劉政選 王曉旭 符勇 方松清
?
腫瘤相關(guān)巨噬細(xì)胞與骨肉瘤
劉政選 王曉旭 符勇 方松清
骨肉瘤是發(fā)病率最高的骨惡性腫瘤,在兒童及青少年中最為常見。研究發(fā)現(xiàn),腫瘤微環(huán)境在骨肉瘤的發(fā)生發(fā)展中發(fā)揮重要功能,其中腫瘤相關(guān)巨噬細(xì)胞(TAM)廣泛參與骨肉瘤生長、血管新生、轉(zhuǎn)移及干細(xì)胞樣表型表達(dá)等。該文對(duì)TAM與骨肉瘤的研究現(xiàn)狀作一綜述。
骨肉瘤;腫瘤相關(guān)巨噬細(xì)胞;腫瘤微環(huán)境
骨肉瘤是最常見的骨惡性腫瘤,好發(fā)于股骨、脛骨和肱骨等長骨干骺端,以局部侵犯和早期肺部轉(zhuǎn)移為主要特點(diǎn),患者預(yù)后極差[1]。近幾十年來,關(guān)于骨肉瘤患者總生存情況的研究一直處于瓶頸狀態(tài)[2]。隨著研究不斷深入,在發(fā)現(xiàn)針對(duì)骨肉瘤實(shí)質(zhì)細(xì)胞的治療不能對(duì)患者預(yù)后有明顯改善后,越來越多的研究轉(zhuǎn)向腫瘤微環(huán)境方面[3]。既往研究[4]顯示,在常見的惡性腫瘤中,腫瘤微環(huán)境與腫瘤惡性表型密切相關(guān),且可促進(jìn)惡性腫瘤血管新生、局部浸潤及轉(zhuǎn)移,是惡性腫瘤進(jìn)展的危險(xiǎn)因素。巨噬細(xì)胞作為腫瘤微環(huán)境中含量最多的炎性細(xì)胞,與人類多種惡性腫瘤密切相關(guān),為影響惡性腫瘤患者預(yù)后的獨(dú)立因素[5]。
腫瘤微環(huán)境是指由間質(zhì)細(xì)胞、細(xì)胞外間質(zhì)、細(xì)胞因子及趨化因子等構(gòu)成的局部病理環(huán)境,它是一個(gè)動(dòng)態(tài)變化的整體,可與腫瘤細(xì)胞相互作用:一方面,微環(huán)境影響腫瘤細(xì)胞,為腫瘤生長、血管生成及轉(zhuǎn)移提供條件;另一方面,腫瘤自身也影響著所處微環(huán)境的理化狀態(tài)。腫瘤微環(huán)境在骨肉瘤發(fā)生發(fā)展中起著重要作用,其細(xì)胞組成主要包括間充質(zhì)干細(xì)胞(MSC)、破骨細(xì)胞、成纖維細(xì)胞和炎性細(xì)胞,其中巨噬細(xì)胞是骨肉瘤微環(huán)境中含量最多的炎性細(xì)胞。
巨噬細(xì)胞來源于單核細(xì)胞,可遷移到不同組織中,分化為功能各異的細(xì)胞,在組織中起維持平衡、促進(jìn)炎癥反應(yīng)及調(diào)節(jié)免疫的作用。與正常組織中的巨噬細(xì)胞相同,腫瘤相關(guān)巨噬細(xì)胞(TAM)也來源于外周血循環(huán)的單核-巨噬細(xì)胞,在趨化因子CCL2、CCL5、血管內(nèi)皮生長因子(VEGF)、轉(zhuǎn)化生長因子(TGF)-β等作用下,單核細(xì)胞向腫瘤組織中浸潤,繼而在局部微環(huán)境影響下被誘導(dǎo)極化成M1型和M2 型TAM。
