姚荔嘉 鄧 星 王 維 謝渭芬
第二軍醫(yī)大學附屬長征醫(yī)院消化內(nèi)科(200003)
?
·綜述·
肝星狀細胞在肝臟發(fā)育和再生中作用的研究進展*
姚荔嘉#鄧星王維謝渭芬&
第二軍醫(yī)大學附屬長征醫(yī)院消化內(nèi)科(200003)
摘要肝星狀細胞(HSCs)是位于肝竇內(nèi)皮細胞與肝上皮細胞之間的一種多能細胞。HSCs激活后轉(zhuǎn)化為肌成纖維樣細胞,增殖并上調(diào)部分促炎和促纖維化基因表達,從而促進肝纖維化。既往對HSCs的研究主要集中在其與肝纖維化的關系方面,近年研究發(fā)現(xiàn)在肝臟發(fā)育和再生過程中,HSCs對肝臟細胞的增殖、分化和成熟亦至關重要。本文系統(tǒng)總結(jié)了HSCs的來源、發(fā)育調(diào)控和功能,著重闡述近年關于HSCs在肝臟發(fā)育和再生中作用的研究進展,以期為肝臟疾病的治療提供新思路。
關鍵詞肝星狀細胞;肝臟;生長和發(fā)育;再生
Research Progress on Role of Hepatic Stellate Cells in Liver Development and Regeneration
YAOLijia,DENGXing,WANGWei,XIEWeifen.
DepartmentofGastroenterology,theSecondMilitaryMedicalUniversityAffiliatedChangzhengHospital,Shanghai(200003) Correspondence to: XIE Weifen, Email: weifenxie@medmail.com.cn
AbstractHepatic stellate cells (HSCs), the pluripotent cells, exist between liver sinusoidal endothelial cells and hepatic epithelial cells. Activated HSCs transform to myofibroblast-like cells, start to proliferate, anddenovoexpress some proinflammatory and profibrogenic genes, which promote hepatic fibrogenesis. Previous studies mainly focused on the relationship between HSCs and liver fibrosis, however, recent studies indicate that HSCs are essential for proliferation, differentiation and maturation of various liver cells in the process of liver development and regeneration. This review systematically summarized the source, developmental regulation and function of HSCs, and focused on progress of recent studies on the role of HSCs in liver development and regeneration. The novel knowledge of HSCs may provide clues for treatment of liver diseases.
Key wordsHepatic Stellate Cells;Liver;Growth and Development;Regeneration
肝星狀細胞(hepatic stellate cells, HSCs)為肝臟特異性間充質(zhì)細胞,位于肝竇內(nèi)皮細胞與肝上皮細胞之間的竇周間隙,約占肝臟細胞總數(shù)的5%~8%。在健康肝臟中,HSCs處于靜止狀態(tài),主要功能為儲存維生素A、調(diào)節(jié)肝血流和肝內(nèi)免疫反應等。在慢性肝臟疾病中,受損的肝細胞和免疫細胞通過分泌信號分子激活HSCs并使之轉(zhuǎn)化為肌成纖維樣細胞,增殖并上調(diào)部分促炎和促纖維化基因表達,HSCs持續(xù)和反復激活將導致肝纖維化,產(chǎn)生永久性瘢痕,破壞肝臟正常結(jié)構(gòu)和功能。近期諸多研究發(fā)現(xiàn),除參與肝纖維化外,HSCs在肝臟發(fā)育和再生中亦發(fā)揮重要作用。本文就近年相關研究進展作一綜述,以期為肝臟疾病的治療提供新思路。
