| 男人舔女人下体高潮全视频| 99热只有精品国产| 久久中文字幕一级| 夜夜爽天天搞| 啪啪无遮挡十八禁网站| 男人的好看免费观看在线视频 | 亚洲精品美女久久久久99蜜臀| 午夜福利欧美成人| 一区福利在线观看| 国产精品久久久久久精品电影 | 变态另类成人亚洲欧美熟女| 女同久久另类99精品国产91| 久久精品人妻少妇| 亚洲第一av免费看| 久久精品国产清高在天天线| 亚洲av成人av| 亚洲成av片中文字幕在线观看| 两个人免费观看高清视频| 国产精品九九99| 日本a在线网址| 99在线视频只有这里精品首页| 狠狠狠狠99中文字幕| 在线观看午夜福利视频| 成人手机av| 桃红色精品国产亚洲av| 一本一本综合久久| 99久久国产精品久久久| 好男人在线观看高清免费视频 | 欧洲精品卡2卡3卡4卡5卡区| av片东京热男人的天堂| 亚洲欧美一区二区三区黑人| 国产成人精品无人区| 99riav亚洲国产免费| 中文字幕精品亚洲无线码一区 | 国产成人欧美在线观看| 欧美另类亚洲清纯唯美| 精品欧美一区二区三区在线| 级片在线观看| 精品国内亚洲2022精品成人| 亚洲av成人一区二区三| 亚洲自偷自拍图片 自拍| 天天一区二区日本电影三级| 少妇熟女aⅴ在线视频| 国产视频一区二区在线看| 男女午夜视频在线观看| av天堂在线播放| 97碰自拍视频| 亚洲国产精品999在线| 波多野结衣av一区二区av| 国产91精品成人一区二区三区| 亚洲男人天堂网一区| 亚洲人成77777在线视频| 亚洲欧美日韩无卡精品| 在线视频色国产色| 亚洲国产精品999在线| 1024香蕉在线观看| 国产高清激情床上av| 国产精品久久久久久精品电影 | 叶爱在线成人免费视频播放| 国产一区二区在线av高清观看| 免费高清视频大片| 黑丝袜美女国产一区| 狠狠狠狠99中文字幕| 国产精华一区二区三区| 桃色一区二区三区在线观看| 正在播放国产对白刺激| 国产精品野战在线观看| 国产亚洲av高清不卡| 久久人人精品亚洲av| 亚洲,欧美精品.| 精品无人区乱码1区二区| 级片在线观看| 午夜久久久久精精品| 免费看十八禁软件| 99热6这里只有精品| 美女扒开内裤让男人捅视频| 午夜免费鲁丝| 日本熟妇午夜| 午夜视频精品福利| 女人高潮潮喷娇喘18禁视频| 草草在线视频免费看| 麻豆久久精品国产亚洲av| 中文字幕精品亚洲无线码一区 | 午夜日韩欧美国产| 成年女人毛片免费观看观看9| 一夜夜www| 丝袜人妻中文字幕| 夜夜爽天天搞| 国产极品粉嫩免费观看在线| 免费在线观看完整版高清| 18禁观看日本| 久久久久久久久免费视频了| 欧美日韩中文字幕国产精品一区二区三区| 亚洲五月色婷婷综合| 久久久久久久久中文| 亚洲,欧美精品.| 老汉色av国产亚洲站长工具| 国产私拍福利视频在线观看| 欧美激情高清一区二区三区| 精品久久久久久久毛片微露脸| 成人精品一区二区免费| 国产激情偷乱视频一区二区| 久久国产精品影院| 在线观看66精品国产| 亚洲精品中文字幕在线视频| 波多野结衣高清无吗| 久久精品91蜜桃| 久久狼人影院| 俄罗斯特黄特色一大片| www.www免费av| 欧美日韩乱码在线| 欧美日韩乱码在线| 国产欧美日韩一区二区精品| 级片在线观看| 99久久综合精品五月天人人| 