馬春紅,李士娜,馬瑞新, 2,朱鴻民
?
射頻磁控濺射法制備Ti摻雜ITO薄膜的厚度對(duì)膜結(jié)構(gòu)與光電性能的影響
馬春紅1, 3,李士娜1,馬瑞新1, 2,朱鴻民1
(1. 北京科技大學(xué)冶金與生態(tài)工程學(xué)院,北京 100083;2. 高端金屬材料特種熔煉與制備北京市重點(diǎn)實(shí)驗(yàn)室,北京100083;3. 稀有金屬特種材料國(guó)家重點(diǎn)實(shí)驗(yàn)室,石嘴山 753000)
利用Ti摻雜ITO靶材,采用單靶磁控濺射法在玻璃基底上制備厚度為50~300 nm的ITO:Ti薄膜。借助X射線衍射(XRD)、原子力顯微鏡(AFM)、可見光分光光度計(jì)、霍爾測(cè)試系統(tǒng)和四探針電阻測(cè)量?jī)x,研究薄膜厚度對(duì)薄膜的晶體結(jié)構(gòu)、表面形貌和光電性能的影響。結(jié)果表明:ITO:Ti薄膜呈現(xiàn)(400)擇優(yōu)取向,隨薄膜厚度增加,薄膜的結(jié)晶程度增強(qiáng),晶粒度增大,薄膜更致密。隨薄膜厚度增加,薄膜的均方根粗糙度和平均粗糙度以及電阻率都先減小再增加,薄膜厚度為250 nm時(shí),表面粗糙度最小,蔣膜厚度為200 nm時(shí),電阻率最低,為2.1×10?3Ω?cm。不同厚度的薄膜對(duì)可見光區(qū)的平均透過率都在89%以上。
射頻磁控濺射;半導(dǎo)體;ITO:Ti薄膜;薄膜厚度;光電性能
氧化銦錫(indium tin oxide,ITO)是一種重?fù)诫s、高簡(jiǎn)并的n型半導(dǎo)體材料,載流子濃度約為1021cm3,電導(dǎo)率可達(dá)104Ω?cm,其主要成分是In2O3,In2O3具有體心立方結(jié)構(gòu),密度為7.12 g/cm3,禁帶寬度為3.5~4.6 eV[1?2]。ITO透明導(dǎo)電薄膜由于具有優(yōu)異的透明性和導(dǎo)電性,廣泛應(yīng)用在液晶顯示器、熱反射鏡、觸摸屏以及太陽能電池等領(lǐng)域[3?5]。ITO透明導(dǎo)電薄膜的制備方法主要有磁控濺射法、脈沖激光沉積、溶膠–凝膠、噴射熱分解法、化學(xué)氣相沉積法等[6?13]。其中射頻磁控濺射法因具有沉積速率高、基片溫度低、成膜粘附性好、易控制、能實(shí)現(xiàn)大面積制膜、與IC平面器件工藝兼容等優(yōu)點(diǎn),成為當(dāng)今工業(yè)化生產(chǎn)中研究最多、最成熟、應(yīng)用最廣泛的一項(xiàng)技術(shù)。銦的價(jià)格相對(duì)較高,為降低成本,近幾年采用價(jià)格較低的金屬來替代一部分銦已成為研究熱點(diǎn);此外,與銦相比,鈮、鈦等金屬離子呈五價(jià)態(tài)和四價(jià)態(tài),采用其摻雜可提供更多的載流子,從而改善ITO薄膜的導(dǎo)電性能。目前的研究主要有Nb[14?15],Zr[16],Ti[17?18],Mo[19],W[20],Ce[21],Ag[22]等摻雜改性。其中銀的導(dǎo)電性更好,摻銀可獲得導(dǎo)電性能更好的氧化物薄膜。YANG等[17]通過同時(shí)濺射ITO靶材和高純鈦(99.995%)靶材獲得摻雜Ti的ITO薄膜,當(dāng)濺射功率為5 W時(shí),薄膜電阻率為6.64×10?4Ω?cm;在波長(zhǎng)為300~800 nm可見光范圍內(nèi),薄膜的透光率為70%~85%;退火后,薄膜對(duì)波長(zhǎng)為550 nm的可見光透光率達(dá)到90%。該研究采用ITO和Ti兩種靶材濺射,工藝較復(fù)雜。PU等[18]采用Ti摻雜ITO靶材,制備了厚度為350 nm的薄膜,基片溫度為400 ℃條件下獲得的薄膜電阻率為1.5×10?4Ω/cm, 在波長(zhǎng)為400~800 nm 可見光范圍內(nèi)的透光率為90%。目前對(duì)于薄膜厚度對(duì)射頻磁控濺射法制備Ti摻雜ITO薄膜的結(jié)構(gòu)與光電性能的影響研究較少。本文作者采用射頻磁控濺射法制備不同厚度的Ti摻雜ITO(ITO:Ti) 薄膜,分析薄膜的晶體結(jié)構(gòu)、表面形貌和光電性能,為磁控濺射法制備Ti摻雜ITO薄膜工藝及參數(shù)的優(yōu)化提供參考依據(jù)。
