張 成,豆小文,楊美華
(1.中國(guó)醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)科大學(xué)藥用植物研究所,中草藥物質(zhì)基礎(chǔ)與資源利用教育部重點(diǎn)實(shí)驗(yàn)室,北京 100193;2.江蘇大學(xué)藥學(xué)院,江蘇鎮(zhèn)江 212013)
中藥中常見(jiàn)真菌毒素毒理及快速檢測(cè)技術(shù)
張 成1,2,豆小文1,楊美華1
(1.中國(guó)醫(yī)學(xué)科學(xué)院北京協(xié)和醫(yī)科大學(xué)藥用植物研究所,中草藥物質(zhì)基礎(chǔ)與資源利用教育部重點(diǎn)實(shí)驗(yàn)室,北京 100193;2.江蘇大學(xué)藥學(xué)院,江蘇鎮(zhèn)江 212013)
楊美華,博士,研究員,博士生導(dǎo)師,中國(guó)醫(yī)學(xué)科學(xué)院藥用植物研究所分析中心副主任兼任海南分所副所長(zhǎng),中國(guó)醫(yī)學(xué)科學(xué)院及藥用植物研究所學(xué)術(shù)委員會(huì)委員。獲國(guó)務(wù)院政府特殊津貼。主持或參與國(guó)家科技部重大新藥創(chuàng)制專(zhuān)項(xiàng)、中醫(yī)藥行業(yè)科研專(zhuān)項(xiàng)、國(guó)家科技支撐計(jì)劃、國(guó)家自然科學(xué)基金、北京市自然科學(xué)基金等課題20多項(xiàng)。曾赴美國(guó)、英國(guó)、芬蘭和意大利等進(jìn)行學(xué)術(shù)交流和訪問(wèn)。參編著作4部,在國(guó)內(nèi)外雜志發(fā)表論文250多篇。研究成果“中藥中真菌及真菌毒素污染分析及應(yīng)用研究”榮獲2013年北京市科學(xué)技術(shù)三等獎(jiǎng)。培養(yǎng)博士后、博士、碩士共計(jì)50多人,其中多人獲國(guó)家獎(jiǎng)學(xué)金和校優(yōu)秀論文。
真菌毒素是真菌產(chǎn)生的有毒次級(jí)代謝產(chǎn)物,已成為影響臨床中藥用藥安全的嚴(yán)重危害因子之一。中藥從種植到臨床使用的各個(gè)環(huán)節(jié)均可能存在真菌污染并產(chǎn)生有害毒素的風(fēng)險(xiǎn)。因此,掌握污染毒素的毒性研究、致病機(jī)制及靈敏、準(zhǔn)確的快速檢測(cè)前沿技術(shù),對(duì)靶向治療真菌毒素中毒并做到提前預(yù)警毒素污染具有非常重要的意義。本文剖析了中藥中真菌毒素污染現(xiàn)狀,并歸納了常見(jiàn)污染品種的毒性研究進(jìn)展。鑒于毒素的極強(qiáng)毒性,本著“預(yù)防為主”的解決策略,系統(tǒng)探討了典型真菌毒素的快速檢測(cè)技術(shù)進(jìn)展,以期為保障中藥臨床用藥安全、降低真菌毒素中毒風(fēng)險(xiǎn)提供參考。
中藥;真菌毒素;毒理學(xué);快速檢測(cè);安全風(fēng)險(xiǎn)
我國(guó)不僅是中藥材種植和使用大國(guó),也是出口和銷(xiāo)售大國(guó)。在種植、采收、加工、儲(chǔ)藏和運(yùn)輸?shù)倪^(guò)程中,尤其是富含淀粉、多糖和油脂等成分的中藥,在濕度和溫度適宜的條件下容易霉變,進(jìn)而產(chǎn)生具有強(qiáng)毒性的次級(jí)代謝產(chǎn)物——真菌毒素[1]。研究表明,真菌毒素不僅具有肝毒性、腎毒性、生殖紊亂以及免疫抑制等作用,許多還具有致癌、致畸和致突變的“三致”危害。盡管中藥基質(zhì)中的毒素通常在μg·kg-1的痕量水平,但中藥作為保健以及慢性疾病的治療藥物,服用周期長(zhǎng),一旦人體攝入污染毒素的中藥,經(jīng)過(guò)吸收代謝和體內(nèi)蓄積有可能誘發(fā)潛在的危害風(fēng)險(xiǎn)。據(jù)報(bào)道,絕經(jīng)后婦女服用人參或西洋參會(huì)出現(xiàn)雌激素相關(guān)疾病如乳腺痛、陰道出血和子宮陰道上皮細(xì)胞改變等。Gray等[2]研究表明,此類(lèi)癥狀很可能源于人參或西洋參中類(lèi)似玉米赤霉烯酮(zearalenone,ZEN)結(jié)構(gòu)的成分存在,亦或本身污染ZEN。因此,深入研究中藥中污染真菌毒素的毒理機(jī)制,闡明其致病機(jī)制,對(duì)靶向治療真菌毒素引起的病變和應(yīng)對(duì)突發(fā)急性中毒事件具有非常重要的指導(dǎo)意義。
