陳方永,王引,倪海枝,張啟,顏幫國
(1.浙江省柑橘研究所,浙江黃巖318026;2.浙江省蘭溪市農(nóng)業(yè)局經(jīng)濟特產(chǎn)技術推廣站,浙江蘭溪321100)
浙江2個地產(chǎn)白沙枇杷種質(zhì)資源親緣關系鑒定
陳方永1*,王引1,倪海枝1,張啟2,顏幫國1
(1.浙江省柑橘研究所,浙江黃巖318026;2.浙江省蘭溪市農(nóng)業(yè)局經(jīng)濟特產(chǎn)技術推廣站,浙江蘭溪321100)
摘要在綜合觀察浙江2個白沙枇杷(黃巖軟條白沙和蘭溪白沙)種質(zhì)形態(tài)特征的基礎上,對兩者進行倍性、氣孔檢測和基于分子標記的親緣關系研究.結果表明:黃巖軟條白沙單果質(zhì)量是蘭溪白沙的1.38倍,而蘭溪白沙的種子數(shù)、果皮厚度、果實硬度分別是黃巖軟條白沙的1.36倍、1.096倍、1.22倍;流式細胞儀倍性檢測表明,兩者均為二倍體;氣孔檢測表明,兩者的氣孔密度和面積大小差異顯著,黃巖軟條白沙氣孔面積比蘭溪白沙大43.4%,氣孔密度比蘭溪白沙小17.35%;基于簡單序列重復標記的遺傳聚類分析表明,黃巖軟條白沙的遺傳相似系數(shù)為0.40,蘭溪白沙為0.45.由此可見,2個品種在成熟期的差異主要受種性和地域因素的影響,可認為是不同的栽培種質(zhì).
關鍵詞白沙枇杷;同類種質(zhì);親緣關系;差異
浙江省是中國最重要的白沙枇杷即白色果肉枇杷產(chǎn)區(qū).全省現(xiàn)有白沙枇杷種植面積1.2×104hm2左右,年產(chǎn)量約6.5×104t,年產(chǎn)值25億元左右.浙江省臺州市的白沙枇杷主產(chǎn)區(qū)在原黃巖縣種植區(qū)域(現(xiàn)黃巖區(qū)、路橋區(qū)及椒江區(qū))與臨海、玉環(huán)、溫嶺等縣市;寧波市的主產(chǎn)區(qū)在寧海、象山、鄞州;杭州市的主產(chǎn)區(qū)在余杭塘棲、淳安、建德;金華市的主產(chǎn)區(qū)在蘭溪;麗水市的主產(chǎn)區(qū)在蓮都區(qū)及青田、松陽等地;溫州市的主產(chǎn)區(qū)在樂清、蒼南、瑞安等地.各地種植的白沙枇杷品種如下:臺州以“黃巖軟條白沙”“槐梵”“溪上白沙”為主;寧波以“寧海白”為主;蘭溪以當?shù)匚疵陌咨宠凌似贩N為主;麗水、溫州除地方資源外,主要為“黃巖軟條白沙”“寧海白”;杭州市的主栽品種為“余杭軟條白沙”“余杭硬條白沙”,其他各縣都是混合種植各類白沙品種.