實(shí)驗(yàn)用的Ti摻雜ITO靶材由西北稀有金屬材料研究院提供。靶材直徑和厚度分別為50 mm和5 mm,相對(duì)密度為99%,靶材中的金屬元素Ti,In和Sn的摩爾分?jǐn)?shù)分別為0.58%,30.31%和3.72%。采用Corning Eagle 2000型液晶顯示器用玻璃作為襯底,使用前依次在丙酮中超聲清洗15 min,在去離子水中超聲清洗15 min,在乙醇中超聲清洗15 min。
采用JCP 200 射頻磁控濺射儀,在玻璃襯底表面制備不同厚度的ITO:Ti薄膜。射頻濺射功率為40 W,直流偏壓120 V,基片溫度為常溫,工作壓強(qiáng)為0.8 Pa,靶材到基片的距離為60 mm,基片以8 r/min的速度旋轉(zhuǎn),本底真空度約1.0×10?3Pa的純氬氣(純度99.999 %)。通過調(diào)整沉積時(shí)間,得到厚度為50~300 nm 的ITO:Ti薄膜。
利用型號(hào)為D/MAX2RB 的X射線衍射儀(CuK,=0.154178 nm)對(duì)ITO:Ti薄膜的晶體結(jié)構(gòu)和晶粒尺寸進(jìn)行分析。采用美國(guó)Digital Instruments (Veeco)公司生產(chǎn)的Nanoscope IIIa型原子力顯微鏡觀察薄膜的表面形貌,并測(cè)定薄膜表面的粗糙度,掃描區(qū)域約為5 μm×5 μm。采用法國(guó)的Jobin?Yvon橢偏儀對(duì)薄膜厚度進(jìn)行測(cè)量。薄膜的表面電阻用四探針(DB?90)測(cè)試儀測(cè)量。用722型分光光度計(jì)(波長(zhǎng)范圍300~800 nm)測(cè)量薄膜的透射光譜。
2.1 薄膜結(jié)構(gòu)
圖1所示為不同厚度的ITO:Ti薄膜的XRD譜,通過與標(biāo)準(zhǔn)In2O3卡片比較發(fā)現(xiàn),薄膜均由In2O3相組成,無其它金屬、錫的氧化物和鈦的氧化物,說明Ti以替代形式進(jìn)入In2O3晶格中,即Ti4+代替In2O3中的In3+。由圖1可知薄膜呈現(xiàn)(400)擇優(yōu)取向,并且隨厚度增加,衍射峰強(qiáng)度逐漸增強(qiáng),表明ITO:Ti薄膜的結(jié)晶程度逐漸增強(qiáng),晶體的完整性不斷提高。
取圖1中(400)晶面的衍射角(2),通過Scherrer公式計(jì)算ITO:Ti薄膜的晶粒尺寸,并利用Bragg晶面間距和ITO:Ti薄膜體心立方鐵錳礦結(jié)構(gòu)的晶格常數(shù)計(jì)算公式,計(jì)算薄膜的晶粒尺寸和晶格常數(shù),結(jié)果如圖2所示。從圖1和圖2中可看出,隨ITO:Ti薄膜厚度增加,半高寬逐漸減小,薄膜的晶粒尺寸逐漸變大,這表明隨薄膜厚度增加,薄膜的晶粒度逐漸增大,晶化程度提高。晶格常數(shù)也都有不同程度的增大,大于In2O3的晶格常數(shù)1.0117 nm,這可能是由于薄膜與襯底的熱膨脹系數(shù)不同(分別為7.2×10?6和4.6×10?6K?1)而產(chǎn)生拉應(yīng)力造成的。
圖1 不同厚度的ITO:Ti薄膜的XRD譜
圖2 ITO:Ti薄膜厚度對(duì)薄膜晶格常數(shù)和晶粒尺寸的影響
2.2 表面形貌
圖3所示為不同厚度的ITO:Ti薄膜的表面AFM形貌,由圖3可見,ITO:Ti薄膜厚度為50 nm時(shí),由于薄膜較薄,晶格結(jié)構(gòu)受玻璃襯底的影響較大,薄膜缺陷較多,薄膜生長(zhǎng)不均勻,因而表面粗糙度很大;隨薄膜厚度增加,基體對(duì)膜層的影響減弱,同時(shí)有負(fù)偏壓對(duì)薄膜表面的轟擊作用,使得薄膜的結(jié)晶程度提高,薄膜表面變得平整、均勻和致密;隨厚度繼續(xù)增大,薄膜的表面粗糙度略有增大。
圖3 不同厚度的ITO:Ti薄膜的表面AFM形貌
圖4所示為不同厚度的 ITO:Ti薄膜的RMS粗糙度與平均粗糙度。由圖4可見,隨厚度增加,薄膜的RMS粗糙度和平均粗糙度均先減小再增加,表明薄膜凸起的幾何尺寸先減小后增大;厚度為250 nm的薄膜,其RMS粗糙度最小,僅為1.06 nm。
圖4 薄膜厚度對(duì)薄膜表面均方根粗糙度和平均粗糙度的影響
