• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    RNA-seq approach to discriminate gene expression profiles in RIXI-overexpressing transgenic rice

    2016-03-13 07:43:41PENGYaoyaoHOUChunxiaoZHANYihuaHUANGYingyingSUNXiangyuWENGXiaoyan

    PENG Yaoyao,HOU Chunxiao,ZHAN Yihua,HUANG Yingying,SUN Xiangyu,WENG Xiaoyan*

    (1.State Key Laboratory of Plant Physiology and Biochemistry,College of Life Sciences,Zhejiang University,Hangzhou 310058, China;2.Zhejiang Academy of Agricultural Sciences,Hangzhou 310021,China;3.School of Medicine,Zhejiang University,Hangzhou 310058,China)

    RNA-seq approach to discriminate gene expression profiles in RIXI-overexpressing transgenic rice

    PENG Yaoyao1,HOU Chunxiao2,ZHAN Yihua1,HUANG Yingying3,SUN Xiangyu1,WENG Xiaoyan1*

    (1.State Key Laboratory of Plant Physiology and Biochemistry,College of Life Sciences,Zhejiang University,Hangzhou 310058, China;2.Zhejiang Academy of Agricultural Sciences,Hangzhou 310021,China;3.School of Medicine,Zhejiang University,Hangzhou 310058,China)

    Summary To investigate whether RIXI-overexpressing transgenic plants influence the expression of other genes,we analyzed transcriptomic changes between R7(RIXI-overexpression transgenic line 7)plants and WT (wild-type)plants using deep RNA sequencing combined with digital gene expression profile analysis.The differentially expressed genes between the WT and R7 libraries were identified by DEG-Seq(differentially expressed genes from RNA-seq)software.The profiling analysis revealed that the overexpression of RIXI in rice resulted in numerous changes in gene expressions,including upregulation of 391 genes and downregulation of 905 genes.These differentially expressed genes were categorized into 30 groups with broad functions using gene ontology(GO)assignments.Among the 30 groups,five groups(single-organism metabolic process,biological regulation,anion binding,small molecule binding and nucleotide binding)had more differentially expressed genes.Biological pathways affected by RIXI overexpression were mapped using the detected genes to reference canonical pathways in the Kyoto Encyclopedia of Genes and Genomes(KEGG).The differentially expressed genes were assigned to 98 KEGG pathways,and four enriched pathways were identified:metabolic,biosynthesis of secondary metabolites,plant-pathogen interaction and plant hormone signal transduction.The measurement of agronomic traits of R7 showed that the overexpression of RIXI did not influence the growth and development of rice.Thus,we conclude that the xylanase inhibitor gene RIXI may play a role in activation of a complex signal transduction network in response to various biotic and abiotic stresses,but does not have a negative influence on growth and development of rice plants.

    Key words rice xylanase inhibitor;transgenic rice plant;RNA sequencing;plant defense

    Plant endogenous xylanase inhibitors(XIs), discovered in 1997 by DEBYSER et al.[1]in wheat, are plant-produced proteinaceous inhibitors that inhibit xylanases.To date,three structurally different classes of XIs have been identified in plants,Triticum aestivum xylanase inhibitor(TAXI)-type[2],xylanaseinhibiting protein(XIP)-type[3]and thaumatin-like xylanase inhibitor(TLXI)-type[4].TAXI,XIP and TLXI genes have already been characterized in wheat, rice,maize,barley,sorghum and rye[5].

    XIs are only active against xylanases of microbial origin and cannot inhibit the plant endogenous xylanases;therefore,it has been hypothesized that XIs function only in plant defense rather than in plant growth and development[6].Additional features that support possibly involvement of XIs in plant defense include the findings that XIs share sequence and structure homology with some pathogenesis-related (PR)proteins,and their expression is induced under stress conditions,and they inhibit the growth and germination of fungi.For example,XIPand TLXI can be classified as PR proteins of classes PR-5 and PR-8, respectively,based on their homology to thaumatinlike proteins and chitinases.Some members of TAXI and XIP gene families are significantly induced by wounding,pathogen infection and treatment with jasmonic acid(JA)and methyl jasmonate[78].A chitinase-like XIP from coffee,Coffea arabica, inhibited the germination of spores of soybean Asian rust Phakopsora pachyrhizi[9];and XIP and TAXI inhibited the growth of Rhizoctonia solani and Fusarium graminearum,respectively[10].

    Rice was reported to contain only the XIP type XIs,including RIXI,OsXIP,riceXIP and OsHIXIP[8,1113].The RIXI gene(LOC_Os11g47580)was first cloned from rice in 2005,and it inhibited fungal GH11 xylanases,but did not inhibit GH11 xylanases from bacteria and GH10 xylanases from both fungi and bacteria[11];and RIXI was upregulated in rice seedlings infected by Magnaporthe grisea[14].

    Although most studies agree that XIs are involved in plant defense,little is known about additional functions of XIs in rice growth,XI-related genes and their expression pattern.

    The RNA-seq method generates absolute information,and is more sensitive for transcripts with low expression.In this study,to gain more insight into the function of XIs in plant development,deep RNA sequencing was employed in combination with digital gene expression(DGE)profiles to analyze the difference between the transcriptomes of R7(RIXI-overexpression transgenic line 7)and WT(wild-type). Additionally,the biological functions of RIXI,XI,and the effects of overexpressing RIXI on expressions of other rice genes as well as the mechanism of its role in plant defense were illustrated.

    1 Materials and methods

    1.1Plant materials and growth conditions

    Rice(Oryza sativa L.ssp.japonica cv. Nipponbare)was used in this study.R7 plants were RIXI overexpressing transgenic rice plants with single copy integration[15],which were generated by placing RIXI under control of the strong cauliflower mosaic virus(CaMV)35S promoter in our laboratory.WTand R7 were grown in normal culture solution at p H 5.0- 5.5 in a glasshouse at 28°C with 16 h of light and 8 h of darkness.The leaves of 2-week-old plants were collected for sequencing.The experiments were repeated three times.The experimental materials for sequencing were obtained by mixing 50 leaves together in each group.

    1.2Library construction and sequencing

    At least 3μg of total RNA per sample was sent to the Beijing Genomics Institute for Solexa sequencing.Sequencing libraries were generated using Illumina TruSeq RNA sample preparation kit (Illumina,San Diego,CA,USA)following the manufacturer's recommendations.The clustering of the index-coded samples was performed on a cBot Cluster Generation System using TruSeq PE cluster kit v3-cBot-HS(Illumina,San Diego,CA, USA)according to the manufacturer's instructions.After cluster generation,the library preparations were sequenced on an Illumina Hiseq 2000 platform and 100 bp single-end reads were generated.