白沙枇杷市場價格潛力大,尤其在沿海經(jīng)濟發(fā)達地區(qū),其價格是紅沙枇杷的5~10倍及以上;因此,在考慮優(yōu)生區(qū)的前提下,發(fā)展白沙(也稱白肉)枇杷具有十分重要的現(xiàn)實意義.然而,白沙枇杷存在裂果、腐爛率較高的問題,要推動白沙枇杷產(chǎn)業(yè)可持續(xù)發(fā)展的突破口在于選育厚皮、抗逆性較強的種質(zhì)資源.梁國魯?shù)萚1]對四川7個紅沙枇杷品種和1個白沙枇杷品種的染色體進行研究表明,白沙品種是紅沙品種的突變體類型,其染色體帶不具橙紅帶,核型是3B類型,而紅沙染色體帶具鮮明的橙紅帶,核型是2A類型.周坤杰等[2]對蘇州地區(qū)9個白沙枇杷種植情況調(diào)查表明,“豐玉”相對為優(yōu).任國慧等[3]用SPSS 16.0軟件對江蘇省20份白沙枇杷種質(zhì)的果實性狀進行了多因子聚類分析,其分值最高、優(yōu)先推薦種植的品種為“冠玉”,分值最低的是“早黃”.袁衛(wèi)明等[4]在蘇州選育出了雜交新種質(zhì)“常綠5號”.該品種具早熟、避雨、豐產(chǎn)、矮化、抗凍的特點,與母本(父本“甜種”,母本“白玉”)相比,其單果質(zhì)量增加22.60%,植株矮化率達31.14%,冠幅增加25.58%~30.76%,凍害率下降10%左右:可見,其綜合性狀偏向高值親本,有適度栽培價值.LI等[5]采用基于表達序列標簽(expressed sequence tags,EST)的簡單序列重復(simple sequence repeats,SSR)標記技術研究了來自不同地區(qū)的47份枇杷材料的親緣關系,證實了來自同一地區(qū)的枇杷材料親緣關系相近.綜上所述,雖然前人對于白沙枇杷的品種選育進行了相關研究,但目前還沒有選育出厚皮、抗逆性較強的新種質(zhì).筆者在多年的研究中發(fā)現(xiàn),同是白沙枇杷類的品種(材料),“黃巖軟條白沙”在自然栽培條件下常年裂果且腐爛現(xiàn)象嚴重,而浙江省蘭溪市主栽的“蘭溪白沙枇杷”(未命名,筆者暫定名)在成熟期裂果腐爛現(xiàn)象并不顯著;因此,本文在綜合觀察這2個品種(材料)形態(tài)特征的基礎上,對它們進行了倍性、氣孔特征和基于分子標記的親緣關系研究,旨在為新種質(zhì)的挖掘推廣提供技術參考.
1.1材料
以10年生為主的黃巖軟條白沙枇杷265株(0.33 hm2)、蘭溪白沙高接5株(浙江省臺州市黃巖區(qū)嶼頭鄉(xiāng)上鳳村浙江省柑橘研究所山地試驗點);以10年生為主的蘭溪白沙枇杷園239株(0.33 hm2)(浙江省蘭溪市女埠街道虹霓山枇杷專業(yè)合作社).
SSR分子標記檢測除上述材料外,還包括試驗點內(nèi)的溪上白沙、傀梵白沙、白荔枝、軟條白沙變異(永路)、福建紅白沙枇杷5個材料.
1.2方法
1.2.1黃巖軟條白沙和蘭溪白沙種性特點調(diào)查
在黃巖、蘭溪2地隨機采集5株白沙枇杷,每株隨機選取20片成年葉和2 kg成熟果實,測定葉片縱橫徑、單果質(zhì)量、果實種子數(shù)、果皮厚度等;調(diào)查當?shù)貧夂蛱攸c.
1.2.2黃巖軟條白沙和蘭溪白沙的倍性檢測
參照陳方永[6]的方法用流式細胞儀(Cy Flow?Space,德國Partec公司)檢測.
1.2.3黃巖軟條白沙和蘭溪白沙的葉片氣孔檢測
參照陳方永[6]的方法用光學顯微鏡(Leica DMI3000)檢測.
1.2.4基于SSR分子標記的黃巖軟條白沙和蘭溪白沙的親緣關系檢測
1.2.4.1DNA提取
參照陳方永等[7]和何橋[8]的方法提取葉片總DNA,檢測DNA純度與濃度,結果見表1.