2.3 電學(xué)性能
圖5所示為薄膜厚度對(duì)薄膜電阻率的影響。從圖5可看出,在厚度為200 nm時(shí)電阻率達(dá)到最小值2.1×10?3Ω?cm,然后隨厚度增加,電阻率逐漸增大。當(dāng)薄膜很薄時(shí),晶格結(jié)構(gòu)受玻璃襯底的影響較大,薄膜缺陷較多,對(duì)載流子的散射和陷獲作用(即載流子陷阱捕獲作用)增強(qiáng),此時(shí)晶界散射占主導(dǎo)作用,霍爾遷移率較低,所以薄膜電阻率較大;隨薄膜厚度增加,基體對(duì)膜層的影響減弱,同時(shí)有負(fù)偏壓對(duì)薄膜表面的轟擊作用,使得薄膜的結(jié)晶程度提高,并且晶粒尺寸增大,減弱了晶粒間界面的散射,使載流子壽命延長(zhǎng),因此霍爾遷移率增加,薄膜電阻率減小;當(dāng)薄膜的厚度增加到一定值后,晶粒開始慢慢粗化,并且變得不均勻,同時(shí)晶界處有大量的吸附氧,吸附的氧阻礙載流子的遷移[23],因此薄膜的霍爾遷移率降低,導(dǎo)致薄膜的電阻率升高。
圖5 ITO:Ti薄膜厚度對(duì)電阻率的影響
2.4 光學(xué)性能
圖6所示為Ti摻雜ITO薄膜對(duì)不同波長(zhǎng)光的透過率。由圖6可知薄膜具有良好的可見光透過性,在可見光波長(zhǎng)范圍內(nèi)的透過率達(dá)到89%以上,隨薄膜厚度增加,薄膜在可見光區(qū)的透過率略有降低。此外,除50 nm厚度的薄膜以外,其它薄膜對(duì)于波長(zhǎng)為340 nm 附近光的透過率迅速降至最小值,這是由ITO:Ti薄膜的本征吸收和干涉相消共同作用的結(jié)果。在波長(zhǎng)為340 nm的紫外光區(qū)域,光子的能量為3.65 eV左右,近似于ITO:Ti薄膜的禁帶寬度,這使得該區(qū)域內(nèi)的大部分光子在照射到ITO:Ti薄膜表面時(shí)被完全吸收,并且引起本征激發(fā),再加上干涉相消的作用,導(dǎo)致薄膜的透過率顯著下降。至于50 nm厚度的薄膜,在波長(zhǎng)340 nm附近區(qū)域的透光率變化不明顯,表現(xiàn)出相應(yīng)的本征吸收區(qū),可能是由于薄膜太過薄使得光學(xué)平臺(tái)無法在紫外區(qū)進(jìn)行精確測(cè)量所致[24]。
圖6 ITO:Ti薄膜厚度對(duì)光透過率的影響
從圖6還可看出,隨薄膜厚度增加,薄膜在紫外光區(qū)的吸收邊發(fā)生“紅移”,厚度大的薄膜由于濺射時(shí)間長(zhǎng),其襯底溫度稍高于厚度小薄膜的,引起晶粒尺寸增大。由于量子尺寸效應(yīng),納米材料粒徑越大,帶隙越窄,激發(fā)價(jià)帶電子躍遷到導(dǎo)帶即吸收的光子能量越大,吸收邊“紅移”越明顯。
1) 采用射頻磁控濺射法沉積不同厚度的ITO:Ti薄膜,該薄膜具有體心立方鐵錳礦結(jié)構(gòu),所有薄膜的晶粒取向均為(400)面。
2) ITO:Ti薄膜的厚度在250 nm時(shí)具有最小的RMS粗糙度。厚度為200 nm時(shí),薄膜的電阻率最小,達(dá)到2.1×10?3Ω?cm。
3) 薄膜具有良好的可見光透過率,在可見光波長(zhǎng)范圍內(nèi)的透過率達(dá)到89 %以上。
[1] UTSUMI K, MATSUNAGA O, TAKAHATAA T. Low resistivity ITO film prepared using the ultra high density ITO target[J]. Thin Solid Films, 1998, 334(1): 30?34.
[2] DELAHOY A E, CHEN L, AKHTAR M, et al. New technologies for CIGS photovoltaics[J]. Solar Energy, 2004, 77(6): 785?793.
[3] YOSHIO S, FUMIHITO N, KAZUHISA K. Low-resistivity ITO films by DC arc discharge ion plating for high duty LCDs[J]. Journal of Non-Crystalline Solids, 1997, 218(2): 30?34.