一、HSCs概述
1. HSCs的來源:HSCs于19世紀由Kupffer首次發(fā)現(xiàn)。盡管近數(shù)十年來人們對這一細胞進行了大量研究,但仍未能完全明確其在肝臟中的來源和功能。有學者發(fā)現(xiàn)HSCs表達多種神經(jīng)元或神經(jīng)膠質(zhì)細胞標記物,如神經(jīng)細胞黏附分子(neural cell adhesion molecule, NCAM)、突觸素(synaptophysin)、膠質(zhì)原纖維酸性蛋白(glial fibrillary acidic protein, GFAP)、巢蛋白(nestin)、p75神經(jīng)營養(yǎng)因子受體(p75 neurotrophin receptor, p75NTR),因此認為HSCs可能起源于外胚層神經(jīng)嵴[1]。但Cassiman等[2]應用細胞譜系示蹤技術(shù)并未在發(fā)育的肝臟中檢測到神經(jīng)嵴來源的HSCs。另有學者發(fā)現(xiàn)胎肝中存在造血干細胞標記物CD34+和細胞角蛋白(cytokeratin, CK)7/8+的星狀細胞,提示HSCs可能來源于內(nèi)胚層[3]。還有研究[4]發(fā)現(xiàn)HSCs表達間質(zhì)干細胞標記物,且有向脂肪細胞或骨細胞分化的潛能,表明HSCs起源于間質(zhì)干細胞。HSCs,尤其是活化的HSCs能表達中胚層標記物如結(jié)蛋白(desmin)、α-平滑肌肌動蛋白(α-smooth muscle actin, α-SMA),提示其來源于中胚層,Asahina等[5]的研究結(jié)果支持此觀點。此外,部分學者提出HSCs是由橫膈間皮細胞遷移發(fā)育而來,Asahina等[6]發(fā)現(xiàn)小鼠中胚層原始橫膈間皮細胞由肝臟表面向肝內(nèi)遷移,并逐漸分化為HSCs。綜上,HSCs可同時表達內(nèi)、中、外胚層標記物,但其來源迄今仍未完全闡明。
2. HSCs的發(fā)育調(diào)控:目前關于HSCs發(fā)育調(diào)控的研究報道相對較少,已有研究表明血管內(nèi)皮生長因子(vascular endothelial growth factor, VEGF)信號通路在HSCs分化、遷移進入肝臟的過程中發(fā)揮重要作用。Yin等[7]的研究發(fā)現(xiàn),在HSCs的發(fā)育過程中,抑制VEGF信號能顯著減少遷移進入肝臟的HSCs數(shù)量,并嚴重影響HSCs存活;然而,在HSCs發(fā)育的終末階段,抑制VEGF信號僅能導致HSCs輕度減少。此外,一些發(fā)育相關基因如Wt1(Wilms tumor 1 homolog)、Lhx2(LIM homeobox protein 2)在維持HSCs的正常發(fā)育中亦起有重要作用。在胚胎發(fā)育過程中敲除Wt1基因可導致HSCs祖細胞異常分化,進而影響HSCs的正常發(fā)育,導致肝臟體積縮小和形態(tài)異常[8];在胚胎中敲除Lhx2基因可引起大量HSCs異常活化,導致與肝纖維化相關的細胞外基質(zhì)(extracellular matrix, ECM)進行性沉積,影響肝臟發(fā)育[9]。然而,Wt1和Lhx2抑制HSCs異?;罨南掠涡盘柾啡晕搓U明,有待進一步研究。
二、HSCs在肝臟發(fā)育中的作用
HSCs在肝臟發(fā)育過程中極為靠近肝上皮細胞、內(nèi)皮細胞和造血細胞,表明其可能參與調(diào)節(jié)這些細胞的增殖、分化和成熟。胚胎HSCs能表達生長因子和絲裂原,這些物質(zhì)在肝臟發(fā)育過程中對肝上皮細胞的增殖至關重要。在Wt1敲除的胎肝中,HSCs異?;罨毎麅?nèi)催化維甲酸合成的視黃醛脫氫酶2(RALDH2)表達下調(diào)或缺失,影響肝臟祖細胞的增殖、擴散[8]。另一方面,HSCs在肝臟祖細胞的分化中亦可能扮演重要角色。Suzuki等[10]的研究發(fā)現(xiàn),ECM可影響肝臟祖細胞分化,在決定肝臟祖細胞向肝細胞或膽管細胞方向分化的過程中,不同ECM組分具有不同效應。而HSCs可分泌多種ECM,提示其在肝臟祖細胞分化中起重要作用。Notch信號通路在肝內(nèi)膽管細胞的分化和膽管形態(tài)發(fā)生中扮演關鍵角色[11]。有研究發(fā)現(xiàn)門靜脈間質(zhì)中的Notch配體Jagged1失活可導致肝內(nèi)膽管缺失[12],鑒于胎肝門管區(qū)HSCs亦表達Jagged1[13],推測HSCs的出現(xiàn)和分布可能與肝內(nèi)膽管發(fā)育有關。進一步探索HSCs是否通過Notch信號通路調(diào)節(jié)膽管發(fā)育具有重要意義。