表1 DNA提取質(zhì)量Table 1 Mass of extracted DNA
1.2.4.2聚合酶鏈式反應體系建立
SSR-聚合酶鏈式反應(polymerase chain reaction,PCR)擴增體系總體積為30μL:10×PCR緩沖液3.0μL,50×d NTP混合物0.5μL,引物F (5′端摻入熒光)0.5μL和引物R 0.5μL(表2), Ta KaRa Taq酶0.4μL,50 ng/μL DNA模板1.0 μL,加dd H2O補至30μL.反應程序:94℃預變性5 min;94℃變性15 s,55℃退火30 s,先72℃延伸60 s,再72℃延伸7 min,40個循環(huán);最后4℃保存.上樣于1%瓊脂糖凝膠孔中,120 V恒壓電泳15 min,在紫外透射光下觀察并拍照.
1.2.4.3短串聯(lián)重復序列檢測
取96孔反應板,用記號筆標明板名、實驗日期,制作電子版短串聯(lián)重復序列(short tandem repeat, STR)檢測表,并自動生成上機表.使用連續(xù)加樣器,吸取990μL HIDI和ROX500混合物,加入到96孔反應板中,每孔10μL,將96孔板置于平板離心機中,離心500 g即停;使用12排10μL排槍,對照STR檢測表,在96孔板對應的孔中加入50 pg樣品,將96孔板置于平板離心機中,離心500 g即停;使用封板膜密封96孔板,振蕩,將96孔板置于平板離心機中,離心500 g即停;然后置于PCR儀上,變性程序為98℃,5 min,不加熱熱蓋,程序結束后立即將96孔板置于冰水混合物上急速冷卻;將96孔板置于平板離心機中,離心2 000 g即停.使用3730XL測序儀檢測STR樣本.
1.2.4.4引物擴增
根據(jù)已發(fā)布的蘋果SSR引物擴增信息及對應的聚丙烯酰胺凝膠電泳結果[9],選取表2中的3對候選引物擴增枇杷基因組DNA.
表2 供試的3對蘋果SSR引物的遺傳學參數(shù)表Table 2 Genetic parameters of three pairs of apple SSR primers
2.1種性特征比較
從表3和圖1可以看出:蘭溪白沙比黃巖軟條白沙枇杷平均單果質(zhì)量低27.33%;黃巖軟條白沙裂果腐爛率、單果質(zhì)量分別是未命名的蘭溪白沙的2.72倍、1.38倍;反之,蘭溪白沙的種子數(shù)、果皮厚度、果實硬度分別是黃巖軟條白沙的1.36倍、1.096倍、1.22倍;此外,兩者的可溶性固形物(total soluble solid,TSS)含量也存在顯著差異,蘭溪白沙是黃巖軟條白沙的1.14倍;蘭溪白沙新葉縱橫徑為20.4 cm×5.6 cm,葉尖彎銳尖,葉緣淺鋸齒狀,主脈淺溝狀,左右脈不對稱(左大右小),脈徑沿葉尖方向變小,葉色淺綠,葉片不平整;黃巖軟條白沙新葉縱橫徑為20.8 cm×5.2 cm,葉尖彎尖,葉緣鋸齒狀明顯,主脈直線狀,左右脈較對稱,脈徑沿葉尖方向變小,葉色墨綠,葉片較平整.
表3 2個材料的差異比較Table 3 Difference comparison between two experimental materials
圖1 2個白沙枇杷種質(zhì)葉片和果實對比Fig.1 Contrast of leaf and fruit for two kinds of white-flesh loquat
2.2流式細胞儀檢測結果
流式細胞儀檢測結果(圖2)證實,黃巖軟條白沙與蘭溪白沙均為二倍體.開機后檢測到出峰時間為1.0~1.5 min,在DNA相對含量為50~100處可見二倍體峰值均在70~75左右.
2.3氣孔檢測結果
從圖3可以看出,2個不同品種的枇杷材料氣孔形態(tài)相似,均屬于平行型氣孔,但氣孔大小和氣孔密度差別顯著.黃巖軟條白沙氣孔密度為431個/mm2,比蘭溪白沙氣孔密度小17.35%;黃巖軟條白沙氣孔面積平均為76μm2,而蘭溪白沙為53μm2.