    1.3Data analysis

    Raw data(raw reads)of FASTQ format were first processed through in-house Perl scripts.In this step,clean data(clean reads)were obtained by removing reads containing adapters,those containing poly-N and low-quality reads from raw data.At the same time,Q20,Q30,GC content and the clean data were calculated.All downstream analyses were based on the clean highquality data.

    Reference genome and gene model annotation files were directly downloaded from the genome website(ftp://ftp.ensemblgenomes.Org/pub/release-17/plants/fasta/oryza_sativa),and index of the reference genome was built using Bowtie v2.0.6, and single-end clean reads were aligned to the reference genome using Top Hat v2.0.9.HTSeq v0.5.4p3 was used to count the read numbers mapped to each gene.Then RPKM(reads per kilobase of exon model per million mapped reads) of each gene was calculated based on the length of the gene and read counts mapped to this gene[16]. To obtain statistical confirmation of the differences in gene expression between the WT and R7 plants, we used the RPKM to normalize the expression level of genes.All the uniquely mapped reads were used for calculating RPKM values.The differentially expressed genes between the WT and R7 libraries were identified using DEG-Seq software[17],and P-values were corrected using the method of BENJAMINI et al.[18].Genes with an adjusted P-value<0.05 found by DEG-Seq were assigned as differentially expressed.

    1.4GO and KEGG enrichment analysis of differentially expressed genes

    Gene ontology(GO)enrichment analysis of differentially expressed genes was implemented by the GOseq R package,in which gene length bias was corrected.GO terms with corrected P-value<0.05 were considered significantly enriched by differentially expressed genes.

    Kyoto Encyclopedia of Genes and Genomes (KEGG)is a database resource for understanding high-level functions and utilities of the biological system,such as the cell,organism and ecosystem from molecular-level information,especially largescale molecular datasets generated by genome sequencing and other high-throughput experimental technologies(http://www.genome.jp/kegg/).We used KOBAS software to test the statistical enrichment of differentially expressed genes in KEGG pathways.

    1.5Quantitative real-time PCR analysis

    For quantitative real-time polymerase chain reaction(qPCR),total RNAs from seedlings of different genotypes were extracted using RNA prep pure plant kit(TianGen Biotech Co.Ltd.,Qiagen, http://www.qiagen.com),following the manufacturer's protocols.Total RNAs were converted into cDNAs using PrimeScript RT reagent kit(TaKaRa,now Clontech,http://www.clontech.com/takara).Realtime PCR analysis used SYBR Premix Ex Taq TMⅡ(TaKaRa)on a Roche LightCycler480 real-time PCR system,following the manufacturer's instructions (Roche,http://www.roche.com).Transcript levels of each mRNA were determined and normalized withthe level of actin mRNAs using theΔCtmethod[19]. Gene-specific primers are listed in Table 1.

    1.6Measurement of agronomic traits

    Ten plants from each genotype were randomly selected and evaluated for five growth and development related agronomic traits[20].Plant height and panicle length were measured as the average of the ten plants,and number of tiller per plant and panicles per plant were the average which evaluated for all tillers and panicles on the ten plants(panicles with less than ten seeds were not counted)[2122].Thousand-grain mass(TGM)was the average of a sample of 1 000 filled grains per plant.All data including at least three measurements were analyzed using SPSS 16.0(SPSS Inc.,Chicago, IL,USA)for analysis of variance(ANOVA)and Duncan's test.P<0.05 was considered statistically significant.

    Table 1 Genes selected for quantitative real-time PCR analysis

    2 Results

    2.1Comparison of gene expression level between the two libraries

    To investigate the expression patterns of genes in WT and R7 plants,the RNA extracted from leaves was sequenced by Illumina Hiseq 2000 platform.Comparing the data between WT and R7 plants,each of two replicate experiments showed highly correlated expression values(R2>0.92), indicating that the results from these experiments were reliable.

    Compared with WT,a total of 1 296 significantly changed genes were detected in R7 plants,in which 391 genes were upregulated and 905 genes were downregulated.The results also revealed that a total of 96 genes were upregulated by at least threefolds,and 431 genes were downregulated by at least threefolds in R7 plants. Overexpression of RIXI gene may have an inhibitory effect on expression of some genes, because RIXI itself is an inhibitory protein,and overexpressing one gene in rice can influence the expression levels of some other genes.

    2.2Functional categorization of differentially expressed genes

    Gene expression was compared between R7 and WT rice plants,and GO(http://geneontology.org) assignments were used to classify the functions of the differentially expressed genes.The GO annotation of these genes was presented in Fig.1.These genes were mainly classified into the following categories: biological process and molecular function with 19 and 11 functional groups,respectively(Fig.1A,B). Among the 30 groups,five groups had more differentially expressed genes,such as single-organism metabolic process(GO:0044710)with 260 genes(62 upregulated genes and 198 downregulated genes)in the main category of biological process.Anion binding(GO:0043168)with 214 genes,small molecule binding(GO:0036094)with 212 genes in the main categories of molecular function.These results showed that RIXI may be involved in the molecular function and the regulation of biological process,and plays a vital role.

    Fig.1 Histogram of gene ontology classification

    2.3Pathway enrichment analysis of the differentially expressed genes

    The biological pathways affected by RIXI expression were evaluated by mapping the detected genes to reference canonical pathways in the KEGG.Based on the expression pattern in WT and R7 plants,the differentially expressed genes were assigned to 98 KEGG pathways.The pathways with the greatest representation by unique genes were the metabolic pathways(KO: osa01100)with 87 members(6.1%of background genes in metabolic pathway),biosynthesis of secondary metabolites(KO:osa01110)with 62 members(8.5%),plant-pathogen interaction (KO:osa04626)with 25 members(26.0%)and plant hormone signal transduction(KO:osa04075) with 20 members(13.7%).These annotations provide a valuable resource for investigating the function of RIXI in rice growth and pathogen defense.

    2.4Overexpression of RIXI modulates plant hormone signaling

    The plant hormone signal transduction pathway contained a total of 146 genes,with 20 significantly upregulated or downregulated genes in R7 plants compared to WT.It should be pointedthat seven jasmonate-signaling genes in R7 plants were downregulated(Table 2).These genes(log-ratio range of-6.302 8 to-1.281 5)included rice jasmonate ZIM-domain(JAZ)proteins OsJAZ6,OsJAZ7, OsJAZ8,OsJAZ9,OsJAZ10,OsJAZ12 and OsJAZ13.

    Compared with WT plants,two regulatory protein NPR1 genes(LOC_Os01g09800 and LOC_Os03g46440,log-ratio range of-0.995 1 and -1.661 6)in transgenic plants were downregulated (Table 2).Ethylene(ET)signaling-related genes, such as ET receptor-like protein and EIN3-binding F-box protein 1,were upregulated in R7 plants. Overexpression of RIXI also influenced abscisic acid(ABA)signaling,and enhanced the expression of one gibberellin(GA)20 oxidase gene (LOC_Os01g66100);while a chitin-inducible gibberellin-responsive protein 1 gene(CIGR1, LOC_Os07g36170)was downregulated,and two indole acetic acid(IAA)biosynthesis genes, indole-3-acetic acid-amido synthetases OsGH3.8 and OsGH3.2,were highly downregulated (Table 2).