在血管生成過程中,竇周細胞和竇內(nèi)皮細胞之間的相互作用對血管成熟及其完整性至關重要。在肝臟中,HSCs相當于竇周細胞,通過分泌血小板源性生長因子(platelet-derived growth factor, PDGF)與竇內(nèi)皮細胞產(chǎn)生聯(lián)系,影響肝臟血管結(jié)構(gòu)和功能[14]。在β-catenin敲除小鼠肝臟中,HSCs異?;罨⒕奂跀U張的肝竇周圍,這一發(fā)現(xiàn)支持上述觀點[15]。在哺乳動物胚胎發(fā)育過程中,肝臟為主要造血器官。胚胎HSCs表達的基質(zhì)細胞衍生因子-1α(stromal cell-derived factor-1α, SDF-1α)是一種強效造血干細胞化學誘導劑[16],可募集表達SDF-1α受體CXCR4的造血干細胞進入胎肝。這些發(fā)現(xiàn)均提示HSCs與肝臟血管發(fā)生有密切聯(lián)系。
三、HSCs在肝臟再生中的作用
肝臟再生為一多步驟過程,包括起始和終止,當再生后的肝臟代謝滿足機體需求時,肝臟即停止再生。轉(zhuǎn)化生長因子-β(transforming growth factor-β, TGF-β)是最重要的促纖維化和抗增殖因子,是肝臟再生反應的關鍵介質(zhì),而HSCs是合成TGF-β的主要細胞[17]。在大鼠肝臟再生模型的再生早期收集HSCs條件培養(yǎng)基進行檢測,可發(fā)現(xiàn)其中含有大量與肝細胞增殖相關的細胞因子和趨化因子,再生起始階段,肝細胞生長因子(hepatocyte growth factor, HGF)等因子強大的促有絲分裂能力可能超過TGF-β1的抗增殖作用,至再生終末期,HSCs分泌高水平的TGF-β1,抑制肝實質(zhì)細胞增殖,甚至誘導細胞凋亡[18]。在原代培養(yǎng)的小鼠HSCs中,5-羥色胺(5-hydroxytryptamine, 5-HT)可通過與HSCs上的5-HT2B受體結(jié)合增強TGF-β1表達,而5-HT2B受體拮抗劑則可促進肝部分切除術(shù)(partial hepatectomy, PH)、膽管結(jié)扎和CCl4誘導的急慢性肝損傷模型的肝細胞生長,抑制肝纖維化[19]。因此,HSCs可能通過改變細胞因子表達譜調(diào)節(jié)肝臟再生。
HSCs的活化對肝臟再生至關重要。2-乙酰氨基芴(2-acetylaminofluorene, 2AAF)是一種肝細胞增殖抑制劑,應用2AAF/PH可建立基于肝臟祖細胞或卵圓細胞的肝臟再生修復模型[20]。為證實活化的HSCs對肝臟再生的重要性,有研究以對乙酰氨基酚或2AAF/PH誘導肝損傷動物模型,再以膠霉毒素[21]或左旋半胱氨酸[22]清除或抑制活化的HSCs,發(fā)現(xiàn)肝細胞和卵圓細胞的正常再生反應受到抑制,肝損傷加重。Kalinichenko等[23]構(gòu)建了Foxf1+/-小鼠模型,并以CCl4誘導肝損傷,結(jié)果顯示與對照組相比,F(xiàn)oxf1+/-小鼠肝臟修復和HSCs活化受限,肝損傷持續(xù)加重。上述研究結(jié)果證實HSCs活化是促進受損肝組織修復的重要環(huán)節(jié)。
活化的HSCs產(chǎn)生大量細胞因子和趨化因子[24],這些因子可直接增強肝臟祖細胞和肝細胞的增殖能力,或間接作用于肝竇內(nèi)皮細胞和免疫細胞,促進肝臟再生。Deng等[25]的研究表明,完全活化的HSCs可通過分泌HGF誘導骨髓間質(zhì)干細胞向類肝細胞分化。對2AAF/PH大鼠肝損傷模型的研究[18]發(fā)現(xiàn),肝臟再生早期HSCs條件培養(yǎng)基中含有高水平的HGF,可促進卵圓細胞增殖。在人類慢性肝纖維化進程中,活化的HSCs表達p75NTR。研究[26]發(fā)現(xiàn),p75NTR缺失小鼠的HSCs在體外培養(yǎng)時無法正常分化為肌成纖維細胞,導致HGF合成受損,進而影響肝細胞增殖,使肝臟病變加重。由于p75NTR信號系通過Rho調(diào)節(jié)HSCs分化,因此持續(xù)激活Rho蛋白可恢復p75NTR-/- HSCs的分化能力。Hedgehog(Hh)信號通路可能是肝臟再生過程中HSCs與肝細胞間相互作用的另一條途徑?;罨腍SCs可表達Hh信號通路組分之一——一種名為音猬因子(sonic hedgehog, Shh)的蛋白質(zhì)以及Hh抑制劑Hip,在活化HSCs的培養(yǎng)過程中,Hip表達減少,Shh表達增加,后者作為活化HSCs的自分泌生長因子激活Hh信號通路并參與肝臟病理進程[27]。在PH誘導的小鼠肝臟再生模型中,肝細胞中Hh配體產(chǎn)生增加,Hh信號通路活化,可誘導肝細胞增殖[28]。