精品国内亚洲2022精品成人| 久久精品亚洲精品国产色婷小说| 久久久久久久久中文| 每晚都被弄得嗷嗷叫到高潮| 丁香欧美五月| 久久久久久久午夜电影| 一本一本综合久久| 中国美女看黄片| 亚洲人成电影免费在线| 国产亚洲欧美精品永久| 中文字幕高清在线视频| 黑人巨大精品欧美一区二区mp4| 成年版毛片免费区| 999精品在线视频| 亚洲美女黄片视频| 美女高潮喷水抽搐中文字幕| 国产精品爽爽va在线观看网站 | 99久久无色码亚洲精品果冻| 亚洲欧美激情综合另类| 亚洲第一电影网av| 久久香蕉国产精品| 午夜激情福利司机影院| 欧美中文综合在线视频| 久久国产亚洲av麻豆专区| 欧美成人午夜精品| 男女午夜视频在线观看| 哪里可以看免费的av片| 国产伦人伦偷精品视频| 黄片大片在线免费观看| 欧美日韩亚洲国产一区二区在线观看| 亚洲色图 男人天堂 中文字幕| 中出人妻视频一区二区| 老司机在亚洲福利影院| 国产欧美日韩一区二区三| 久久午夜亚洲精品久久| 一区二区三区国产精品乱码| 嫩草影视91久久| 制服丝袜大香蕉在线| 亚洲第一欧美日韩一区二区三区| 亚洲avbb在线观看| 国产精品99久久99久久久不卡| 久久精品国产亚洲av香蕉五月| 国产精品 国内视频| 午夜免费鲁丝| 999久久久国产精品视频| 极品教师在线免费播放| 成人三级做爰电影| 在线观看66精品国产| 亚洲av成人av| 国产视频内射| 黄色毛片三级朝国网站| 亚洲国产精品sss在线观看| 亚洲av日韩精品久久久久久密| 日本免费a在线| 99精品久久久久人妻精品| 久久精品亚洲精品国产色婷小说| 成年版毛片免费区| 国产男靠女视频免费网站| 99热只有精品国产| 久久精品91无色码中文字幕| 亚洲成人久久爱视频| 我的亚洲天堂| 又黄又爽又免费观看的视频| 精品人妻1区二区| 琪琪午夜伦伦电影理论片6080| 亚洲一码二码三码区别大吗| 久久精品91无色码中文字幕| 亚洲欧美激情综合另类| 免费观看精品视频网站| 亚洲精品中文字幕在线视频| 日韩欧美一区视频在线观看| 叶爱在线成人免费视频播放| 午夜激情福利司机影院| 亚洲av成人一区二区三| 亚洲成人免费电影在线观看| 曰老女人黄片| 欧美亚洲日本最大视频资源| 国产91精品成人一区二区三区| 极品教师在线免费播放| 久久这里只有精品19| 久久精品国产综合久久久| 成人av一区二区三区在线看| 一a级毛片在线观看| 狠狠狠狠99中文字幕| 国产国语露脸激情在线看| 免费在线观看日本一区| 中文字幕av电影在线播放| 国产免费男女视频| 午夜两性在线视频| 在线永久观看黄色视频| 欧美日韩亚洲综合一区二区三区_| 在线观看午夜福利视频| 法律面前人人平等表现在哪些方面| 亚洲人成网站高清观看| 欧美性长视频在线观看| 波多野结衣高清无吗| 国产亚洲欧美在线一区二区| 男人操女人黄网站| 99精品在免费线老司机午夜| 久久久久久免费高清国产稀缺| 色在线成人网| 亚洲狠狠婷婷综合久久图片| 久久香蕉激情| 99精品久久久久人妻精品| 久99久视频精品免费| 成人欧美大片| 亚洲熟女毛片儿| 国产爱豆传媒在线观看 | 久久精品91无色码中文字幕| 老司机福利观看| 欧美性长视频在线观看| 国产在线观看jvid| 国产精品自产拍在线观看55亚洲| 