梁怡凡, 何 洋, 曹雅明, 朱曉彤*
(1.中國(guó)醫(yī)科大學(xué),遼寧 沈陽(yáng) 110122;2.中國(guó)醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院 免疫教研室,遼寧 沈陽(yáng) 110122)
惡性瘧原蟲(chóng)SURFIN4.1蛋白氨基端在介導(dǎo)蛋白轉(zhuǎn)運(yùn)過(guò)程中作用機(jī)制的研究
梁怡凡1, 何 洋2, 曹雅明2, 朱曉彤2*
(1.中國(guó)醫(yī)科大學(xué),遼寧 沈陽(yáng) 110122;2.中國(guó)醫(yī)科大學(xué)基礎(chǔ)醫(yī)學(xué)院 免疫教研室,遼寧 沈陽(yáng) 110122)
惡性瘧原蟲(chóng);SURFIN4.1;輸出蛋白;PNEPs
全球范圍內(nèi)有效的瘧疾防控措施已使瘧疾致死率在過(guò)去20年中下降40%,然而瘧疾作為世界范圍內(nèi)主要傳染性病原體,仍有3.1億人口受其感染威脅,每年200萬(wàn)人感染,100萬(wàn)人(86%為非洲地區(qū)5歲以下兒童)死亡[1]。近年,瘧疾流行區(qū)青蒿素耐藥蟲(chóng)株的出現(xiàn)和擴(kuò)散,使瘧疾的防治面臨嚴(yán)峻的挑戰(zhàn)[2]。因此,開(kāi)發(fā)新型有效的瘧疾防控手段是瘧疾防治的當(dāng)務(wù)之急。惡性瘧原蟲(chóng)為主要致死性瘧原蟲(chóng),其致病性與瘧原蟲(chóng)感染紅細(xì)胞(parasite infected red blood cells,pRBCs)的黏附性增強(qiáng)相關(guān)。pRBCs可黏附于胎盤(pán)、血管內(nèi)皮細(xì)胞、血小板和未感染紅細(xì)胞,導(dǎo)致腦瘧和胎盤(pán)瘧疾等嚴(yán)重致死性并發(fā)癥[3]。惡性瘧原蟲(chóng)侵襲紅細(xì)胞后向pRBCs胞漿輸出上百種原蟲(chóng)蛋白,如KAHRP、PfEMP1、RIFIN和STEVORs等,上述表面定位蛋白與pRBCs黏附性增強(qiáng)密切相關(guān)[4-5]。茂氏點(diǎn)(Maurer’s clefts, MCs)是pRBCs胞漿中輸出蛋白運(yùn)輸?shù)摹爸修D(zhuǎn)站”[6]。同時(shí),MCs定位蛋白如SBP1、MAHRP1、MAHRP2、REX1和REX2在原蟲(chóng)pRBCs表面黏附性相關(guān)致病蛋白如PfEMP1蛋白的轉(zhuǎn)運(yùn)過(guò)程中發(fā)揮重要作用[7-8]。惡性瘧蛋白質(zhì)組學(xué)分析顯示,500多種瘧原蟲(chóng)外輸出蛋白的氨基端(N端)均含有5個(gè)氨基酸“RxLxE/Q/D”組成的輸出序列——PEXEL(PlasmodiumEXportELement)[9]。同時(shí),惡性瘧輸出蛋白質(zhì)組中也存在一系列N端不含PEXEL序列的蛋白,即PNEPs(PEXEL-negative exported proteins),包含已知的MCs定位蛋白。上述PNEPs輸出蛋白N端序列包含跨納蟲(chóng)胞膜(Parasitophorous vacuole membrane, PVM)轉(zhuǎn)運(yùn)至MCs的部分轉(zhuǎn)運(yùn)信號(hào),但其作用機(jī)制尚不明確。SURFIN4.1蛋白為MCs定位的瘧原蟲(chóng)輸出蛋白,其N(xiāo)端不含PEXEL序列,屬于PNEPs蛋白成員,由surf基因家族(surface-associated interspersed genes,surfgenes)編碼[10]。前期研究發(fā)現(xiàn),SURFIN4.1蛋白N端50個(gè)氨基酸內(nèi)含兩個(gè)功能相同的轉(zhuǎn)運(yùn)序列,與其跨膜區(qū)和胞內(nèi)尾共同作用可介導(dǎo)SURFIN4.1蛋白經(jīng)由內(nèi)質(zhì)網(wǎng)-高爾基體經(jīng)典轉(zhuǎn)運(yùn)途徑,跨PVM轉(zhuǎn)運(yùn)至MCs[10]。然而SURFIN4.1蛋白N端在轉(zhuǎn)運(yùn)過(guò)程中的作用方式和特點(diǎn)尚不明確。本研究旨在探討SURFIN4.1蛋白N端在轉(zhuǎn)運(yùn)過(guò)程中的特性和作用,從而探討PNEPs蛋白在惡性瘧中普遍機(jī)制,進(jìn)而為有效瘧疾疫苗的研制提供參考。
1.1 材料
1.1.2 惡性瘧原蟲(chóng)株 惡性瘧原蟲(chóng)MS822株由日本長(zhǎng)崎大學(xué)熱帶醫(yī)學(xué)研究所中澤秀介教授惠贈(zèng)。