M1型TAM(即經(jīng)典激活的巨噬細(xì)胞)由脂多糖(LPS)和干擾素(IFN)-γ等刺激極化而來,高表達(dá)白細(xì)胞介素(IL)-1、IL-12、 IL-23、活性氧簇(ROS)和一氧化氮(NO),低表達(dá)IL-4 和IL-10,有較強(qiáng)的抗原提呈能力,主要功能為殺滅被吞噬的細(xì)菌、病毒及腫瘤細(xì)胞,從而抑制腫瘤的發(fā)生發(fā)展[6]。炎癥介質(zhì)IL-10 或IL-4 可促進(jìn)TAM向M2型極化,M2型TAM高表達(dá)IL-10、清道夫受體CD163及甘露糖受體CD206等,低表達(dá)IL-12和IL-23,抗原提呈能力較弱,在組織修復(fù)、免疫抑制和促進(jìn)腫瘤生長中扮演重要角色[6]。局部微環(huán)境發(fā)生變化時(shí),M1型TAM與M2型TAM可相互轉(zhuǎn)化;激活或阻斷TAM的Notch信號(hào)轉(zhuǎn)導(dǎo)通路可使TAM向M1型或M2型極化[7]。阻斷TAM的核因子-κB(NF-κB)信號(hào)轉(zhuǎn)導(dǎo)通路可使TAM向M1型極化,表現(xiàn)為高表達(dá)IL-12,低表達(dá)IL-10,從而抑制腫瘤的發(fā)生發(fā)展[8]。目前研究認(rèn)為,眾多惡性腫瘤如肝細(xì)胞癌[9]、胰腺癌[10]、胃癌[11]等細(xì)胞間質(zhì)中高度浸潤的TAM主要表現(xiàn)為M2型,可促進(jìn)腫瘤發(fā)生發(fā)展,為影響患者預(yù)后的危險(xiǎn)因素。目前TAM在骨肉瘤中的表型尚未明確,其對(duì)骨肉瘤的生長、血管新生、轉(zhuǎn)移及干細(xì)胞樣表型的影響各有不同,甚至存在分歧。
2.1 對(duì)骨肉瘤生長的影響
多種信號(hào)轉(zhuǎn)導(dǎo)通路、分子與骨肉瘤的生長有關(guān)。Yang等[12]研究發(fā)現(xiàn),通過轉(zhuǎn)染使骨肉瘤中的組蛋白修飾因子MacroH2A高表達(dá)能下調(diào)細(xì)胞周期素D及細(xì)胞周期素依賴性蛋白激酶(CDK)表達(dá),從而抑制骨肉瘤細(xì)胞增殖。Ma等[13]通過體外實(shí)驗(yàn)發(fā)現(xiàn),夾竹桃苷能抑制骨肉瘤中Wnt/β-catenin信號(hào)轉(zhuǎn)導(dǎo)通路,同時(shí)降低基質(zhì)金屬蛋白酶(MMP)-2和MMP-9的活性,導(dǎo)致骨肉瘤細(xì)胞凋亡。Li等[14]研究發(fā)現(xiàn),微小RNA(miRNA)-143能抑制B細(xì)胞淋巴瘤基因(Blc)-2表達(dá),激活含半胱氨酸的天冬氨酸蛋白水解酶-3,導(dǎo)致骨肉瘤細(xì)胞凋亡。
多數(shù)惡性腫瘤中TAM呈M2型,可通過分泌內(nèi)皮生長因子(EGF)等生長因子直接或間接促進(jìn)腫瘤細(xì)胞生長[15]。Hu等[16]研究發(fā)現(xiàn),M2型TAM可上調(diào)細(xì)胞周期蛋白D1表達(dá),促進(jìn)子宮內(nèi)膜癌細(xì)胞增殖。Yang等[17]研究發(fā)現(xiàn),M2型TAM能促進(jìn)Bcl-2表達(dá),抑制乳腺癌細(xì)胞凋亡。Xiao等[18]研究證實(shí),骨肉瘤組織中大量M2型TAM浸潤,與骨肉瘤的增殖密切相關(guān)。體內(nèi)實(shí)驗(yàn)[19]發(fā)現(xiàn),注射氯膦酸鹽可減少骨肉瘤小鼠模型中的巨噬細(xì)胞數(shù)量,使小鼠腫瘤體積顯著減?。幻庖呓M化檢測顯示,骨肉瘤的移植瘤多為F4/80(一種巨噬細(xì)胞標(biāo)志物)陽性,且移植瘤的TAM表現(xiàn)為M2型。骨肉瘤細(xì)胞高表達(dá)EGF,但骨肉瘤的生長僅受內(nèi)皮生長因子受體(EFGR)及TAM調(diào)控,與EGF無關(guān)。Pahl等[15]研究證實(shí),脂質(zhì)胞壁三肽與IFN-γ共同誘導(dǎo)極化的M1型TAM能抑制骨肉瘤細(xì)胞生長;當(dāng)骨肉瘤細(xì)胞株與西妥昔單抗共同培養(yǎng)時(shí),IL-10誘導(dǎo)極化的M2型TAM也能抑制骨肉瘤細(xì)胞的生長。因此,M2型TAM在某些因素作用下,也可能抑制骨肉瘤的生長。但TAM對(duì)骨肉瘤生長的影響機(jī)制尚待進(jìn)一步研究。