20世紀(jì)60年代開(kāi)始展開(kāi)對(duì)常見(jiàn)真菌毒素如黃曲霉毒素(aflatoxin,AF)、赭曲霉毒素(ochratoxin,OT)和伏馬毒素(fumonisin,F(xiàn)B)等的毒性研究,至今已從單一毒素對(duì)靶器官損傷的研究逐步深入至細(xì)胞、分子水平上的發(fā)病機(jī)制研究,并且隨著同一樣品中多毒素殘留同時(shí)被檢出,多毒素協(xié)同作用帶來(lái)的安全風(fēng)險(xiǎn)也逐漸受到關(guān)注。當(dāng)前,鑒于真菌毒素的極強(qiáng)毒性,完全根治措施有限,采用預(yù)防為主是控制其危害的主要途徑。本文立足于文獻(xiàn)研究成果,結(jié)合本課題組在中藥真菌毒素污染的前期研究基礎(chǔ)[3-7],剖析中藥中真菌毒素污染現(xiàn)狀,并歸納典型真菌毒素的毒理研究進(jìn)展。以“預(yù)防為主”的應(yīng)對(duì)策略為本,系統(tǒng)探討典型真菌毒素的快速檢測(cè)技術(shù)進(jìn)展,以期為保障中藥臨床用藥安全、提前預(yù)警毒素污染及降低真菌毒素中毒風(fēng)險(xiǎn)提供參考。
真菌毒素作為中藥材外源性有毒有害物質(zhì)嚴(yán)重影響中藥的安全性。我國(guó)對(duì)中藥材中真菌毒素的檢測(cè)研究始于20世紀(jì)90年代,主要集中在AF污染情況的探究。鄭潤(rùn)生等[8]對(duì)10個(gè)品種83批果實(shí)種子和根莖類(lèi)藥材中4種AF測(cè)定結(jié)果表明,AFB1,AFB2和AFG1污染率分別為4.82%,2.41%和8.43%。不僅中藥材中存在毒素污染,用作原料或直接攝入的飲片或中成藥也存在AF被檢出的情況。譚婧等[9]對(duì)45批中藥飲片中毒素污染研究顯示,20份飲片中檢出AF,檢出率44.4%,其中1批中AFB1含量達(dá)9.81 μg·kg-1;AFG2污染情況較為嚴(yán)重,最高達(dá)471 μg·kg-1。匡佩琳等[10]研究了當(dāng)歸、麥冬和杜仲等24個(gè)品種51批藥材,AFB1檢出率為90%,114批中成藥中AFB2檢出率為89%。Gray等[2]在不同來(lái)源的人參、西洋參中檢出ZEA,其中人參中最高檢出量為11.7 mg·kg-1,西洋參的最高檢出量為2.6 mg·kg-1。隨著先進(jìn)儀器的開(kāi)發(fā)利用及檢測(cè)靈敏度的提高,中藥中除AF外,其他類(lèi)型的毒素也逐漸被檢出,甚至同一批樣品中被檢出多種毒素。鄭榮等[11]同時(shí)檢測(cè)桃仁、薏苡仁中10種真菌毒素,其中3批薏苡仁中檢出ZEN和FB1,污染水平分別為610.3~617.1 μg·kg-1和82.3~167.2 μg·kg-1。Waskiewicz等[12]從波蘭市場(chǎng)上收集的21種草藥和香料共計(jì)79批樣品真菌毒素篩查結(jié)果表明,OTA污染率高達(dá)49%,F(xiàn)B為31%,其中兩者同時(shí)污染的比例最大,F(xiàn)B和OTA污染水平分別為5.29~62.78 μg·kg-1和0.11~45.64 μg·kg-1。
近年來(lái)中藥中真菌毒素污染研究表明,于中藥及相關(guān)產(chǎn)品中頻繁檢出AF,OTA,F(xiàn)B及ZEN,然而《中國(guó)藥典》(2015版,一部)限量規(guī)定僅局限于AF。因此,進(jìn)行多毒素檢測(cè)研究的同時(shí),其他類(lèi)型的毒素在中藥中的毒理研究同樣需要關(guān)注。開(kāi)展中藥中多類(lèi)型毒素安全風(fēng)險(xiǎn)研究、制定合理的限量標(biāo)準(zhǔn)及保障臨床用藥安全刻不容緩。