自线自在国产av| 丰满的人妻完整版| 午夜福利视频1000在线观看| 最近最新中文字幕大全电影3 | 婷婷六月久久综合丁香| 亚洲aⅴ乱码一区二区在线播放 | 国产激情偷乱视频一区二区| 欧美 亚洲 国产 日韩一| 国产在线观看jvid| 中亚洲国语对白在线视频| 国产激情久久老熟女| 丁香六月欧美| 日本免费一区二区三区高清不卡| 日韩欧美三级三区| 一级毛片女人18水好多| 国产成+人综合+亚洲专区| 久久久久久九九精品二区国产 | 日韩欧美一区二区三区在线观看| 久久精品aⅴ一区二区三区四区| 精品少妇一区二区三区视频日本电影| 国产亚洲精品第一综合不卡| 天天添夜夜摸| 成年免费大片在线观看| 岛国在线观看网站| 一区福利在线观看| 丝袜人妻中文字幕| 精品久久久久久久久久免费视频| 亚洲中文字幕日韩| 日韩精品免费视频一区二区三区| 亚洲精品粉嫩美女一区| 免费在线观看成人毛片| 日日爽夜夜爽网站| 日韩免费av在线播放| 国产精品免费一区二区三区在线| 国产免费av片在线观看野外av| 男女做爰动态图高潮gif福利片| 色老头精品视频在线观看| 黄网站色视频无遮挡免费观看| 国产aⅴ精品一区二区三区波| 国产亚洲精品av在线| 国产精品98久久久久久宅男小说| 免费在线观看视频国产中文字幕亚洲| 女人爽到高潮嗷嗷叫在线视频| 亚洲午夜理论影院| 免费在线观看影片大全网站| 亚洲片人在线观看| 美国免费a级毛片| 免费看日本二区| 国产又黄又爽又无遮挡在线| 麻豆av在线久日| 欧美一级毛片孕妇| 制服人妻中文乱码| 999精品在线视频| 十八禁网站免费在线| 丝袜美腿诱惑在线| 亚洲人成伊人成综合网2020| 日韩欧美国产在线观看| 亚洲va日本ⅴa欧美va伊人久久| videosex国产| 国产亚洲欧美98| 亚洲一区二区三区不卡视频| 男女下面进入的视频免费午夜 | www国产在线视频色| 搡老熟女国产l中国老女人| 两个人免费观看高清视频| 别揉我奶头~嗯~啊~动态视频| 久久久国产成人精品二区| 欧美国产精品va在线观看不卡| 天天躁夜夜躁狠狠躁躁| 国产三级黄色录像| 中出人妻视频一区二区| 久久久久久免费高清国产稀缺| 午夜福利在线在线| 国产高清有码在线观看视频 | 亚洲欧美精品综合一区二区三区| 午夜a级毛片| 亚洲成av人片免费观看| 白带黄色成豆腐渣| 一个人免费在线观看的高清视频| 欧美日韩亚洲国产一区二区在线观看| 无限看片的www在线观看| 最好的美女福利视频网| 亚洲精品中文字幕一二三四区| www.精华液| 成人特级黄色片久久久久久久| 国产精品免费一区二区三区在线| 可以在线观看的亚洲视频| 亚洲午夜理论影院| 久热这里只有精品99| tocl精华| 久久久久免费精品人妻一区二区 | 中文字幕人妻丝袜一区二区| 久久久精品国产亚洲av高清涩受| 国产熟女xx| 久久精品国产亚洲av香蕉五月| 嫁个100分男人电影在线观看| 看免费av毛片| 久久久久亚洲av毛片大全| cao死你这个sao货| 真人做人爱边吃奶动态| 国产野战对白在线观看| 免费搜索国产男女视频| 99国产精品99久久久久| 黄色女人牲交| 97超级碰碰碰精品色视频在线观看| 久久国产精品影院| 日本精品一区二区三区蜜桃| 