2.2 對(duì)骨肉瘤血管新生的影響
腫瘤血管新生是指在原有血管的基礎(chǔ)上,各種因素通過內(nèi)皮細(xì)胞增殖、細(xì)胞外基質(zhì)(ECM)降解及內(nèi)皮細(xì)胞遷移、重構(gòu),以出芽的方式形成新的血管,進(jìn)入腫瘤組織內(nèi),為腫瘤發(fā)生發(fā)展提供必要條件,是腫瘤十大特征之一。促進(jìn)腫瘤血管新生的因子包括VEGF 、EGF、成纖維細(xì)胞生長因子(FGF)及TGF-β等,其中以VEGF的促血管生成作用最為重要,它能與內(nèi)皮細(xì)胞的特異性受體flt和flt/KDR結(jié)合,促進(jìn)內(nèi)皮細(xì)胞增殖,刺激新生血管形成[20]。同時(shí),MMP能破壞ECM,誘導(dǎo)內(nèi)皮細(xì)胞遷移,也能促進(jìn)血管新生[21]。骨肉瘤的發(fā)生發(fā)展過程也需要血管。骨肉瘤中的VEGF能激活磷脂酰肌醇3激酶(PI3K)/蛋白激酶B(Akt)信號(hào)轉(zhuǎn)導(dǎo)通路,使骨肉瘤微血管密度(MVD)增加,促進(jìn)血管生成[22]。大量研究發(fā)現(xiàn),精子相關(guān)抗原-9[23]、骨膜蛋白[24]及IL-6[25]均能通過提高骨肉瘤中VEGF的表達(dá)促進(jìn)其血管新生。骨肉瘤組織中高表達(dá)的低氧誘導(dǎo)因子(HIF)-1α與MVD的增加呈正相關(guān),是患者預(yù)后不良的重要因素[26]。
TAM能分泌各種促血管生成因子(如VEGF、FGF、MMP-9等)參與血管新生的每個(gè)過程。大量研究[27]證實(shí),TAM易聚集在腫瘤組織的低氧部位,而腫瘤組織的低氧環(huán)境能促使TAM中HIF-1α活性增高,從而分泌大量VEGF及MMP等促血管生成因子,促進(jìn)血管新生。研究發(fā)現(xiàn),在多種惡性腫瘤如膠質(zhì)母細(xì)胞瘤[28]、乳腺癌[29]及胃癌[30]等中,TAM能通過促進(jìn)腫瘤組織中VEGF的表達(dá)以促進(jìn)腫瘤血管新生,是導(dǎo)致患者預(yù)后不良的重要因素。Werno等[31]研究發(fā)現(xiàn),在敲除HIF-1α基因的乳腺癌中,TAM向M2型極化,腫瘤組織血管再生能力減弱。上述研究結(jié)果與一般認(rèn)為M2型TAM促進(jìn)腫瘤血管新生的觀點(diǎn)相悖,有待進(jìn)一步論證。Segaliny等[32]研究發(fā)現(xiàn),IL-34能使巨噬細(xì)胞在骨肉瘤組織中聚集,促進(jìn)骨肉瘤血管新生。因此,VEFG是骨肉瘤血管新生最重要的影響因素,骨肉瘤組織中浸潤的TAM可能通過促進(jìn)VEFG表達(dá)來誘導(dǎo)骨肉瘤新生血管生成,但具體機(jī)制尚需進(jìn)一步探索。
2.3 抑制骨肉瘤轉(zhuǎn)移