除上述路徑外,HSCs還可能作為肝上皮細胞祖細胞,在肝臟再生過程中通過間質(zhì)-上皮轉(zhuǎn)換(mesenchymal-epithelial transition)生成肝細胞。Kordes等[29]將活化的胰腺星狀細胞(pancreatic stellate cells, PSCs)移植入2AAF/PH誘導的大鼠肝臟再生模型中,發(fā)現(xiàn)PSCs可分化為肝細胞和膽管細胞,參與肝臟修復。后續(xù)研究[30]以2AAF/PH或倒千里光堿(retrorsine)/PH建立大鼠肝臟再生模型并予移植HSCs,結(jié)果顯示移植的HSCs可形成間充質(zhì)組織、祖細胞、肝細胞和膽管細胞,從而促進肝臟再生。此外,與正常大鼠相比,該研究使用的純合GUNN大鼠肝細胞由于缺乏Ugt1a1基因,膽紅素處理功能受損,而移植HSCs可改善模型大鼠的肝臟膽紅素處理功能缺陷,升高血清直接膽紅素水平;體外培養(yǎng)的HSCs在分化為肝細胞和膽管細胞的過程中能一過性獲得肝臟祖細胞基因表達譜,亦提示HSCs可能為肝臟祖細胞的來源之一。Michelotti等[31]通過細胞譜系示蹤技術(shù)發(fā)現(xiàn),HSCs為肌成纖維細胞和肝臟祖細胞的來源之一,具有分化成為肝細胞和膽管細胞的能力。上述研究均表明HSCs為肝臟前體細胞的來源之一,且有助于肝臟再生。
四、HSCs研究存在的問題
要充分了解HSCs在肝臟再生中所扮演的角色,在不同肝損傷再生模型中清除HSCs被認為是最理想的途徑。既往研究主要是通過一些化學藥物,如膠霉毒素、左旋半胱氨酸選擇性抑制動物模型中的HSCs,但這些藥物對其他類型肝細胞的影響尚難以排除。小鼠GFAP啟動子可驅(qū)動單純皰疹病毒胸苷激酶(thymidine kinase, Tk)基因在HSCs中特異性表達。在GFAP-Tk轉(zhuǎn)基因小鼠中,應用更昔洛韋可誘導HSCs凋亡[32],但該模型并不能完全清除HSCs,故其應用存在局限性。
肝臟再生經(jīng)由哪條信號通路介導取決于初始損傷的性質(zhì)及其嚴重程度,完善的多樣性動物模型的建立將極大促進未來HSCs在肝臟再生中作用的研究。嚙齒類動物模型的優(yōu)勢在于可體外分離、培養(yǎng)和激活HSCs,而斑馬魚(zebra-fish)活體成像技術(shù)適用于研究肝臟再生過程中細胞間的相互作用。與嚙齒類動物模型一樣,PH和化學物質(zhì)亦可誘導斑馬魚體內(nèi)的肝臟再生。此外,基因工具的研發(fā)將有助于其他肝臟再生模型的進展。然而,由于人體內(nèi)不同病因所誘發(fā)的肝損傷再生及其病程的復雜性,迄今為止,動物模型仍無法完全模擬人類肝臟再生。
五、結(jié)語與展望
HSCs被稱為肝內(nèi)多能細胞,參與肝功能活動以及肝臟疾病的發(fā)生、發(fā)展。既往對HSCs的研究主要集中在其與肝纖維化的關系方面,但多年來以HSCs為靶點治療肝纖維化并未能取得突破性進展。近年研究發(fā)現(xiàn)HSCs在肝臟發(fā)育和再生中發(fā)揮重要作用,并初步闡明了HSCs參與肝臟發(fā)育和再生的作用機制。一系列研究結(jié)果表明HSCs的作用遠較想象中復雜,以HSCs為靶點治療肝纖維化,在抑制ECM產(chǎn)生和沉積的同時,可能會影響肝臟再生,提示肝纖維化的治療需要尋求新的思路和方法。此外,考慮到HSCs在肝臟發(fā)育和再生中所起的重要作用,對其作進一步探索將極大推進肝功能衰竭甚至肝細胞癌等疾病的治療研究。
參考文獻
1 Tacke F, Weiskirchen R. Update on hepatic stellate cells: pathogenic role in liver fibrosis and novel isolation techniques[J]. Expert Rev Gastroenterol Hepatol, 2012, 6 (1): 67-80.
2 Cassiman D, Barlow A, Vander Borght S, et al. Hepatic stellate cells do not derive from the neural crest[J]. J Hepatol, 2006, 44 (6): 1098-1104.
3 Suskind DL, Muench MO. Searching for common stem cells of the hepatic and hematopoietic systems in the human fetal liver: CD34+ cytokeratin 7/8+ cells express markers for stellate cells[J]. J Hepatol, 2004, 40 (2): 261-268.