[4] FTANK G, KAUER E, KSTLIN H. Transparent heat-reflecting coatings based on highly doped semiconductors[J]. Thin Solid Films, 1981, 77(1/3): 107?118.
[5] LI Chunran, YAO Bin, LI Yongfeng, et al. Fabrication, characterization and application of Cu2ZnSn(S,Se)4absorber layer via a hybrid ink containing ball milled powders[J]. Journal of Alloys and Compounds 2015, 643(8): 152?158.
[6] APERATHITIS E, BENDER M, CIMALLA V, et al. Properties of rf-sputtered indium–tin-oxynitride thin films[J]. Journal of Applied Physics, 2003, 94(2): 1258?1266.
[7] LAN Y F, PENG W C, LO Y H, et al. Indium tin oxide films deposited by thermionic-enhanced DC magnetron sputtering on unheated polyethylene terephthalate polymer substrate[J]. Materials Research Bulletin, 2009, 44(8): 1760?1764.
[8] MENG Lijian, GAO Jinsong, SANTOS M P D, et al. The effect of the ion beam energy on the properties of indium tin oxide thin films prepared by ion beam assisted deposition[J]. Thin Solid Films, 2008, 516(7): 1365?1369.
[9] ZHENG J P, KWOK H S. Low resistivity indium tin oxide films by pulsed laser deposition[J]. Applied Physics Letters, 1993, 63: 1?3.
[10] TAKAHASHI Y, OKADA S, TAHAR R B H, et al. Dip-coating of ITO films[J]. Journal of Non Crystalline Solids, 1997, 218(2): 129?134.
[11] SASABAYASHI T, ITO N, NISHIMURA E, et al. Comparative study on structure and internal stress in tin-doped indium oxide and indium-zinc oxide films deposited by R.F. magnetron sputtering[J]. Thin Solid Films, 2003, 445(2): 219?223.
[12] LUIS A, CARVALHO C N D, LAVAREDAA G, et al. ITO coated flexible transparent substrates for liquid crystal based devices[J]. Vacuum, 2002, 64(3): 475?479.
[13] BELO G S, SILVAA B J P D, VASCONCELOS E A D, et al. A simplified reactive thermal evaporation method for indium tin oxide electrodes[J]. Applied Surface Science, 2008, 255(3): 755?757.