腫瘤轉(zhuǎn)移是指腫瘤從原發(fā)灶通過淋巴管、血管或直接蔓延等多種途徑到達(dá)其他部位繼續(xù)生長的過程。上皮間質(zhì)化(EMT)是指在多種因素影響下,上皮細(xì)胞黏附能力減弱,而運(yùn)動(dòng)能力增強(qiáng),失去細(xì)胞極性,轉(zhuǎn)變?yōu)榫哂修D(zhuǎn)移能力的間充質(zhì)表型的上皮細(xì)胞的過程,是腫瘤發(fā)生轉(zhuǎn)移的起始階段。Notch信號(hào)轉(zhuǎn)導(dǎo)通路能激活骨肉瘤EMT,促進(jìn)骨肉瘤轉(zhuǎn)移[33];Wnt信號(hào)轉(zhuǎn)導(dǎo)通路的配體及受體在骨肉瘤細(xì)胞株中高表達(dá),能提高骨肉瘤轉(zhuǎn)移的能力[34]。骨肉瘤組織中的VEGF[35]、埃茲蛋白[36]及趨化因子受體CXCR3[37]等水平也與骨肉瘤的轉(zhuǎn)移呈正相關(guān)。Cheng等[38]研究發(fā)現(xiàn),重樓皂苷Ⅶ能激活p38絲裂原活化蛋白激酶(p38 MAPK)信號(hào)轉(zhuǎn)導(dǎo)通路,下調(diào)MMP-2及MMP-9水平,減少ECM降解,抑制骨肉瘤轉(zhuǎn)移。
在腫瘤轉(zhuǎn)移過程中,TAM既能上調(diào)MMP水平使ECM降解[39],又能通過激活多種信號(hào)轉(zhuǎn)導(dǎo)通路激活EMT[40]。Liu等[41]研究發(fā)現(xiàn),M2型TAM可通過激活Toll樣受體(TLR)4/IL-10信號(hào)轉(zhuǎn)導(dǎo)通路促進(jìn)波形蛋白、上皮細(xì)胞鈣黏蛋白等間充質(zhì)細(xì)胞標(biāo)志物表達(dá),提高M(jìn)MP-9、MMP-2的活性,激活EMT,介導(dǎo)胰腺癌轉(zhuǎn)移。Lee等[42]研究發(fā)現(xiàn),M2型TAM可激活Gas6/Axl-NF-κB17信號(hào)轉(zhuǎn)導(dǎo)通路,促進(jìn)EMT,介導(dǎo)口腔癌轉(zhuǎn)移。Lin等[43]研究發(fā)現(xiàn),M2型TAM能分泌趨化因子CCL18,下調(diào)miRNA-98 和miRNA-27b基因表達(dá),激活EMT,介導(dǎo)乳腺癌轉(zhuǎn)移。
綜上所述,多數(shù)惡性腫瘤中高度浸潤的TAM主要表現(xiàn)為M2型,可促進(jìn)腫瘤轉(zhuǎn)移。Buddingh等[44]研究發(fā)現(xiàn),在高度惡性的骨肉瘤中,TAM同時(shí)具備M1型及M2型TAM的特點(diǎn),且TAM數(shù)量越多,骨肉瘤患者發(fā)生轉(zhuǎn)移的概率越低,生存期越長,提示在高度惡性骨肉瘤中,TAM可能主要表現(xiàn)為M1型TAM的特點(diǎn),即抑制骨肉瘤轉(zhuǎn)移,但TAM如何抑制骨肉瘤轉(zhuǎn)移尚需進(jìn)一步研究。
2.4 上調(diào)骨肉瘤腫瘤干細(xì)胞樣表型
腫瘤干細(xì)胞(CSC)是惡性腫瘤中一小群具有自我更新能力、高度耐藥性及多種分化潛能且增殖迅速的細(xì)胞,與腫瘤的發(fā)生、復(fù)發(fā)、轉(zhuǎn)移及耐藥密切相關(guān)[45]。Lapidot等[46]首次通過實(shí)驗(yàn)發(fā)現(xiàn)人類急性髓性白血病中存在CSC,之后學(xué)者們陸續(xù)從多種實(shí)體腫瘤如胰腺癌、肝癌、肺癌及胃癌等中分離出CSC。Gibbs等[47]于2005年首次從骨肉瘤中分離出CSC,其特征為高表達(dá)MSC特有的表面標(biāo)志物如CD133、CD177 和Sro-1。隨著研究的深入,學(xué)者們[48]發(fā)現(xiàn)Oct3/4和Nanog蛋白等也可作為骨肉瘤CSC樣表型的標(biāo)志物。TGF-β1信號(hào)轉(zhuǎn)導(dǎo)通路[49]、Notch信號(hào)轉(zhuǎn)導(dǎo)通路[50]能上調(diào)骨肉瘤CSC樣表型,而Wnt信號(hào)轉(zhuǎn)導(dǎo)通路[51]能抑制骨肉瘤CSC樣表型上調(diào)。