2.4基于SSR標記的親緣關系檢測結果
2.4.1SSR位點遺傳參數(shù)分析結果
從表4得知:7個供試材料的有效等位基因數(shù)在2.279 1到4.454 5之間,標準差為1.101 8; Shannon信息指數(shù)在0.898 2到1.611 5之間,標準差為0.357 4;期望雜合度在0.604 4到0.835 2之間,標準差為0.115 4.可見,選取的3個SSR位點遺傳多樣性相對較高.
圖2 2個材料的流式細胞儀倍性檢測結果Fig.2 Ploidy of two experimental materials detected by flow cytometer
圖3 2個材料的氣孔形態(tài)Fig.3 Stomatal morphology of two experimental materials
表4 SSR位點遺傳參數(shù)統(tǒng)計Table 4 Genetic parameters of SSR locus
2.4.2基于遺傳參數(shù)的分析結果
將7份材料進行UPGMA聚類分析,繪制聚類樹狀圖(圖4).在遺傳相似系數(shù)(genetic similarity coefficient,GS)≈1.0處,可以把7份白沙枇杷種質(zhì)劃分為6類:第1類,軟條白沙變異(少籽卵圓型) (RTBY)與白荔枝(BL)首先聚在一起,兩者親緣關系最近;第2類,傀梵白沙(KF);第3類,溪上白沙(XS);第4類,軟條白沙(RTBS);第5類,蘭溪白沙(LX);第6類,福建紅白沙(FJ),與前6份種質(zhì)材料親緣關系最遠.
圖4 7份枇杷種質(zhì)的遺傳聚類圖Fig.4 Genetic dendrogram of seven loquat germplasms
2個植物貌似相同,但又無法確定,傳統(tǒng)經(jīng)典的方法是進行形態(tài)比較鑒定,主要是對花、葉、果3大器官組織進行比較,然后確定是否為同一品種(種質(zhì)).這種方法雖然簡便快捷,但也往往存在不同種植地、不同栽培水平造成的非遺傳因子變化,稱為飾變.本研究黃巖軟條白沙和蘭溪白沙果實綜合指標差異較大,前者單果質(zhì)量與種子數(shù)分別為30.62 g/果、2.38粒/果,后者分別為22.25 g/果、3.24粒/果;從果皮厚度、果實硬度2項指標衡量也明顯不同,后者的果皮厚度為0.375 mm、果實硬度為6.17 N,與前者的0.342 mm、5.04 N差異顯著.由于2個品種(種質(zhì))種植地不同,黃巖軟條白沙處于浙江東南部的海洋性氣候帶,蘭溪白沙處于浙西盆地的季風氣候帶,后者提前5 d左右進入夏季,晚5 d左右退出冬季.本研究從分子標記、倍性檢測及葉片氣孔特征等方面綜合分析判定兩者是否存在親緣關系.結果表明,它們雖然都是二倍體植物,但兩者之間親緣關系較遠.基于SSR標記的親緣關系聚類結果顯示,黃巖軟條白沙的GS為0.40,而蘭溪白沙為0.45.為此,筆者觀察了自有資源圃內(nèi)從原產(chǎn)地采穗高接種植的5株蘭溪白沙,它們除了成熟期較常年延后2~3 d外,花、葉、果等各個器官組織的基本特征沒有改變,顯示了該種質(zhì)遺傳的穩(wěn)定性.需要指出的是,雖然本研究分析遺傳相似性的聚類材料只有7個,但筆者的前期研究[6]已經(jīng)有了較好的基礎,用相關序列擴增多態(tài)性(sequence-related amplified polymorphism,SRAP)分子標記檢測,已基本明確了現(xiàn)有的浙江省8份、福建省21份及新西蘭、日本2個國家各1份(共31份)白沙枇杷品種(種質(zhì))的親緣關系,故從綜合因素考慮,沒有重復研究相同材料.氣孔檢測結果表明:黃巖軟條白沙氣孔密度為431個/mm2,蘭溪白沙為521.5個/mm2,小于后者17.35%;氣孔面積前者平均為76μm2,后者為53 μm2,前者比后者大43.4%.目前,國內(nèi)的類似研究多為倍性檢測或基于分子標記的親緣關系分析,而從表型特征檢測到親緣關系的相關系列研究還不多見.筆者前期研究表明,雖然白沙枇杷品種相同或相近,但在不同栽培地和不同栽培方法下,果實大小、色澤、綜合品質(zhì)明顯不同[10].傳統(tǒng)的形態(tài)鑒定無法準確判定一個種質(zhì)的親緣關系,尤其是對在芽變或相似遺傳背景條件下不同栽培地種植的種質(zhì)鑒定;因此,需要進行分子標記、氣孔及其轉(zhuǎn)錄組技術的綜合配套檢測分析,也是體現(xiàn)果樹種質(zhì)遺傳關系的重要指標[1113].