[14] SHINA L I, RUIXIN M A, CHUNHONG M A, et al. Effect of thickness on optoelectrical properties of Nb-doped Indium Tin oxide thin films by R.F. magnetron sputtering[J]. Optoelectronics Letters, 2013, 9(3): 198?200.
[15] SHINA L I, RUIXIN M A, CHUNHONG M A, et al. Bias voltage dependence properties of Nb-doped indium tin oxide thin films by RF magnetron sputtering at room temperature, Materials Science in Semiconductor Processing, 2013(17): 216? 221.
[16] KIM H, HORWITZ J S, KUSHTO G P, et al. Transparent conducting Zr-doped In2O3thin films for organic light-emitting diodes[J].Applied Physics Letters, 2001, 78(8): 1050?1052.
[17] YANG Chihhao, LEE Shihchin, LIN Tienchai, et al. Opto- electronic properties of titanium-doped indium-tin-oxide films deposited by RF magnetron sputtering at room temperature[J]. Materials Science and Engineering B, 2006, 134: 68?75.
[18] PU Nenwen, LIU Weisheng, CHENG Huaiming, et al. Investigation of the optoelectronic properties of Ti-doped iIndium tin oxide thin film[J]. Materials, 2015, 8(9): 6471?6481.
[19] YANG Meng, YANG Xiliang, CHEN Huaxian, et al. A new transparent conductive thin film In2O3:Mo[J]. Thin Solid Films, 2001, 394(l/2): 218?222.
[20] YANG Ming, Feng Jiahan, LI Guifeng,et al. Tungsten-doped In2O3transparent conductive films with high transmittance in near-infrared region[J]. Journal of Crystal Growth, 2008, 310(15): 3474?3477.
[21] KANG Y M, KWON S H, CHOI J H, et al. Properties of Ce-doped ITO films deposited on polymer substrate by DC magnetron sputtering[J]. Thin Solid Films, 2010, 518(11): 3081?3084.
[22] CHUNG S M, SHIN J H, CHEONG W S, et al. Characteristics of Ti-doped ITO films grown by DC magnetron sputtering[J]. Ceramics International, 2012, 38(1): S617?S621.
[23] KIM H, HORWITZ J S, KUSHTO G, et al. Effect of film thickness on the properties of indium tin oxide thin films[J]. Journal of Applied Physics, 2000, 88(10): 6021?6025.
[24] LI Linna, XUE Junming, ZHAO Yazhou, et al. Thickness dependence of In2O3:Sn film properties deposited by reactive evaporation[J]. Journal of Synthetic Crystals, 2008, 37(1): 147?150.
(編輯 湯金芝)
Effect of thickness on structure and optoelectrical properties of Ti doped indium tin oxide thin films deposited by RF magnetron sputtering
MA Chunhong1, 3, LI Shina2, MA Ruixin1,2, ZHU Hongmin1
(1. School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China;2. Beijing Key Laboratory of Special Melting and Preparation of High-end Metals, Beijing 100083, China;3. State Key Laboratory of Special Rare Metal Materials, Shizuishan 753000, China)
Titanium-doped indium tin oxide (ITO:Ti) thin films were prepared on glass substrates with various film thicknesses (50?360 nm) by radio frequency (RF) magnetron sputtering using one piece of ceramic target material. The effects of thickness on the structural, surface morphology,electrical and optical properties of ITO:Ti films were investigated by means of X-ray diffraction (XRD), Atomic Force Microscope (AFM),ultraviolet (UV)-visible spectroscopy and electrical measurements. XRD patterns show the highly oriented (400) direction. With the increasing thickness, the crystallization enhances and grain size increases, Meanwhile, the film becomes more dense. As the film thickness increasing, the RMS roughness, average roughness and resistivity of the thin film decreases and then increases. RMS roughness is the lowest when the thickness is 250 nm.The lowest resistivity of the 200 nm thick film is 2.1×10?3Ω?cm. The transmittance of different thick film is more than 89% in the visible light range with different thickness.
radio frequency magnetron sputtering; semiconductor; ITO:Ti film; film thickness; photoelectric property
O484
A
1673?0224(2016)03?503?05
中央高校基本科研業(yè)務(wù)費(fèi)專項(xiàng)資金資助項(xiàng)目(FRF-BD-15-004A)
2016?02?16;
2016?03?28
馬瑞新,副教授,博士。電話:010-82376937;E-mial: mrx_601@126.com