    Table 2 Selected genes of plant hormone signal transduction pathway with altered expression in the two samples

    2.5RIXI expression and transcription factors(TFs)

    Overexpression of RIXI induced changes in the expression of 95 TFs belonging to 23 TF families(Table 3),including AP2/EREBP,AUX/ IAA,BES1,b HLH,bZIP,C3 H,HSF,MYB, NAC,TCP,Trihelix,WRKY and TIFY,all of which play important roles in plant development and immunity.Of the 95 identified TF genes,30 were upregulated,including two ethylene-responsive factor transcriptional regulator genes(LOC_Os09g11460 and LOC_Os04g46220)belonging to the AP2/ EREBP family,two Aux/IAA TFs,seven b HLH genes,three C3H genes and one WRKY gene (LOC_Os08g38990).Meantime,65 TF genes were downregulated,including six MYB TFs, seven TIFY TFs and 13 WRKY TFs(Table 3).

    Table 3 Number of transcription factor genes with altered expression in the two samples

    2.6RIXI was involved in plant defense responses

    The KEGG pathway enrichment analysis also revealed that the“plant-pathogen interaction”pathway was also significantly changed in R7 plants,indicating that RIXI overexpression influenced the expression of many genes involved in plant defense.This included such signal transduction components as Ca2+and G-protein signaling,protein phosphatase,protein kinases,and defense response proteins including cyclic nucleotidegated ion channel 2,calcium-binding protein and defense proteins against fungi or bacteria(Table 4).

    Overexpression of RIXI also influenced the expression of genes involved in reactive oxygen species(ROS)production and antioxidants(Table 4).Of the responsive ROS-production genes (including amine oxidase,germin-like protein, respiratory burst oxidase homolog protein F and NADH dehydrogenase),three were upregulated and six were downregulated.Of the responsive genes involved in antioxidants,four were upregulated and 13 were downregulated(Table 4).

    Table 4 Number of genes with altered expression involved in plant-pathogen interaction pathway

    2.7Confirmation of tag-mapped genes by qPCR analyses

    To evaluate the reproducibility of the profile, 10 genes were selected for qPCR assays,including PR genes,TF genes,JA and salicylic acid(SA) biosynthesis and signaling genes.Expression levels of these genes(Cht,OsPR1a,OsPR1b,PR4, AOS,LOX,PAL,N H1,Pid2 and Myb)had similar patterns with qPCR to those of Tag-seq analysis(Fig.2),indicating the validity of the profile.

    Fig.2 Quantitative real-time PCR analysis for 10 transcripts in WT and R7 plants

    2.8Characteristics of transgenic rice plants

    The transgenic lines R7 appeared to grow and develop normally.Phenotype parameters were measured at the stage of plant maturity.There were no significant differences in plant height, panicle length,number of tillers and panicles compared with non-transgenic plants(WT)(Table 5).The transgenic lines R7 had slight higher values for TGM.These results indicate that the overexpression of RIXI has little influence during the development stages of transgenic rice plants and don't reduce the production of rice in total; moreover,it might have a positive effect on the yield of rice to a certain extent.

    Table 5 Phenotype and thousand-grain mass(TGM)of R7 and WT plants

    3 Discussion

    This study is the first to study transcriptomic changes of transgenic rice(R7)and WT plants using deep RNA sequencing combined with DEG profile analysis.Compared with WT,the transcript levels of 1 296 genes in overexpressing transgenic R7 plants were differentially expressed. The annotated differentially expressed genes could be classified into two categories:biological process and molecular function with 19 and 11 functional groups,respectively,among which singleorganism metabolic process,anion binding,small molecule binding,small molecule binding and nucleotide binding have more different expression genes.These results showed that RIXI may be involved in the molecular function and regulation of biological process by controlling the small molecular binding which involved in the metabolic process.According to KEGG pathway enrichment analysis,most differentially expressed genes were involved in metabolism,biosynthesis of secondary metabolites,plant-pathogen interaction and plant hormone signal transduction.By altering metabolism,plants could make more energy available for synthesis of defense materials and elicitation of the defense response[23].Changes in metabolism might be a general phenomenon in transcriptional repressors of JA responses in Arabidopsis and rice[2425].This confirmed observations that XIs respond to stress via a JA-mediated signaling pathway[8].One of the major roles of ABA is to mediate adaptive responses to various environmental stresses during the plant growth.It has a critical role in the plant adaptation or acclimation to abiotic stresses,such as high salinity,drought,low temperature and mechanical wounding[26].The overexpression of RIXI also influenced ABA signaling,resulting in upregulation of two genes(LOC_Os02g15640 and LOC_Os01g59760)and downregulation of three genes(LOC_Os07g42940,LOC_Os03g16170 and plant responses to stresses.

    As it has been hypothesized that RIXI plays an important role in plant defense[14],we focused on defense response genes,such as plant hormone signaling,TFs,signal transduction components and defense response protein genes.

    Phytohormones are chemical messengers that coordinate cellular activities.The phytohormones of plants such as Auxin/IAAs,CK,GA,ABA, ET,BR and JA are chemical messengers that play distinct but overlapping roles in the regulation of defense response,growth and development of rice plants.In the present study,compared with WT, plants overexpressing RIXI downregulated JAZ proteins.JAZ transcriptional proteins acted asLOC_Os02g52780).The LOC_Os01g59760 and LOC_Os02g52780 encode OsbZIP09 and OsbZIP23, respectively,which are members of the basic leucine zipper(bZIP)TF family in rice and regulate the expression of a wide spectrum of stress-related genes in response to abiotic stresses through an ABA-dependent regulation pathway[2627]. In addition,we found that the overexpression of RIXI elevated the m RNA levels of many genes involved in ET biosynthesis and signal transduction.ET plays a highly pleiotropic role in plant growth and development,and participates in responses to various biotic and abiotic stresses. Most genes involved in JA,SA,ABA,and ET biosynthesis or signaling pathways were altered, indicating that RIXI-induced plant defense responses are mainly dependent on the JA,SA, ABA and ET pathways.