對多倍體枇杷目標起始密碼子多態(tài)性(start condon targeted polymorphism,SCo T)、紅皮沙梨品種SSR分子標記親緣關系并結合配套技術研究取得了較好的效果[1213].CHEN等[13]用SCo T、引物結合位點(inter-primer binding site, IPBS)2個分子標記聯(lián)合對浙江省31個楊梅資源品種進行了親緣關系研究,排除了1個同物異名種質(zhì),區(qū)分出了2個突變體與野生型的差異.在本研究中黃巖軟條白沙果實顯著大于蘭溪白沙,而其氣孔面積比后者大43.4%,氣孔密度比后者小17.35%.通常,氣孔越大抗逆性可能較差.這與筆者前期對楊梅氣孔的研究結果吻合,大果型東魁楊梅的氣孔密度顯著小于小果型的地方品種,研究表明這是由其種性特點決定的[14].對于芽變或倍性變異的種質(zhì),需要分子標記與轉(zhuǎn)錄組組合鑒定才能更加精準.如潘志勇利用RNA-Seq組學技術,對廣西甜橙變異材料暗柳橙進行了芽變研究[15],FENG等利用RNASeq技術進行了楊梅色澤變化的機制研究[16],均取得了較好的效果.筆者在對楊梅的親緣關系研究中,把氣孔分析、分子標記檢測、RNA-Seq檢測3項內(nèi)容作為倍性變化研究的技術關鍵,明確了2個突變體與野生型植株的倍性及其變異機制[1314,17].下一步我們將對本研究的2個種質(zhì)進行深入分析,并利用新的轉(zhuǎn)錄組學技術,明確產(chǎn)生種質(zhì)差異的候選基因,探討形成差異的機制;同時,在面上適度開展高接換種與異地栽培,擴大對這2個種質(zhì)的特征和特性觀察,將優(yōu)良品種和優(yōu)良栽培技術結合,培育出消費者期望的品種.
參考文獻(References):
[1] 梁國魯,任振川,閻勇,等.四川8個枇杷品種染色體變異研究.園藝學報,1999,26(2):71-76. LIANG G L,REN Z C,YAN Y,et al.Chromosome variation in 8 loquat varieties in Sichuan Province.Acta Horticulturae Sinica,1999,26(2):71-76.(in Chinese with English abstract)
[2] 周坤杰,陳慧,王化坤,等.蘇州地區(qū)白沙枇杷果實性狀調(diào)查研究.安徽農(nóng)業(yè)科學,2014,42(28):9703-9704. ZHOU K J,CHEN H,WANG H K,et al.Investigation of loquat[Eriobotryajaponica(Thunb.)Lindl.]fruit characters of Suzhou area.Journal of Anhui Agricultural Sciences,2014, 42(28):9703-9704.(in Chinese with English abstract)
[3] 任國慧,李曉剛,藺經(jīng),等.江蘇省主要白沙枇杷資源的形態(tài)學研究與評價.江西農(nóng)業(yè)學報,2012,24(12):33-37. REN G H,LI X G,LIN J,et al.Morphological study and evaluation of Baisha loquat resources retrieved from Jiangsu Province.Acta Agriculturae Jiangxi,2012,24(12):33-37. (in Chinese with English abstract)
[4] 袁衛(wèi)明,王化坤,李慶魁.白沙枇杷早熟優(yōu)良單株選育:常綠5號.現(xiàn)代園藝,2014(10):20-21. YUAN W M,WANG H K,LI Q K.Individual plant breeding of early-maturing white flesh loquat:Evergreen No.5.Xiandai Horticulturae,2014(10):20-21.(in Chinese)
[5] LI X Y,XU H X,CHEN J W.Genetic diversity and relationships among 47 loquat varieties revealed by EST-SSR markers.Scientia Horticulturae,2013,160:375-382.