4 Kordes C, Sawitza I, G?tze S, et al. Hepatic stellate cells support hematopoiesis and are liver-resident mesenchymal stem cells[J]. Cell Physiol Biochem, 2013, 31 (2-3): 290-304.
5 Asahina K, Tsai SY, Li P, et al. Mesenchymal origin of hepatic stellate cells, submesothelial cells, and perivascular mesenchymal cells during mouse liver development[J]. Hepatology, 2009, 49 (3): 998-1011.
6 Asahina K, Zhou B, Pu WT, et al. Septum transversum-derived mesothelium gives rise to hepatic stellate cells and perivascular mesenchymal cells in developing mouse liver[J]. Hepatology, 2011, 53 (3): 983-995.
7 Yin C, Evason KJ, Maher JJ, et al. The basic helix-loop-helix transcription factor, heart and neural crest derivatives expressed transcript 2, marks hepatic stellate cells in zebrafish: analysis of stellate cell entry into the developing liver[J]. Hepatology, 2012, 56 (5): 1958-1970.
8 Ijpenberg A, Pérez-Pomares JM, Guadix JA, et al. Wt1 and retinoic acid signaling are essential for stellate cell development and liver morphogenesis[J]. Dev Biol, 2007, 312 (1): 157-170.
9 Wandzioch E, Kolterud A, Jacobsson M, et al. Lhx2-/- mice develop liver fibrosis[J]. Proc Natl Acad Sci U S A, 2004, 101 (47): 16549-16554.
10Suzuki A, Iwama A, Miyashita H, et al. Role for growth factors and extracellular matrix in controlling differentiation of prospectively isolated hepatic stem cells[J]. Development, 2003, 130 (11): 2513-2524.
11Zong Y, Panikkar A, Xu J, et al. Notch signaling controls liver development by regulating biliary differentiation[J]. Development, 2009, 136 (10): 1727-1739.
12Hofmann JJ, Zovein AC, Koh H, et al. Jagged1 in the portal vein mesenchyme regulates intrahepatic bile duct development: insights into Alagille syndrome[J]. Development, 2010, 137 (23): 4061-4072.
13Suzuki K, Tanaka M, Watanabe N, et al. p75 Neurotrophin receptor is a marker for precursors of stellate cells and portal fibroblasts in mouse fetal liver[J]. Gastroenterology, 2008, 135 (1): 270-281.e3.