    All major processes of life depend on differential gene expression,which is largely controlled by TFs'activity.Many TFs,such as MYB,NAC,WRKY,and TIFY family TFs, were downregulated or upregulated in R7 plants. Few genes of TFs,for example WRKY gene (OsWRKY30,LOC_Os08g38990)was highly increased in R7 plants.These downregulated TFs serve as negative regulators of defense signaling, for instance,OsWRKY71 has features characteristic of a transcriptional repressor of GA signaling in aleurone cells[28],and OsWRKY45-1 negatively regulates ABA signaling and,in addition,OsWRKY45-2 negatively regulates rice response to salt stress[29].TIFY 10C/OsJAZ8 negatively regulated the JA-induced resistance to pathogens in rice and acts as a repressor of JA signaling in rice[30].

    Many genes involved in the biosynthesis pathways of secondary signaling compounds were regulated,including Ca2+signaling,ROS,G-protein,phosphatidylinositol signaling,and protein kinase.Compared with transcript levels in WT plants,the expression levels of many genes encoding protein kinases,such as receptor-like protein kinase,mitogen-activated protein kinase (MAPK)and calmodulin dependent protein kinase,were changed in RIXI-overexpressing rice plants.Protein kinases represent an important mechanism in rice defense signal transduction,and MAPK signaling cascades are conserved in signaling pathways and have been implicated in a wide variety of plant biotic and abiotic stress responses[31].This indicates that the constitutive expression of RIXI in rice plants activated a complex signal transduction network and enhanced rice resistance to stress.

    In conclusion,RIXI,a rice XI,involved in biological process and molecular function, especially activated a complex signal transduction network in response to various biotic and abiotic stresses.Meanwhile,the overexpression of RIXI didn't have a negative influence on the growth and development of rice plants.More work should be done to understand the deep biological functions and regulatory mechanisms of this transgenic plant in future.

    References:

    [1] DEBYSER W,DERDELINCKX G,DELCOUR J A. Arabinoxylan solubilization and inhibition of the barley malt xylanolytic system by wheat during mashing with wheat wholemeal adjunct:Evidence for a new class of enzyme inhibitors in wheat.Journal of the American Society of Brewing Chemists,1997,55(4):153-156.

    [2] GEBRUERS K,DEBYSER W,GOESAERT H,et al. Triticum aestivum L.endoxylanase inhibitor(TAXI) consists of two inhibitors,TAXIⅠand TAXIⅡ,with different specificities.Biochemical Journal,2001,353(Pt 2):239-244.

    [3] MCLAUCHLAN W R,GARCIA-CONESA M T, WILLIAMSON G,et al.A novel class of protein from wheat which inhibits xylanases.Biochemical Journal,1999,338(Pt 2):441-446.

    [4] FIERENS E,ROMBOUTSS,GEBRUERS K,et al.TLXI, a novel type of xylanase inhibitor from wheat(Triticum aestivum)belonging to the thaumatin family.Biochemical Journal,2007,403(3):583-591.

    [5] DORNEZ E,CROES E,GEBRUERS K,et al.Accumulated evidence substantiates a role for three classes of wheat xylanase inhibitors in plant defense.Critical Reviews in Plant Sciences,2010,29(4):244-264.

    [6] TOKUNAGA T,MIYATA Y,FUJIKAWA Y,et al. RNAi-mediated knockdown of the XIP-type endoxylanaseinhibitor gene,Os XIP,has no effect on grain development and germination in rice.Plant and Cell Physiology,2008,49 (7):1122-1127.

    [7] TAKAHASHI-ANDO N,INABA M,OHSATO S,et al. Identification of multiple highly similar XIP-type xylanase inhibitor genes in hexaploid wheat.Biochemical and Biophysical Research Communications,2007,360(4): 880-884.

    [8] TOKUNAGA T,ESAKA M.Induction of a novel XIP-type xylanase inhibitor by external ascorbic acid treatment and differential expression of XIP-family genes in rice.Plant and Cell Physiology,2007,48(5):700-714.

    [9] VASCONCELOS E A,SANTANA C G,GODOY C V,et al.A new chitinase-like xylanase inhibitor protein(XIP) from coffee(Coffea arabica)affects soybean Asian rust (Phakopsora pachyrhizi)spore germination.BMC Biotechnology,2011,11:14.

    [10] FIERENS E.TLXI,a thaumatin-like xylanase inhibitor: Isolation,characterisation and comparison with other wheat (Triticum aestivum L.)xylanase inhibiting proteins. Leuven,Belgium:Katholieke Universiteit,2007.

    [11] DURAND A,HUGHES R,ROUSSEL A,et al.Emergence of a subfamily of xylanase inhibitors within glycoside hydrolase family 18.The FEBS Journal,2005,272(7): 1745-1755.

    [12] GOESAERT H,GEBRUERS K,COURTIN C M,et al. Purification and characterization of a XIP-type endoxylanase inhibitor from rice(Oryza sativa).Journal of Enzyme Inhibition and Medicinal Chemistry,2005,20(1):95-101.

    [13] XIN Z J,WANG Q,YU Z N,et al.Overexpression of a xylanase inhibitor gene,Os HI-XIP,enhances resistance in rice to herbivores.Plant Molecular Biology Reporter,2014, 32(2):465-475.

    [14] HOU C X,ZHAN Y H,JIANG D A,et al.Functional characterization of a new pathogen induced xylanase inhibitor (RIXI)from rice.European Journal of Plant Pathology, 2014,138(2):405-414.

    [15] HOU C X,LüT,ZHAN Y H,et al.Overexpression of the RIXI xylanase inhibitor improves disease resistance to the fungal pathogen,Magnaporthe oryzae,in rice.Plant Cell, Tissue and Organ Culture(PCTOC),2015,120(1): 167-177.

    [16] MORTAZAVI A,WILLIAMS B A,MCCUE K,et al. Mapping and quantifying mammalian transcriptomes by RNASeq.Nature Methods,2008,5(7):621-628.

    [17] ANDERS S,HUBER W.Differential expression analysis for sequence count data.Genome Biology,2010,11:R106.

    [18] BENJAMINI Y,HOCHBERG Y.Controlling the false discovery rate:A practical and powerful approach to multiple testing.Journal of the Royal Statistical Society:Series B, 1995,57(1):289-300.

    [19] CZECHOWSKI T,STITT M,ALTMANN T,et al. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis.Plant Physiology,2005,139(1):5-17.

    [20] HELLWIG S,DROSSARD J,TWYMAN R M,et al.Plant cell cultures for the production of recombinant proteins. Nature Biotechnology,2004,22(11):1415-1422.

    [21] RAKSZEGI M,PASTORI G,JONES H D,et al. Technological quality of field grown transgenic lines of commercial wheat cultivars expressing the 1Ax1 HMW glutenin subunit gene.Journal of Cereal Science,2008,47 (2):310-321.

    [22] WENG X Y,HUANG Y Y,HOU C X,et al.Effects of an exogenous xylanase gene expression on the growth of transgenic rice and the expression level of endogenous xylanase inhibitor gene RIXI.Journal of the Science of Food and Agriculture,2013,93(1):173-179.