研究[52]表明,TAM能促進(jìn)CSC樣表型上調(diào)。TAM能通過激活TGF-β1信號(hào)轉(zhuǎn)導(dǎo)通路導(dǎo)致EMT,促進(jìn)肝細(xì)胞癌CSC樣表型上調(diào),但EMT介導(dǎo)CSC樣表型上調(diào)具體機(jī)制尚需進(jìn)一步研究[53]。此外,TAM也可通過調(diào)控EGFR/Stat3/Sox-2信號(hào)轉(zhuǎn)導(dǎo)通路上調(diào)Scal-1和ABCG2等CSC樣表型[54]。在大多數(shù)惡性腫瘤中,TAM通過不同信號(hào)轉(zhuǎn)導(dǎo)通路上調(diào)CSC樣表型。因此,骨肉瘤中的TAM也有可能通過TGF-β1信號(hào)轉(zhuǎn)導(dǎo)通路促進(jìn)EMT,上調(diào)CSC樣表型。而TAM上調(diào)骨肉瘤CSC樣表型的機(jī)制以及骨肉瘤中CSC對(duì)TAM極化的影響,有待進(jìn)一步研究與探索。
TAM在腫瘤發(fā)生發(fā)展過程中扮演重要角色。促進(jìn)M2型TAM向M1型轉(zhuǎn)化,從而抑制腫瘤的發(fā)生發(fā)展是目前研究的熱點(diǎn)。研究[55]表明,丙酮酸激酶(PK)M2能促進(jìn)TAM向M2型極化。Liu等[56]研究發(fā)現(xiàn),PKM2在骨肉瘤中高表達(dá),其為導(dǎo)致骨肉瘤患者預(yù)后不良的重要因素,這或許能為骨肉瘤TAM的研究提供新的方向。TAM在骨肉瘤中的作用研究尚處于初始階段,存在諸多問題。大多數(shù)研究將CD163作為M2型TAM的表型標(biāo)志物,但CD163在樹突狀細(xì)胞等中也有表達(dá)[57]。TAM在骨肉瘤中主要表現(xiàn)為何種表型可能與骨肉瘤分期及分化程度有關(guān)。骨肉瘤微環(huán)境如何影響TAM表型變化及TAM與骨肉瘤相互作用機(jī)制,尚需進(jìn)一步探索。
[ 1 ] Morrow JJ, Khanna C. Osteosarcoma genetics and epigenetics: emerging biology and candidate therapies[J]. Crit Rev Oncog, 2015, 20(3-4):173-197.
[ 2 ] Luetke A, Meyers PA2, Lewis I, et al. Osteosarcoma treatment - where do we stand? A state of the art review[J]. Cancer Treat Rev, 2014, 40(4):523-532.
[ 3 ] Alfranca A, Martinez-Cruzado L, Tornin J, et al. Bone microenvironment signals in osteosarcoma development[J]. Cell Mol Life Sci, 2015, 72(16):3097-3113.