1.1.3 主要試劑和儀器 RPMI 1640(Invitrogen)、AlbumaxI(Invitrogen),10 μg/mL慶大霉素(Invitrogen)、次黃嘌呤(Sigma)、Incomplete Cytomix(120 mmol/L KCl、0.15 mmol/L CaCl2、2 mmol/L EGTA、5 mmol/L MgCl2、10 mmol/L K2HPO4/KH2PO4和25 mmol/L HEPES)由本室配制,限制性內(nèi)切酶MluI、EcoRV、EcoRI、PstI(NEB)、MultiSite Gateway technology(Invitrogen)、LB broth(GIBCO)、快速質(zhì)粒小提試劑盒(DP105,TIANGEN)、Q5?Site-Directed Mutagenesis Kit (NEB)、PierceTMCrosslink IP 試劑盒(ThermoFisher Scientific)、鼠抗GFP單克隆抗體(Abcam)、anti-cMyc抗體(Abcam),兔抗PfEXP2抗體和兔抗PfSBP1抗體由愛(ài)媛大學(xué)無(wú)細(xì)胞培養(yǎng)中心坪井教授饋贈(zèng),ECL化學(xué)發(fā)光底物試劑盒購(gòu)自美國(guó)Pierce公司,WR99210(Sigma-Aldrich),Gene PulserXcell電穿孔儀(Bio-Rad),電轉(zhuǎn)杯(Bio-Rad)。
1.2 方法
圖和質(zhì)粒的酶切鑒定Fig.1 Restriction enzyme digestion of plasmids and 載體EcoRV和MluI雙酶切鑒定,克隆 #1~#3,4~7:空;載體EcoRI和PstI雙酶切鑒定,克隆 #1~#4;M1:10 000 bp DNA分子量標(biāo)準(zhǔn);M2:2 000 bp DNA分子標(biāo)準(zhǔn)A:Restriction enzyme digestion of plasmid with EcoRV and clone #1-#3,4-7:Blank;B:Restriction enzyme digestion of plasmid with EcoRI and clone #1-#4;M1:10 000 bp DNA marker; M2:2 000 bp DNA marker
圖重組蛋白在惡性瘧原蟲(chóng)的定位分析Fig.2 The location analysis of recombinant in Plasmodium falciparum重組蛋白結(jié)構(gòu)示意圖;B:重組蛋白熒光定位結(jié)果。DIC: 微差干涉反對(duì),Nue: 細(xì)胞核,anti-Myc:抗Myc標(biāo)簽抗體,anti-EXP2:抗納蟲(chóng)胞膜(PVM)抗體,anti-SBP1:茂氏點(diǎn)(MCs)定位蛋白檢測(cè)抗體,anti-GFP:抗GFP抗體檢測(cè)重組蛋白熒光定位,Merge:熒光融合后圖片A:Schematic drawings of recombinant ;B:Representative fluorescence images showing the localization of recombinant . The differential interference contrast (DIC),fluorescence image with nucleus stain (Nue),anti-Myc tagantibody,anti-EXP2:PVM marker, anti-SBP1: Maurer’s cleft detection antibody, anti-GFP: anti-GFP antibody detection of fluorescence signals for recombinant protein location,Merge: merge images
圖重組蛋白的可溶性分析Fig.3 Solubility analysis of recombinant proteinA:對(duì)比分析和重組蛋白的可溶性差異。Tris:0.01 mol/L Tris,Na2:0.1 mol/L Na2CO3,Tx-100:0.1% Triton-X-100,SDS:2% SDS,箭頭所示為目的蛋白條帶和重組蛋白Western Blot 結(jié)果灰度分析A:The comparison of protein solubility between recombinant (2MycN-T-C) and (N-T-C).Tris: 0.01mol/L Tris, Na2:0.1 mol/L Na2CO3, Tx-100: 0.1% Triton-X-100, SDS: 2% SDS, The arrow indicates the target recombinant protein;B:Signal intensity analysis of recombinant (2MycN-T-C) and (N-T-C)’s Western blot results