14Semela D, Das A, Langer D, et al. Platelet-derived growth factor signaling through ephrin-b2 regulates hepatic vascular structure and function[J]. Gastroenterology, 2008, 135 (2): 671-679.
15Berg T, DeLanghe S, Al Alam D, et al. β-catenin regulates mesenchymal progenitor cell differentiation during hepatogenesis[J]. J Surg Res, 2010, 164 (2): 276-285.
16Kubota H, Yao HL, Reid LM.Identification and characterization of vitamin A-storing cells in fetal liver: implications for functional importance of hepatic stellate cells in liver development and hematopoiesis[J]. Stem Cells, 2007, 25 (9): 2339-2349.
17Karkampouna S, Ten Dijke P, Dooley S, et al. TGFβ signaling in liver regeneration[J]. Curr Pharm Des, 2012, 18 (27): 4103-4113.
18Chen L, Zhang W, Zhou QD, et al. HSCs play a distinct role in different phases of oval cell-mediated liver regeneration[J]. Cell Biochem Funct, 2012, 30 (7): 588-596.
19Ebrahimkhani MR, Oakley F, Murphy LB, et al. Stimulating healthy tissue regeneration by targeting the 5-HT2B receptor in chronic liver disease[J]. Nat Med, 2011, 17 (12): 1668-1673.
20Curado S, Stainier DY. deLiver’in regeneration: injury response and development[J]. Semin Liver Dis, 2010, 30 (3): 288-295.
21Shen K, Chang W, Gao X, et al. Depletion of activated hepatic stellate cell correlates with severe liver damage and abnormal liver regeneration in acetaminophen-induced liver injury[J]. Acta Biochim Biophys Sin (Shanghai), 2011, 43 (4): 307-315.
22Pintilie DG, Shupe TD, Oh SH, et al. Hepatic stellate cells’ involvement in progenitor-mediated liver regeneration[J]. Lab Invest, 2010, 90 (8): 1199-1208.
23Kalinichenko VV, Bhattacharyya D, Zhou Y, et al. Foxf1 +/- mice exhibit defective stellate cell activation and abnormal liver regeneration following CCl4 injury[J]. Hepatology, 2003, 37 (1): 107-117.
24Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver[J]. Physiol Rev, 2008, 88 (1): 125-172.
25Deng X, Chen YX, Zhang X, et al. Hepatic stellate cells modulate the differentiation of bone marrow mesenchymal stem cells into hepatocyte-like cells[J]. J Cell Physiol, 2008, 217 (1): 138-144.
26Passino MA, Adams RA, Sikorski SL, et al. Regulation of hepatic stellate cell differentiation by the neurotrophin receptor p75NTR[J]. Science, 2007, 315 (5820): 1853-1856.
27Yang L, Wang Y, Mao H, et al. Sonic hedgehog is an autocrine viability factor for myofibroblastic hepatic stellate cells[J]. J Hepatol, 2008, 48 (1): 98-106.
28Ochoa B, Syn WK, Delgado I, et al. Hedgehog signaling is critical for normal liver regeneration after partial hepatectomy in mice[J]. Hepatology, 2010, 51 (5): 1712-1723.
29Kordes C, Sawitza I, G?tze S, et al. Stellate cells from rat pancreas are stem cells and can contribute to liver regeneration[J]. PLoS One, 2012, 7 (12): e51878.
30Kordes C, Sawitza I, G?tze S, et al. Hepatic stellate cells contribute to progenitor cells and liver regeneration[J]. J Clin Invest, 2014, 124 (12): 5503-5515.
31Michelotti GA, Xie G, Swiderska M, et al. Smoothened is a master regulator of adult liver repair[J]. J Clin Invest, 2013, 123 (6): 2380-2394.
32Puche JE, Lee YA, Jiao J, et al. A novel murine model to deplete hepatic stellate cells uncovers their role in amplifying liver damage in mice[J]. Hepatology, 2013, 57 (1): 339-350.
(2016-02-04收稿;2016-02-15修回)
*基金項目:國家自然科學基金(81470871)
DOI:10.3969/j.issn.1008-7125.2016.03.009
#Email: 386247106@qq.com
&本文通信作者,Email: weifenxie@medmail.com.cn