    [23] SCHWACHTJE J,BALDWIN I T.Why does herbivore attack reconfigure primary metabolism?Plant Physiology, 2008,146(3):845-851.

    [24] CHINI A,FONSECA S,FERNANDEZ G,et al.The JAZ family of repressors is the missing link in jasmonate signalling.Nature,2007,448(7154):666-671.

    [25] YAN Y X,STOLZ S,CHéTELAT A,et al.A downstream mediator in the growth repression limb of the jasmonate pathway.The Plant Cell,2007,19(8):2470-2483.

    [26] XIANG Y,TANG N,DU H,et al.Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice.Plant Physiology,2008,148(4):1938-1952.

    [27] NIJHAWAN A,JAIN M,TYAGI A K,et al.Genomic survey and gene expression analysis of the basic leucine zipper transcription factor family in rice.Plant Physiology,2007, 146(2):333-350.

    [28] CHUJO T,KATO T,YAMADA K,et al.Characterization of an elicitor-induced rice WRKY gene,OsWRKY71. Bioscience,Biotechnology,and Biochemistry,2008,72(1): 240-245.

    [29] TAO Z,KOU Y J,LIU H B,et al.OsWRKY45 alleles play different roles in abscisic acid signalling and salt stress tolerance but similar roles in drought and cold tolerance in rice.Journal of Experimental Botany,2011,62(14): 4863-4874.

    [30] YAMADA S,KANO A,TAMAOKI D,et al.Involvement of OsJAZ8 in jasmonate-induced resistance to bacterial blight in rice.Plant and Cell Physiology,2012,53(12): 2060-2072.

    [31] XIE G,KATO H,IMAI R.Biochemical identification of the Os MKK6-Os MPK3 signalling pathway for chilling stress tolerance in rice.Biochemical Journal,2012,443(1):95-102.

    彭耀耀1,侯春曉2,詹儀花1,黃瑩瑩3,孫翔宇1,翁曉燕1*(1.浙江大學(xué)生命科學(xué)學(xué)院,植物生理學(xué)與生物化學(xué)國(guó)家重點(diǎn)實(shí)驗(yàn)室,杭州310058;2.浙江省農(nóng)業(yè)科學(xué)院,杭州310021;3.浙江大學(xué)醫(yī)學(xué)院,杭州310058)

    摘要為研究水稻植株中木聚糖酶抑制劑基因RIXI過(guò)量表達(dá)是否會(huì)引起其他基因的差異表達(dá),利用轉(zhuǎn)錄組測(cè)序(RNA-Seq)技術(shù)結(jié)合數(shù)字基因表達(dá)譜分析對(duì)RIXI過(guò)量表達(dá)單拷貝純合株系R7進(jìn)行基因差異表達(dá)分析.水稻全基因表達(dá)譜顯示,RIXI過(guò)表達(dá)引起水稻中大量基因的表達(dá)差異,包括391個(gè)上調(diào)基因,905個(gè)下調(diào)基因.GO分析將差異基因分成30個(gè)功能聚類,其中的5組聚類中含有較多的差異基因,分別為單個(gè)有機(jī)體代謝過(guò)程、生物調(diào)控、陰離子結(jié)合、小分子結(jié)合和核苷酸結(jié)合.利用KEGG數(shù)據(jù)庫(kù),通過(guò)Pathway顯著性富集確定差異表達(dá)基因參與主要生化代謝途徑和信號(hào)轉(zhuǎn)導(dǎo)途徑.與整個(gè)水稻基因組背景WT相比,R7的差異表達(dá)基因包含在98個(gè)KEGG通路中,包含差異基因數(shù)量最多的4個(gè)KEGG通路分別為代謝通路、次級(jí)代謝的生物合成、植物與病原菌互作和激素信號(hào)傳導(dǎo).農(nóng)藝性狀測(cè)量顯示,RIXI過(guò)表達(dá)對(duì)水稻生長(zhǎng)發(fā)育幾乎沒(méi)有影響.以上結(jié)果說(shuō)明,木聚糖酶抑制劑基因RIXI可能在各種生物和非生物脅迫中激活復(fù)雜的信號(hào)傳導(dǎo),但對(duì)水稻的生長(zhǎng)和發(fā)育沒(méi)有負(fù)面影響.

    關(guān)鍵詞水稻木聚糖酶抑制劑;轉(zhuǎn)基因水稻;轉(zhuǎn)錄組測(cè)序;植物防御

    RIXI過(guò)量表達(dá)轉(zhuǎn)基因水稻的全基因組表達(dá)譜分析(英文).浙江大學(xué)學(xué)報(bào)(農(nóng)業(yè)與生命科學(xué)版),2016, 42(6):643- 653

    DOI:10.3785/j.issn.1008-9209.2016.01.142

    CLC numberQ 945.78

    Document codeA

    Foundation item:Supported by the National Natural Science Foundation of China(Nos.30971702 and 31271632),and Science and Technology Department of Zhejiang Province,China(Nos.2013C32018 and 2016C32086).

    *Corresponding author:WENG Xiaoyan(http://orcid.org/0000-0001-6559-3386),E-mail:xyweng@zju.edu.cn

    Received:2016 01 14;Accepted:2016 04 06;Published online:2016 11 19

    Biography:PENG Yaoyao(http://orcid.org/0000-0003-0168-1234),E-mail:pengyaoyao09@foxmail.com

    URL:http://www.zjujournals.com/agr/CN/article/download ArticleFile.do?attach Type=PDF&id=10424