2.4 Co-IP和LC-MS/MS試驗(yàn)檢測(cè)與SURFIN4.1蛋白N端的相互作用蛋白
表1 SURFIN4.1重組蛋白N端相互作用蛋白LC-MS/MS結(jié)果分析
采用MS822野生株作為對(duì)照的Co-IP和LC-MS/MS分析結(jié)果顯示,SURFIN4.1蛋白N端與茂氏點(diǎn)定位蛋白膜相關(guān)聯(lián)組氨酸富含蛋白(membrane associated histidine-rich protein, MAHRP-1)相互作用。同時(shí),SURFIN4.1蛋白N端與pRBCs表面蛋白PIESP2,Early transcribed membrane protein 10.2和Pf113,棒狀體頸部蛋白R(shí)AP3,惡性瘧原蟲(chóng)PVM轉(zhuǎn)運(yùn)子PTEX復(fù)合體成員-EXP2,伴侶蛋白HSP60相互作用(表1)。
惡性瘧原蟲(chóng)侵襲后向pRBCs胞漿輸出的大量原蟲(chóng)蛋白為其紅內(nèi)期生長(zhǎng)和發(fā)育提供基礎(chǔ)。盡管大部分輸出蛋白N端含PEXEL(PEXEL positive proteins)跨PVM膜轉(zhuǎn)運(yùn)序列,仍有一些惡性瘧致病性相關(guān)輸出蛋白屬于PNEPs(PEXEL negative proteins)蛋白家族,如MCs定位的I型跨膜蛋白-SURFIN4.1。因此,本研究旨在通過(guò)分析SURFIN4.1蛋白氨基端(N端)在轉(zhuǎn)運(yùn)過(guò)程中的作用機(jī)制及其伴侶蛋白,為PNEPs蛋白轉(zhuǎn)運(yùn)機(jī)制的研究提供理論依據(jù)。
早期研究顯示,內(nèi)質(zhì)網(wǎng)內(nèi)的瘧原蟲(chóng)天冬氨酸蛋白酶-plasmepsinV可水解輸出蛋白N端的PEXEL序列,并乙酰化水解后殘端“xE/Q/D”,進(jìn)而介導(dǎo)輸出蛋白穿越PVM上的PTEX轉(zhuǎn)運(yùn)子進(jìn)入pRBCs胞漿[11-12]。本研究中,間接免疫熒光共定位研究結(jié)果顯示,與含PEXEL序列的輸出蛋白不同,SURFIN4.1蛋白的N端在轉(zhuǎn)運(yùn)過(guò)程中不經(jīng)過(guò)進(jìn)一步水解,即N端不斷裂。這一結(jié)果與PfSBP1在惡性瘧轉(zhuǎn)運(yùn)過(guò)程中的研究結(jié)果一致[13],提示此機(jī)制可能普遍存在于PNEPs蛋白。
本研究首次檢測(cè)了惡性瘧原蟲(chóng)茂氏點(diǎn)定位蛋白SURFIN4.1蛋白N端在轉(zhuǎn)運(yùn)過(guò)程中的特性和其相互作用蛋白。實(shí)驗(yàn)結(jié)果顯示,SURFIN4.1蛋白N端在轉(zhuǎn)運(yùn)中不經(jīng)過(guò)水解過(guò)程,且在轉(zhuǎn)運(yùn)過(guò)程中與PVM轉(zhuǎn)運(yùn)子成員-EXP2、MCs定位蛋白、棒狀體蛋白和多種pRBCs表面表達(dá)蛋白相互作用。本研究為惡性瘧原蟲(chóng)PNEPs蛋白轉(zhuǎn)運(yùn)機(jī)制的研究提供理論依據(jù)。
[1] Murray CJ, Rosenfeld LC, Lim SS, et al. Global malaria mortality between 1980 and 2010: a systematic analysis[J]. Lancet, 2012, 379: 413-31.
[2] Fairhurst RM,AM Dondorp. Artemisinin-ResistantPlasmodiumfalciparumMalaria[J]. Microbiol Spectr, 2016, 4.
[3] da Silva FL, Dixon MW, Stack CM, et al. APlasmodiumfalciparumS33 proline aminopeptidase is associated with changes in erythrocyte deformability[J]. Exp Parasitol, 2016, 169: 13-21.