[ 4 ] Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis[J]. Nat Med, 2013, 19(11):1423-1437.
[ 5 ] Atanasov G, Hau HM, Dietel C, et al. Prognostic significance of macrophage invasion in hilar cholangiocarcinoma[J]. BMC Cancer, 2015, 15:790.
[ 6 ] Xuan W, Qu Q, Zheng B, et al. The chemotaxis of M1 and M2 macrophages is regulated by different chemokines[J]. J Leukoc Biol, 2015, 97(1):61-69.
[ 7 ] Zhang J, Zhou Q, Yuan G, et al. Notch signaling regulates M2 type macrophage polarization during the development of proliferative vitreoretinopathy[J]. Cell Immunol, 2015, 298(1-2):77-82.
[ 8 ] Biswas SK, Lewis CE. NF-κB as a central regulator of macrophage function in tumors[J]. J Leukoc Biol, 2010, 88(5):877-884.
[ 9 ] Shirabe K, Mano Y, Muto J, et al. Role of tumor-associated macrophages in the progression of hepatocellular carcinoma[J]. Surg Today, 2012, 42(1):1-7.
[10] Kurahara H, Shinchi H, Mataki Y, et al. Significance of M2-polarized tumor-associated macrophage in pancreatic cancer[J]. J Surg Res, 2011, 167(2):e211-e219.
[11] Wu H, Xu JB, He YL, et al. Tumor-associated macrophages promote angiogenesis and lymphangiogenesis of gastric cancer[J]. J Surg Oncol, 2012, 106(4):462-468.
[12] Yang P, Yin K, Zhong D, et al. Inhibition of osteosarcoma cell progression by MacroH2A via the downregulation of cyclin D and cyclin-dependent kinase genes[J]. Mol Med Rep, 2015, 11(3):1905-1910.
[13] Ma Y, Zhu B, Liu X, et al. Inhibition of oleandrin on the proliferation show and invasion of osteosarcoma cells in vitro by suppressing Wnt/β-catenin signaling pathway[J]. J Exp Clin Cancer Res, 2015, 34:115.
[14] Li WH, Wu HJ, Li YX, et al. MicroRNA-143 promotes apoptosis of osteosarcoma cells by caspase-3 activation via targeting Bcl-2[J]. Biomed Pharmacother, 2016, 80:8-15.
[15] Klambt C. EGF receptor signalling: the importance of presentation[J]. Curr Biol, 2000, 10(10):R388-R391.
[16] Hu HL, Bai HS, Pan HX. Correlation between TAMs and proliferation and invasion of type I endometrial carcinoma[J]. Asian Pac J Trop Med, 2015, 8(8):643-650.
[17] Yang C, He L, He P, et al. Increased drug resistance in breast cancer by tumor-associated macrophages through IL-10/STAT3/bcl-2 signaling pathway[J]. Med Oncol, 2015, 32(2):352.
[18] Xiao Q, Zhang X, Wu Y, et al. Inhibition of macrophage polarization prohibits growth of human osteosarcoma[J]. Tumour Biol, 2014, 35(8):7611-7616.
[19] Pahl JH, Kwappenberg KM, Varypataki EM, et al. Macrophages inhibit human osteosarcoma cell growth after activation with the bacterial cell wall derivative liposomal muramyl tripeptide in combination with interferon-γ[J]. J Exp Clin Cancer Res, 2014, 33:27.
[20] Belair DG, Miller MJ, Wang S, et al. Differential regulation of angiogenesis using degradable VEGF-binding microspheres[J]. Biomaterials, 2016, 93:27-37.
[21] Deryugina EI, Quigley JP. Tumor angiogenesis: MMP-mediated induction of intravasation- and metastasis-sustaining neovasculature[J]. Matrix Biol, 2015, 44-46:94-112.
[22] Peng N, Gao S, Guo X, et al. Silencing of VEGF inhibits human osteosarcoma angiogenesis and promotes cell apoptosis via VEGF/PI3K/AKT signaling pathway[J]. Am J Transl Res, 2016, 8(2):1005-1015.