    亚洲欧美日韩无卡精品| 日韩欧美一区视频在线观看| 国产精品久久久人人做人人爽| 18禁国产床啪视频网站| 亚洲中文av在线| 少妇裸体淫交视频免费看高清 | 天天躁狠狠躁夜夜躁狠狠躁| 亚洲片人在线观看| 女性生殖器流出的白浆| 久久久久国内视频| 99久久国产精品久久久| 免费久久久久久久精品成人欧美视频| 99久久99久久久精品蜜桃| 亚洲午夜精品一区,二区,三区| 又紧又爽又黄一区二区| 午夜影院日韩av| 亚洲精品久久成人aⅴ小说| 亚洲第一青青草原| 黄色视频,在线免费观看| 在线天堂中文资源库| 久久精品影院6| 国产三级黄色录像| 久久久久久久久久久久大奶| 精品熟女少妇八av免费久了| 日韩欧美在线二视频| 50天的宝宝边吃奶边哭怎么回事| 精品久久久精品久久久| 欧美 亚洲 国产 日韩一| 欧美日韩av久久| 日韩国内少妇激情av| 少妇 在线观看| 国产精品乱码一区二三区的特点 | 自线自在国产av| 欧美日本亚洲视频在线播放| 啦啦啦免费观看视频1| 亚洲成人免费av在线播放| 日韩精品青青久久久久久| 久久人人97超碰香蕉20202| 欧美在线黄色| 国产精品九九99| 亚洲一码二码三码区别大吗| av网站在线播放免费| 精品国产乱子伦一区二区三区| 91九色精品人成在线观看| 一二三四在线观看免费中文在| 午夜精品国产一区二区电影| 国产精品国产av在线观看| 欧美老熟妇乱子伦牲交| 男人操女人黄网站| 午夜成年电影在线免费观看| 国产熟女xx| 水蜜桃什么品种好| 亚洲中文字幕日韩| 成熟少妇高潮喷水视频| 久久久久国内视频| 久久久久久亚洲精品国产蜜桃av| 久久伊人香网站| 一级毛片精品| 国产视频一区二区在线看| 人人妻,人人澡人人爽秒播| 久久亚洲精品不卡| 99国产精品免费福利视频| 久久中文字幕人妻熟女| 国产国语露脸激情在线看| 国产成人啪精品午夜网站| 亚洲欧美日韩高清在线视频| 妹子高潮喷水视频| 一区二区日韩欧美中文字幕| 国产有黄有色有爽视频| 在线观看免费午夜福利视频| www.精华液| 日日夜夜操网爽| 欧美国产精品va在线观看不卡| 国产野战对白在线观看| 亚洲av日韩精品久久久久久密| 69精品国产乱码久久久| 欧美一级毛片孕妇| 日本三级黄在线观看| 变态另类成人亚洲欧美熟女 | 成人黄色视频免费在线看| 性少妇av在线| 丰满迷人的少妇在线观看| 国产精品一区二区精品视频观看| 国产亚洲精品第一综合不卡| 天堂√8在线中文| 黄色女人牲交| 国产精品一区二区三区四区久久 | 国产欧美日韩精品亚洲av| av在线天堂中文字幕 | 亚洲欧美日韩高清在线视频| 又紧又爽又黄一区二区| 99re在线观看精品视频| 高清毛片免费观看视频网站 | 日韩国内少妇激情av| 亚洲精品在线美女| 亚洲中文av在线| 又大又爽又粗| www国产在线视频色| 50天的宝宝边吃奶边哭怎么回事| 久久久久久久久中文| 黄色 视频免费看| 国产野战对白在线观看| 亚洲中文av在线| 国产成人影院久久av| 夜夜夜夜夜久久久久| 久久国产精品人妻蜜桃| 亚洲av五月六月丁香网| 一进一出抽搐gif免费好疼 | 高清av免费在线| 精品第一国产精品| 久久久久久免费高清国产稀缺| 搡老岳熟女国产| 色综合站精品国产| 国产成人精品在线电影| 免费人成视频x8x8入口观看| 制服诱惑二区| 免费av中文字幕在线| 欧美人与性动交α欧美软件| 精品电影一区二区在线| 免费女性裸体啪啪无遮挡网站| 成人黄色视频免费在线看| 法律面前人人平等表现在哪些方面| 我的亚洲天堂| 久久人人97超碰香蕉20202| 美女高潮喷水抽搐中文字幕| 18禁裸乳无遮挡免费网站照片 | 亚洲成人精品中文字幕电影 | 亚洲免费av在线视频| 丰满迷人的少妇在线观看| 美女国产高潮福利片在线看| 国产一区在线观看成人免费| 国产一区二区三区在线臀色熟女 | 黄色毛片三级朝国网站| 男人舔女人的私密视频| 国产黄a三级三级三级人| 电影成人av| 国产单亲对白刺激| 国产亚洲精品一区二区www| 欧美日韩亚洲高清精品| 亚洲精品久久成人aⅴ小说| 18禁美女被吸乳视频| 校园春色视频在线观看| 国产精品野战在线观看 | 后天国语完整版免费观看| 婷婷丁香在线五月| 亚洲国产欧美网| 亚洲美女黄片视频| 成在线人永久免费视频| 欧美人与性动交α欧美精品济南到| 亚洲精品av麻豆狂野| 亚洲 欧美 日韩 在线 免费| 日韩欧美一区二区三区在线观看| 一级片免费观看大全| 男人的好看免费观看在线视频 | 啪啪无遮挡十八禁网站| 亚洲aⅴ乱码一区二区在线播放 | 一区二区三区国产精品乱码| 成人av一区二区三区在线看| 亚洲成人免费电影在线观看| 午夜福利免费观看在线| 免费久久久久久久精品成人欧美视频| 少妇粗大呻吟视频| 一个人免费在线观看的高清视频| 欧美乱妇无乱码| 热re99久久国产66热| 天堂俺去俺来也www色官网| 婷婷六月久久综合丁香| 两性夫妻黄色片| 成人18禁高潮啪啪吃奶动态图| 精品国产乱子伦一区二区三区| 国产精品国产高清国产av| 亚洲欧美日韩无卡精品| 亚洲人成电影观看| 高清在线国产一区| 亚洲三区欧美一区| 国产欧美日韩一区二区三| 国产一区二区激情短视频| 又大又爽又粗| 黑人欧美特级aaaaaa片| 99久久久亚洲精品蜜臀av| 色综合站精品国产| 十分钟在线观看高清视频www| 免费在线观看日本一区| 国产亚洲精品久久久久久毛片| 亚洲熟妇熟女久久| 日本撒尿小便嘘嘘汇集6| 亚洲中文日韩欧美视频| 婷婷六月久久综合丁香| 一区二区三区精品91| 黑人猛操日本美女一级片| 亚洲一区二区三区不卡视频| 久久精品国产清高在天天线| 青草久久国产| 99国产精品一区二区三区| 国产精品久久久av美女十八| 男女下面插进去视频免费观看| 国产日韩一区二区三区精品不卡| 少妇粗大呻吟视频| 日韩视频一区二区在线观看| 午夜老司机福利片| 水蜜桃什么品种好| 亚洲片人在线观看| 18美女黄网站色大片免费观看| 窝窝影院91人妻| 