[6] 陳方永.‘東魁'楊梅2個變異材料的發(fā)掘及鑒定.武漢:華中農(nóng)業(yè)大學,2014:25-29. CHEN F Y.Development of Dongkui Chinese bayberry (Myrica Rubra cv.Dongkui)and identification of two mutants.Wuhan:Huazhong Agricultural University,2014: 25-29.(in Chinese with English abstract)
[7] 陳方永,謝麗雪,倪海枝,等.卵圓型軟條白沙枇杷變異種質(zhì)鑒定研究.植物遺傳資源學報,2014,15(5):986-991. CHEN F Y,XIE L X,NI H Z,et al.Identification of eggshaped Ruantiao Baisha loquat mutant germplasm.Journal of Plant Genetic Resources,2014,15(5):986-991.(in Chinese with English abstract)
[8] 何橋.基于SSR標記的遺傳多樣性分析與品種鑒別.重慶:西南大學,2010:34-41. HE Q.Genetic diversity analysis and cultivar identification of loquat(Eriobotrya Japonica Lindl.)based on SSR. Chongqing:Xinan University,2010:34-41.(in Chinese with English abstract)
[9] LIEBHARD R,GIANFRANCESCHI L,KOLLER B,et al. Development and characterisation of 140 new microsatellites in apple(Malus×domestica Borkh.).Molecular Breeding, 2002,10(4):217-241.
[10] 陳方永,吳才華,蘇建,等.白沙枇杷不同栽培條件生長結果研究初報.浙江農(nóng)業(yè)科學,2008(2):159-161. CHEN F Y,WU C H,SU J,et al.Preliminary studies on different cultivation conditions of white flesh loquat.Journal of Zhejiang Agricultural Sciences,2008(2):159-161.(in Chinese)
[11] 韓國輝,汪衛(wèi)星,向素瓊,等.多倍體枇杷SCoT分析體系的建立與優(yōu)化.果樹學報,2011,28(3):433-437. HAN G H,WANG W X,XIANG S Q,et al.Establishment and optimization of SCo T system in polyploidy loquats. Journal of Fruit Science,2011,28(3):433-437.(in Chinese with English abstract)
[12] 張東,舒群,滕元文,等.中國紅皮沙梨品種的SSR標記分析.園藝學報,2007,34(1):47-52. ZHANG D,SHU Q,TENG Y W,et al.Simple sequence repeat analysis on genetic assessment of Chinese red skinned sand pear cultivars.Acta Horticulturae Sinica,2007,34(1): 47-52.(in Chinese with English abstract)
[13] CHEN F Y,LIU J H.Germplasm genetic diversity study of Myrica rubra in Zhejiang Province using inter-primer binding site and start codon targeted polymorphism molecular markers.Scientia Horticulturae,2014,170:169-175.
[14] 陳方永,王引,倪海枝,等.浙東南楊梅葉片氣孔觀察與相似性研究.植物遺傳資源學報,2012,13(4):626-631. CHEN F Y,WANG Y,NI H Z,et al.Stomata similarity of some Zhejiang southeast bayberry leaves.Journal of Plant Genetic Resources,2012,13(4):626-631.(in Chinese with English abstract)
[15] 潘志勇.基于組學的甜橙紅肉變異分子機理.武漢:華中農(nóng)業(yè)大學,2012:78-82. PAN Z Y.Molecular mechanisms associated with red-flesh mutation in sweet orange based on omics.Wuhan:Huazhong Agricultural University,2012:78-82.(in Chinese with English abstract)
[16] FENG C,CHEN M,XU C J.Transcriptomic analysis of Chinese bayberry(Myrica rubra)fruit development and ripening using RNA-Seq.BMC Genomics,2012,13:19.