[23] Yang X, Zhou W, Liu S. SPAG9 controls the cell motility, invasion and angiogenesis of human osteosarcoma cells[J]. Exp Ther Med, 2016, 11(2):637-644.
[24] Hu F, Shang XF, Wang W, et al. High-level expression of periostin is significantly correlated with tumour angiogenesis and poor prognosis in osteosarcoma[J]. Int J Exp Pathol, 2016, 97(1):86-92.
[25] Tzeng HE, Tsai CH, Chang ZL, et al. Interleukin-6 induces vascular endothelial growth factor expression and promotes angiogenesis through apoptosis signal-regulating kinase 1 in human osteosarcoma[J]. Biochem Pharmacol, 2013, 85(4):531-540.
[26] Ren HY, Zhang YH, Li HY, et al. Prognostic role of hypoxia-inducible factor-1 alpha expression in osteosarcoma: a meta-analysis[J]. Onco Targets Ther, 2016, 9:1477-1487.
[27] Ribatti D, Nico B, Crivellato E, et al. Macrophages and tumor angiogenesis[J]. Leukemia, 2007, 21(10):2085-2089.
[28] Peterson TE, Kirkpatrick ND, Huang Y, et al. Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages[J]. Proc Natl Acad Sci USA, 2016, 113(16):4470-4475.
[29] Surendra P, Yulius H, Angelina S, et al. The correlation between TAM, MVD, VEGF and MMP-9 expressions among various histological progression, histological grading and staging of breast cancer[J]. J Med Sci, 2012, 44(1):41-48.
[30] Wu H, Xu JB, He YL, et al. Tumor-associated macrophages promote angiogenesis and lymphangiogenesis of gastric cancer[J]. J Surg Oncol, 2012, 106(4):462-468.
[31] Werno C, Menrad H, Weigert A, et al. Knockout of HIF-1α in tumor-associated macrophages enhances M2 polarization and attenuates their pro-angiogenic responses[J]. Carcinogenesis, 2010, 31(10):1863-1872.
[32] Segaliny AI, Mohamadi A, Dizier B, et al. Interleukin-34 promotes tumor progression and metastatic process in osteosarcoma through induction of angiogenesis and macrophage recruitment[J]. Int J Cancer, 2015, 137(1):73-85.
[33] Ongaro A, Pellati A, Bagheri L, et al. Characterization of notch signaling during osteogenic differentiation in human osteosarcoma cell line MG63[J]. J Cell Physiol, 2016, 231(12):2652-2663.
[34] Zhao S, Kurenbekova L, Gao Y, et al. NKD2, a negative regulator of Wnt signaling, suppresses tumor growth and metastasis in osteosarcoma[J]. Oncogene, 2015, 34(39):5069-5079.
[35] Ohba T, Cates JM, Cole HA, et al. Autocrine VEGF/VEGFR1 signaling in a subpopulation of cells associates with aggressive osteosarcoma[J]. Mol Cancer Res, 2014, 12(8):1100-1111.
[36] Ren L, Khanna C. Role of ezrin in osteosarcoma metastasis[J]. Adv Exp Med Biol, 2014, 804:181-201.
[37] Rao-Bindal K, Zhou Z, Kleinerman E. MS-275 sensitizes osteosarcoma cells to fas ligand-induced cell death by increasing the localization of fas in membrane lipid rafts[J]. Cell Death Dis, 2012, 3(8):e369.
[38] Cheng G, Gao F, Sun X, et al. Paris saponin Ⅶ suppresses osteosarcoma cell migration and invasion by inhibiting MMP?2/9 production via the p38 MAPK signaling pathway[J]. Mol Med Rep, 2016, 14(4):3199-3205.
[39] Gao F, Liang B, Reddy ST, et al. Role of inflammation-associated microenvironment in tumorigenesis and metastasis[J]. Curr Cancer Drug Targets, 2014, 14(1):30-45.
[40] Zhang F, Wang H, Wang X, et al. TGF-β induces M2-like macrophage polarization via SNAIL-mediated suppression of a pro-inflammatory phenotype[J]. Oncotarget, 2016, [Epub ahead of print].