[4] Beck HP. A traffic jam to reduce morbidity in malaria[J]. Blood, 2014, 124: 3342-3343.
[5] Hanssen E, PJ McMillan, L Tilley. Cellular architecture ofPlasmodiumfalciparum-infected erythrocytes[J]. Int J Parasitol, 2010, 40: 1127-1135.
[6] Przyborski JM.The Maurer’s clefts ofPlasmodiumfalciparum:parasite-induced islands within an intracellular ocean[J]. Trends Parasitol, 2008, 24: 285-288.
[7] Kats LM, Proellocks NI, Buckingham DW, et al. Interactions betweenPlasmodiumfalciparumskeleton-binding protein 1 and the membrane skeleton of malaria-infected red blood cells[J]. Biochim Biophys Acta, 2015, 1848: 1619-1628.
[8] Dixon MW, Kenny S, McMillan PJ, et al.Genetic ablation of a Maurer’s cleft protein prevents assembly of thePlasmodiumfalciparumvirulence complex[J]. Mol Microbiol, 2011,81: 982-993.
[9] Hiller NL, Bhattacherjee S, van Ooij C, et al. A host-targeting signal in virulence proteins reveals a secretome in malarial infection[J]. Science, 2004,306: 1934-1937.
[10]Zhu X, Yahata K, Alexandre JS, et al, The N-terminal segment ofPlasmodiumfalciparumSURFIN4.1is required for its trafficking to the red blood cell cytosol through the endoplasmic reticulum[J]. Parasitol Int, 2013, 62: 215-229.
[11]Elsworth B, Sanders PR, Nebl T, et al, Proteomic analysis reveals novel proteins associated with thePlasmodiumproteinexporter PTEX and a loss of complex stability upon truncation of the core PTEX component, PTEX150[J]. Cell Microbiol, 2016,18(11):1551-1569.
[12]Chisholm SA, McHugh E, Lundie R, et al. Contrasting Inducible Knockdown of the Auxiliary PTEX Component PTEX88 inP.falciparumandP.bergheiUnmasks a Role in Parasite Virulence[J]. PLoS One, 2016, 11(2):913-927.
[13]Saridaki T, Frohlich KS, Braun-Breton C, et al, Export of PfSBP1 to thePlasmodiumfalciparumMaurer’s clefts[J]. Traffic, 2009, 10: 137-152.
[14]Papakrivos J, CI Newbold,K Lingelbach.A potential novel mechanism for the insertion of a membrane protein revealed by a biochemical analysis of thePlasmodiumfalciparumcytoadherence molecule PfEMP-1[J]. Mol Microbiol, 2005,55: 1272-1284.
[15]Przyborski JM, Miller SK, Pfahler JM, et al. Trafficking of STEVOR to the Maurer’s clefts inPlasmodiumfalciparum-infected erythrocytes[J]. EMBO J, 2005, 24: 2306-2317.
[16]Spycher C, Rug M, Pachlatko E, et al. The Maurer’s cleft protein MAHRP1 is essential for trafficking of PfEMP1 to the surface ofPlasmodiumfalciparum-infected erythrocytes[J]. Mol Microbiol, 2008,68: 1300-1314.
[17]Meibalan E, Comunale MA, Lopez AM, et al. Host erythrocyte environment influences the localization of exported protein 2, an essential component of thePlasmodiumtranslocon[J]. Eukaryot Cell, 2015,14: 371-384.
Functional Mechanism ofPlasmodiumfalciparumSURFIN4.1 Protein Amino (N) Terminal during Media-Induced Protein Transshipment
LIANG Yi-fan1, HE Yang2, CAO Ya-ming2, ZHU Xiao-tong2
(1. 98K7-Y-ProgramofReg.-and-Mast.Cont.Student,ChinaMed.Uni.,Shenyang110122; 2.Teach. &Res.Div.ofImmun.,Coll.ofBasicMed.Sci.,ChinaMed.Uni.,Shenyang110122)
Plasmodiumfalciparum; SURFIN4.1;exported protein; PNEPs
國(guó)家自然科學(xué)青年基金項(xiàng)目(81301455)
梁怡凡 女,七年制在讀。主要研究方向?yàn)榭垢腥久庖?。E-mail:619752627@qq.com
* 通訊作者。女,副教授,博士,碩士生導(dǎo)師。主要研究方向?yàn)榭垢腥久庖?。E-mail: xtzhu@cmu.edu.cn
2016-08-25;
2016-09-03
Q939.93;R382.3+1
A
1005-7021(2016)06-0076-06
10.3969/j.issn.1005-7021.2016.06.013