[17] CHEN F Y,NI H Z,WANG Y.Physiological and molecular characteristics of two ploidy mutants in Myrica rubra cv. Dongkui.Journal of Integrative Agriculture,2016,15(7): 1458-1468.
CHEN Fangyong1*,WANG Yin1,NI Haizhi1,ZHANG Qi2,YAN Bangguo1
(1.Citrus Research Institute of Zhejiang,Huangyan 318026,Zhejiang,China;2.Economic Specialty Technology Extension Station, Agricultural Bureau of Lanxi,Lanxi 321100,Zhejiang,China)
Summary Loquat,Eriobotrya japonica(Thunb.)Lindl.,is indigenous in southeast of China,which belongs to the family Rosaceae and subfamily Maloideae.Based on the color of fruit flesh,loquat can be sorted into redand white-flesh cultivars.Zhejiang Province is the major producing area of loquat in China,with an area of about 1.2×104hm2;the annual production of loquat is about 6.5×104t,with a value of about 2.5 billion Chinese Yuan. Therefore,germplasm resources of loquat are abundant in Zhejiang Province.However,there are two white-flesh loquat germplasms(Ruantiao white-flesh loquat from Huangyan,white-flesh loquat from Lanxi)which are different in leaf morphology and fruit shape from two producing areas of Zhejiang Province.Controversy on whether the two varieties are synonyms has existed for a long time,and no conclusive evidence was presented yet.
In this paper,morphological characteristics of the two varieties were examined,and their ploidy and stomata were analyzed,and their genetic relationships were identified using simple sequence repeat(SSR)marker.
Results showed that the single fruit mass of Ruantiao white-flesh loquat from Huangyan area was 1.38 times heavier than that of white-flesh loquat from Lanxi area.However,the number of seeds,pericarp thickness,fruithardness of white-flesh fruit from Lanxi were 1.36,1.096 and 1.22 times higher than those of Ruantiao whiteflesh loquat from Huangyan,respectively.Flow cytometry analysis indicated that the two varieties were both diploid.Stomatal density of white-flesh loquat from Lanxi was significantly higher than Ruantiao white-flesh loquat from Huangyan,while conversely,the stomatal area from Lanxi was significantly smaller than that from Huangyan.The cluster analysis using SSR marker showed that the genetic similarity coefficient(GS)of the loquat from Huangyan was 0.40,and 0.45 from Lanxi,indicating these two kinds of white-flesh loquats had a distant genetic relationship.The difference of the two varieties in maturation periods was mainly affected by variety characteristics and different geographical regions.
In conclusion,the two experimental materials have a distant genetic relationship and belong to different germplasms.The creation of the novel germplasm has positive significance in enriching market supply and industrial development of white-flesh loquat.
Key wordswhite-flesh loquat;similar germplasm;genetic relationship;difference
Genetic relationship identification on germplasm resources of two white-flesh loquats from two different producing areas of Zhejiang Province.Journal of Zhejiang University(Agric.&Life Sci.), 2016,42(6):739- 746
DOI:10.3785/j.issn.1008-9209.2016.01.211
中圖分類號S 667.3;S 602
文獻標志碼A
基金項目:浙江省臺州市科技計劃(15NY15).
*通信作者(Corresponding author):陳方永(http://orcid.org/0000-0002-3134-9470),E-mail:cfy17266@126.com
收稿日期(Received):2016 01 21;接受日期(Accepted):2016 05 03;網(wǎng)絡出版日期(Published online):2016 08 10
URL:http://www.cnki.net/kcms/detail/33.1247.S.20160810.1234.002.html