不卡一级毛片| 国产一区二区激情短视频| 老鸭窝网址在线观看| 天堂影院成人在线观看| 国产精品亚洲一级av第二区| 国产免费av片在线观看野外av| 大型av网站在线播放| xxx96com| 每晚都被弄得嗷嗷叫到高潮| 长腿黑丝高跟| 亚洲五月天丁香| 级片在线观看| 亚洲国产欧美日韩在线播放| 91成年电影在线观看| 精品国产一区二区久久| 精品高清国产在线一区| 新久久久久国产一级毛片| 这个男人来自地球电影免费观看| 国产精品一区二区在线不卡| 91字幕亚洲| 一级片免费观看大全| 国产av一区在线观看免费| 一级毛片高清免费大全| 男人舔女人下体高潮全视频| 久久亚洲真实| √禁漫天堂资源中文www| 一边摸一边抽搐一进一出视频| www.999成人在线观看| 久久久国产成人免费| 日日摸夜夜添夜夜添小说| 日韩精品免费视频一区二区三区| 欧美乱妇无乱码| 亚洲精品av麻豆狂野| 久久国产精品男人的天堂亚洲| 大型av网站在线播放| 国产精品久久电影中文字幕| 一边摸一边做爽爽视频免费| 日本黄色日本黄色录像| 亚洲欧美激情综合另类| 欧美日韩精品网址| 中文字幕人妻丝袜一区二区| 亚洲色图 男人天堂 中文字幕| 最近最新中文字幕大全电影3 | 亚洲第一青青草原| 亚洲一卡2卡3卡4卡5卡精品中文| 精品久久久精品久久久| 乱人伦中国视频| 久久久精品欧美日韩精品| 亚洲一区高清亚洲精品| 亚洲自偷自拍图片 自拍| 国产精品久久久av美女十八| 这个男人来自地球电影免费观看| 亚洲一区二区三区不卡视频| 国产一区二区在线av高清观看| 久久这里只有精品19| 91在线观看av| 巨乳人妻的诱惑在线观看| 波多野结衣一区麻豆| 日日夜夜操网爽| 亚洲伊人色综图| 国产有黄有色有爽视频| 一级毛片女人18水好多| 国产xxxxx性猛交| 午夜福利在线观看吧| 狂野欧美激情性xxxx| 国产一区二区三区视频了| 亚洲第一青青草原| 在线观看免费午夜福利视频| 好看av亚洲va欧美ⅴa在| 亚洲国产精品999在线| 啪啪无遮挡十八禁网站| 国产日韩一区二区三区精品不卡| 老熟妇仑乱视频hdxx| 黄色视频,在线免费观看| 精品午夜福利视频在线观看一区| 亚洲欧美日韩另类电影网站| 99精品欧美一区二区三区四区| 国产精品美女特级片免费视频播放器 | 人人妻,人人澡人人爽秒播| 满18在线观看网站| xxx96com| 久久久国产欧美日韩av| 久久精品成人免费网站| a级毛片黄视频| 亚洲精品美女久久久久99蜜臀| 国产精品美女特级片免费视频播放器 | 日韩成人在线观看一区二区三区| 成人国产一区最新在线观看| 男女做爰动态图高潮gif福利片 | 在线永久观看黄色视频| 交换朋友夫妻互换小说| 黄片播放在线免费| 亚洲国产欧美日韩在线播放| 日本a在线网址| 女人被狂操c到高潮| 国产精品98久久久久久宅男小说| 99热只有精品国产| 女人精品久久久久毛片| 国产精品免费视频内射| 久久精品影院6| 中文字幕色久视频| 亚洲欧美激情在线| 天天添夜夜摸| 久久伊人香网站| 妹子高潮喷水视频| 国产精品av久久久久免费| 成人三级做爰电影| 精品少妇一区二区三区视频日本电影| 亚洲av日韩精品久久久久久密| 久久精品国产99精品国产亚洲性色 | 黑丝袜美女国产一区| 欧美另类亚洲清纯唯美| 精品电影一区二区在线| 一级,二级,三级黄色视频| 黑人欧美特级aaaaaa片| 色在线成人网| 99在线视频只有这里精品首页| 黄色丝袜av网址大全| 欧美在线黄色| 国产色视频综合| 久久久久久久久中文| 精品人妻在线不人妻| 日本一区二区免费在线视频| 欧美激情久久久久久爽电影 | 身体一侧抽搐| 中文字幕人妻丝袜制服| 久久国产精品人妻蜜桃| 日本五十路高清| 天堂中文最新版在线下载| 婷婷丁香在线五月| 丝袜在线中文字幕| 精品免费久久久久久久清纯| 国产成人av激情在线播放| 最好的美女福利视频网| 亚洲五月天丁香| 亚洲精品久久午夜乱码| 亚洲成人精品中文字幕电影 | 香蕉国产在线看| 黄色怎么调成土黄色| 国产男靠女视频免费网站| 一个人观看的视频www高清免费观看 | 免费高清视频大片| 精品午夜福利视频在线观看一区| 亚洲美女黄片视频| 女警被强在线播放| 精品电影一区二区在线| 国产精品久久视频播放| 搡老熟女国产l中国老女人| 女人被躁到高潮嗷嗷叫费观| 亚洲成人国产一区在线观看| 国产精品成人在线| 国产伦一二天堂av在线观看| 久久狼人影院| 久久久精品国产亚洲av高清涩受| 女同久久另类99精品国产91| 中国美女看黄片| 色综合婷婷激情| 午夜a级毛片| 国产精品 国内视频| 欧美日韩精品网址| 极品教师在线免费播放| 精品第一国产精品| 久热这里只有精品99| 黄色片一级片一级黄色片| 九色亚洲精品在线播放| 国产一区二区三区综合在线观看| 欧美另类亚洲清纯唯美| 久久久久亚洲av毛片大全| 电影成人av| 日日爽夜夜爽网站| 午夜福利欧美成人| 午夜免费激情av| 好看av亚洲va欧美ⅴa在| 另类亚洲欧美激情| 一边摸一边抽搐一进一小说| 成人精品一区二区免费| 男女下面进入的视频免费午夜 | 久久精品亚洲熟妇少妇任你| 在线免费观看的www视频| 美女 人体艺术 gogo| 少妇 在线观看| 亚洲av电影在线进入| svipshipincom国产片| 国产欧美日韩一区二区三区在线| 免费看十八禁软件| 搡老熟女国产l中国老女人| 在线免费观看的www视频| 少妇的丰满在线观看| 亚洲欧美日韩另类电影网站| 叶爱在线成人免费视频播放| 伦理电影免费视频| 亚洲精品一区av在线观看| 色精品久久人妻99蜜桃| 国产1区2区3区精品| 亚洲片人在线观看| 久久精品国产99精品国产亚洲性色 | 色婷婷av一区二区三区视频| 午夜两性在线视频| 黄频高清免费视频| 欧美不卡视频在线免费观看 | 成熟少妇高潮喷水视频| 一二三四在线观看免费中文在| 欧美日韩乱码在线| 看黄色毛片网站| 国产亚洲精品第一综合不卡| 亚洲欧美激情综合另类| 久久香蕉精品热| 