欧美日韩福利视频一区二区| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲精品国产区一区二| 一个人免费在线观看的高清视频| 色av中文字幕| 亚洲精品中文字幕在线视频| videosex国产| 中文字幕久久专区| 少妇被粗大的猛进出69影院| 久久久久久亚洲精品国产蜜桃av| 婷婷亚洲欧美| 黄色视频,在线免费观看| 日韩欧美在线二视频| 嫩草影视91久久| 18禁裸乳无遮挡免费网站照片 | 黑人巨大精品欧美一区二区mp4| 国产黄a三级三级三级人| 亚洲avbb在线观看| 日本黄色视频三级网站网址| 国产精品 国内视频| 国产亚洲精品一区二区www| 久久狼人影院| 老司机午夜十八禁免费视频| 欧美日韩精品网址| 国产精品自产拍在线观看55亚洲| 99精品久久久久人妻精品| www日本在线高清视频| 18禁国产床啪视频网站| 美女扒开内裤让男人捅视频| 深夜精品福利| 国产成人影院久久av| 亚洲午夜理论影院| 国产黄a三级三级三级人| 91老司机精品| 岛国视频午夜一区免费看| 18禁黄网站禁片午夜丰满| 国产高清视频在线播放一区| 一区二区三区精品91| 亚洲熟女毛片儿| 亚洲国产欧美一区二区综合| 亚洲av五月六月丁香网| 欧美日韩乱码在线| 久久精品亚洲精品国产色婷小说| 88av欧美| 九色国产91popny在线| 国产一卡二卡三卡精品| 美女扒开内裤让男人捅视频| 国产精品香港三级国产av潘金莲| 啪啪无遮挡十八禁网站| 午夜激情av网站| 国内毛片毛片毛片毛片毛片| 国产99久久九九免费精品| 久久亚洲精品不卡| www.精华液| 国产av一区二区精品久久| 丰满人妻熟妇乱又伦精品不卡| 精品国产一区二区三区四区第35| bbb黄色大片| av天堂在线播放| 99在线视频只有这里精品首页| 亚洲精品一卡2卡三卡4卡5卡| 日本a在线网址| 国产亚洲精品av在线| 女性生殖器流出的白浆| 久久国产亚洲av麻豆专区| 国产亚洲欧美在线一区二区| 日日摸夜夜添夜夜添小说| АⅤ资源中文在线天堂| 国产精品电影一区二区三区| 美女高潮喷水抽搐中文字幕| 两个人看的免费小视频| 欧美午夜高清在线| 日韩欧美国产在线观看| 天堂√8在线中文| 免费一级毛片在线播放高清视频| 日韩欧美三级三区| 国内精品久久久久精免费| 久久精品影院6| 亚洲午夜理论影院| 丝袜美腿诱惑在线| 女性被躁到高潮视频| 18美女黄网站色大片免费观看| 国产精品免费视频内射| 日韩大码丰满熟妇| 国产高清视频在线播放一区| 免费在线观看亚洲国产| 久久人人精品亚洲av| 亚洲免费av在线视频| 国产又爽黄色视频| 久久伊人香网站| 亚洲,欧美精品.| 国产激情久久老熟女| 香蕉av资源在线| 国内久久婷婷六月综合欲色啪| 午夜a级毛片| 国产又黄又爽又无遮挡在线| 久久久水蜜桃国产精品网| 亚洲av片天天在线观看| 日本免费a在线| 国产熟女xx| 大型av网站在线播放| 黄色成人免费大全| 18禁裸乳无遮挡免费网站照片 | 男女做爰动态图高潮gif福利片| 成人亚洲精品av一区二区| 久久精品国产清高在天天线| 国产99久久九九免费精品| 听说在线观看完整版免费高清| netflix在线观看网站| 日韩欧美免费精品| 久久久久国产精品人妻aⅴ院| а√天堂www在线а√下载|