[41] Liu CY, Xu JY, Shi XY, et al. M2-polarized tumor-associated macrophages promoted epithelial-mesenchymal transition in pancreatic cancer cells, partially through TLR4/IL-10 signaling pathway[J]. Lab Invest, 2013, 93(7):844-854.
[42] Lee CH, Liu SY, Chou KC, et al. Tumor-associated macrophages promote oral cancer progression through activation of the Axl signaling pathway[J]. Ann Surg Oncol, 2014, 21(3):1031-1037.
[43] Lin X, Chen L, Yao Y, et al. CCL18-mediated down-regulation of miR98 and miR27b promotes breast cancer metastasis[J]. Oncotarget, 2015, 6(24):20485-20499.
[44] Buddingh EP, Kuijjer ML, Duim RA, et al. Tumor-infiltrating macrophages are associated with metastasis suppression in high-grade osteosarcoma: a rationale for treatment with macrophage activating agents[J]. Clin Cancer Res, 2011, 17(8):2110-2119.
[45] Tirino V, Desiderio V, Paino F, et al. Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization[J]. FASEB J, 2013, 27(1):13-24.
[46] Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature, 1994, 367(6464):645-648.
[47] Gibbs CP, Kukekov VG, Reith JD, et al. Stem-like cells in bone sarcomas: implications for tumorigenesis[J]. Neoplasia, 2005, 7(11):967-976.
[48] Basu-Roy U, Basilico C, Mansukhani A. Perspectives on cancer stem cells in osteosarcoma[J]. Cancer Lett, 2013, 338(1):158-167.
[49] Zhang H, Wu H, Zheng J, et al. Transforming growth factor β1 signal is crucial for dedifferentiation of cancer cells to cancer stem cells inosteosar-coma[J]. Stem Cells, 2013, 31(3):433-446.
[50] Yan GN, Lv YF, Guo QN. Advances in osteosarcoma stem cell research and opportunities for novel therapeutic targets[J]. Cancer Lett, 2016, 370(2):268-274.
[51] Basu-Roy U, Seo E, Ramanathapuram L, et al. Sox2 maintains self renewal of tumor-initiating cells in osteosarcomas[J]. Oncogene, 2012, 31(18):2270-2282.
[52] Wan S, Zhao E, Kryczek I, et al. Tumor-associated macrophages produce interleukin 6 and signal via STAT3 to promote expansion of human hepatocellular carcinoma stem cells[J]. Gastroenterology, 2014, 147(6):1393-1404.
[53] Fan QM, Jing YY, Yu GF, et al. Tumor-associated macrophages promote cancer stem cell-like properties via transforming growth factor-beta1-induced epithelial-mesenchymal transition in hepatocellular carcinoma[J]. Cancer Lett, 2014, 352(2):160-168.
[54] Yang J, Liao D, Chen C, et al. Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway[J]. Stem Cells, 2013, 31(2):248-258.
[55] Palsson-McDermott EM, Curtis AM, Goel G, et al. Pyruvate kinase M2 regulates Hif-1α activity and IL-1β induction and is a critical determinant of the warburg effect in LPS-activated macrophages[J]. Cell Metab, 2015, 21(1):65-80.
[56] Liu ZX, Hong L, Fang SQ, et al. Overexpression of pyruvate kinase M2 predicts a poor prognosis for patients with osteosarcoma[J]. Tumour Biol, 2016, [Epub ahead of print].
[57] O’Keeffe M, Mok WH, Radford KJ. Human dendritic cell subsets and function in health and disease[J]. Cell Mol Life Sci, 2015, 72(22):4309-4325.
(收稿:2016-09-15;修回:2016-10-08)
(本文編輯:李圓圓)
湖南省教育廳資助項(xiàng)目(15C1215)
421000 湖南衡陽, 南華大學(xué)附屬第二醫(yī)院骨科(劉政選、王曉旭、符勇); 421000 湖南衡陽, 南華大學(xué)臨床技能中心(方松清)
方松清 E-mail: fangsongqing123@163.com
10.3969/j.issn.1673-7083.2016.06.011