人人妻人人爽人人添夜夜欢视频| 婷婷丁香在线五月| 人人妻,人人澡人人爽秒播| 亚洲一区二区三区欧美精品| 丰满饥渴人妻一区二区三| 日韩av在线大香蕉| 国产精品久久久久成人av| 久久久久久久精品吃奶| 中文字幕精品免费在线观看视频| 欧美日韩中文字幕国产精品一区二区三区 | 久久精品人人爽人人爽视色| 人妻丰满熟妇av一区二区三区| 在线永久观看黄色视频| 大码成人一级视频| 午夜福利欧美成人| 最新在线观看一区二区三区| 大型黄色视频在线免费观看| a级毛片在线看网站| 曰老女人黄片| 国产亚洲精品久久久久5区| 国产精品电影一区二区三区| 黄色女人牲交| 首页视频小说图片口味搜索| 午夜精品国产一区二区电影| 青草久久国产| 国产视频一区二区在线看| 极品教师在线免费播放| 久久国产精品人妻蜜桃| 欧美日韩中文字幕国产精品一区二区三区 | 精品久久蜜臀av无| 日韩欧美一区视频在线观看| 成人三级做爰电影| 亚洲国产精品sss在线观看 | 法律面前人人平等表现在哪些方面| 久久久久亚洲av毛片大全| 一区在线观看完整版| 老熟妇乱子伦视频在线观看| 99国产综合亚洲精品| 黄色毛片三级朝国网站| 国产精品二区激情视频| 黄色丝袜av网址大全| 无遮挡黄片免费观看| 欧美中文综合在线视频| 久久久国产欧美日韩av| 精品无人区乱码1区二区| 国产无遮挡羞羞视频在线观看| 麻豆av在线久日| 亚洲va日本ⅴa欧美va伊人久久| 成在线人永久免费视频| 国产1区2区3区精品| 一a级毛片在线观看| 午夜精品久久久久久毛片777| 不卡av一区二区三区| 淫秽高清视频在线观看| 久久国产精品人妻蜜桃| 亚洲成人国产一区在线观看| 午夜成年电影在线免费观看| 波多野结衣av一区二区av| 欧美日韩一级在线毛片| 国产99白浆流出| 麻豆av在线久日| www日本在线高清视频| av欧美777| 一级作爱视频免费观看| 身体一侧抽搐| 久久精品国产清高在天天线| 国产麻豆69| 国产深夜福利视频在线观看| 日韩有码中文字幕| 亚洲一区二区三区不卡视频| 国产亚洲精品久久久久5区| 丝袜美足系列| 男人舔女人下体高潮全视频| 国产成人啪精品午夜网站| 国产又色又爽无遮挡免费看| 欧美成人免费av一区二区三区| 男女午夜视频在线观看| 亚洲人成电影免费在线| 欧美亚洲日本最大视频资源| 大香蕉久久成人网| 国产精品98久久久久久宅男小说| 久久久久久久精品吃奶| 欧美性长视频在线观看| 久久人妻熟女aⅴ| 亚洲av成人一区二区三| 国产三级黄色录像| 啦啦啦在线免费观看视频4| 99国产精品免费福利视频| 看免费av毛片| 日韩欧美三级三区| 丰满人妻熟妇乱又伦精品不卡| 99国产极品粉嫩在线观看| 国产欧美日韩综合在线一区二区| 欧美日韩精品网址| 日本a在线网址| 欧美最黄视频在线播放免费 | 又大又爽又粗| 免费日韩欧美在线观看| 国产伦人伦偷精品视频| 又黄又粗又硬又大视频| 国产亚洲精品久久久久5区| 久久精品亚洲精品国产色婷小说| 亚洲av电影在线进入| 美女福利国产在线| 在线天堂中文资源库| xxxhd国产人妻xxx| 欧美日本中文国产一区发布| 人人澡人人妻人| 在线免费观看的www视频| 久久热在线av| 免费高清视频大片| 丁香六月欧美| 国产精品九九99| 欧美最黄视频在线播放免费 | 操出白浆在线播放| 亚洲成人久久性| 亚洲一卡2卡3卡4卡5卡精品中文| 成人av一区二区三区在线看| 18禁黄网站禁片午夜丰满| 久久人人97超碰香蕉20202| 美女 人体艺术 gogo| 精品人妻1区二区| 久久久久久亚洲精品国产蜜桃av| 国产三级在线视频| 国产亚洲欧美98| 乱人伦中国视频| 女警被强在线播放| 韩国精品一区二区三区| 午夜老司机福利片| 久久欧美精品欧美久久欧美| 亚洲欧美激情综合另类| 男女午夜视频在线观看| 极品人妻少妇av视频| 亚洲少妇的诱惑av| 久久精品国产99精品国产亚洲性色 | 电影成人av| av免费在线观看网站| 一级,二级,三级黄色视频| 又紧又爽又黄一区二区| 十八禁人妻一区二区| 日本黄色视频三级网站网址| 久久午夜亚洲精品久久| 黄网站色视频无遮挡免费观看| 这个男人来自地球电影免费观看| 亚洲人成网站在线播放欧美日韩| 在线观看午夜福利视频| 麻豆成人av在线观看| 18禁裸乳无遮挡免费网站照片 | 一二三四在线观看免费中文在| 一级,二级,三级黄色视频| 黄网站色视频无遮挡免费观看| 久久精品亚洲av国产电影网| 18禁观看日本| 99久久综合精品五月天人人| 欧美在线黄色| e午夜精品久久久久久久| 村上凉子中文字幕在线| 人妻久久中文字幕网| av视频免费观看在线观看| 国产精品一区二区在线不卡| 国产成年人精品一区二区 | 亚洲国产精品合色在线| 高清黄色对白视频在线免费看| 成年版毛片免费区| 电影成人av| 亚洲人成网站在线播放欧美日韩| 嫁个100分男人电影在线观看| 新久久久久国产一级毛片| 两个人看的免费小视频| 国产精品日韩av在线免费观看 | 午夜91福利影院| 成在线人永久免费视频| 亚洲自偷自拍图片 自拍| 久久久久久久精品吃奶| 在线观看66精品国产| 大香蕉久久成人网| 99久久久亚洲精品蜜臀av| 99香蕉大伊视频| 久久欧美精品欧美久久欧美| 十分钟在线观看高清视频www| 美女大奶头视频| 亚洲国产中文字幕在线视频| 亚洲视频免费观看视频| 丰满迷人的少妇在线观看| 日韩欧美一区视频在线观看| 制服人妻中文乱码| 国产午夜精品久久久久久| 好看av亚洲va欧美ⅴa在| 中文字幕人妻丝袜制服| 国产精品一区二区精品视频观看| 国产精品久久视频播放| 亚洲 欧美 日韩 在线 免费| bbb黄色大片| 村上凉子中文字幕在线| 欧洲精品卡2卡3卡4卡5卡区| 国产91精品成人一区二区三区| 亚洲色图综合在线观看| 丝袜美腿诱惑在线| 欧美日韩精品网址| 亚洲av第一区精品v没综合| 欧美 亚洲 国产 日韩一| 啪啪无遮挡十八禁网站| 一边摸一边抽搐一进一出视频| 国产黄色免费在线视频|