AF是一組化學(xué)結(jié)構(gòu)類(lèi)似的二呋喃香豆素衍生化合物。動(dòng)物實(shí)驗(yàn)研究表明,大劑量攝入AF可以造成急性死亡,亞致死劑量產(chǎn)生慢性中毒,長(zhǎng)期低劑量攝入則會(huì)造成肝出血、脂肪變性和膽管增生等一系列疾病,最終引發(fā)肝癌。由于AFB1是AF家族中致癌性最強(qiáng)的,因此其致癌機(jī)制最受關(guān)注。較多研究表明,AFB1在細(xì)胞色素P450(cytochrome P450,CYP)酶催化下生成8,9-環(huán)氧AFB1,而8,9-環(huán)氧AFB1易結(jié)合至DNA鏈鳥(niǎo)苷殘基的N7位,從而改變DNA附近的電子云密度,引發(fā)多種類(lèi)型的DNA損傷[13]。AFB1甚至可誘導(dǎo)抑癌基因p53上249號(hào)密碼子的堿基G突變?yōu)門(mén),引發(fā)癌變[14]。除肝癌外,吸入AFB1污染的粉塵可能增加肺癌的風(fēng)險(xiǎn)。Van Vleet等[15]體外研究人支氣管上皮細(xì)胞暴露于低濃度AFB1(0.015~15 μmol·L-1)30 min,可降低抑癌基因p53的表達(dá),呈濃度依賴(lài)型增加癌基因mdm2的表達(dá)。AFB1的代謝主要發(fā)生在肝。近來(lái)發(fā)現(xiàn),孕婦暴露于含有AFB1的環(huán)境中,可在嬰兒的臍帶血中檢測(cè)出其代謝物。Partanen等[16]胚胎灌注直接驗(yàn)證了AFB1及其代謝物可通過(guò)臍帶轉(zhuǎn)化成黃曲霉毒醇。盡管黃曲霉毒醇相比AFB1毒性小,但仍能結(jié)合DNA產(chǎn)生致癌性。對(duì)AF的深入研究使其致癌毒性機(jī)制逐漸明確,也為靶向治療AFB1引發(fā)的疾病提供了契機(jī)。
OT包括OTA,OTB和OTC等7種系列化合物,其中OTA的毒性最大。動(dòng)物實(shí)驗(yàn)表明,OTA可以損傷動(dòng)物的腎和肝,存在致畸和致癌的風(fēng)險(xiǎn)。OTA致毒可能由于誘導(dǎo)細(xì)胞凋亡、抑制相關(guān)蛋白質(zhì)合成及產(chǎn)生氧化應(yīng)激損傷等導(dǎo)致。Lühe等[17]采用cDNA微陣列技術(shù)發(fā)現(xiàn),OTA誘導(dǎo)小鼠體內(nèi)腎細(xì)胞和體外腎近端小管細(xì)胞中DNA損傷誘導(dǎo)基因153和DNA損傷誘導(dǎo)基因45(gadd153和gadd 45)、膜聯(lián)蛋白V和凝聚素轉(zhuǎn)錄水平提高,引起DNA損傷和細(xì)胞凋亡。體內(nèi)吸收代謝也影響其毒性的發(fā)揮。Berge等[18]研究表明,OTA轉(zhuǎn)運(yùn)至CaCo-2細(xì)胞內(nèi)的過(guò)程不涉及H+-二肽轉(zhuǎn)運(yùn)蛋白、陰離子載體以及陰離子轉(zhuǎn)運(yùn)蛋白,表明其吸收環(huán)節(jié)屬于擴(kuò)散現(xiàn)象,當(dāng)OTA進(jìn)入血液,99%的毒素可與血清蛋白結(jié)合,這種情況有利于其被動(dòng)吸收,也是OTA體內(nèi)半衰期長(zhǎng)的原因之一。Kumagai[19]研究表明,白蛋白缺乏的大鼠比普通大鼠對(duì)OTA的消除率高20~70倍,從而認(rèn)為OTA與白蛋白的結(jié)合抑制了OTA從血漿轉(zhuǎn)移到肝和腎細(xì)胞的速率,從而延緩了OTA的消除。Marin-Kuan等[20]通過(guò)研究發(fā)現(xiàn)了一種新的OTA致癌機(jī)制,Nrf2本身能夠抵御毒性物質(zhì)對(duì)細(xì)胞的損傷,但OTA誘導(dǎo)基因改變腎組織中轉(zhuǎn)錄因子Nrf2的轉(zhuǎn)錄水平,導(dǎo)致細(xì)胞防御機(jī)能的消耗,使腎產(chǎn)生長(zhǎng)期氧化應(yīng)激反應(yīng)。Corcuera等[21]還考察了OTA和AFB1對(duì)人肝癌細(xì)胞HepG2的聯(lián)合效應(yīng)。發(fā)現(xiàn)兩者同時(shí)存在時(shí),OTA能減少AFB1所導(dǎo)致的DNA損傷,可能的原因是OTA與AFB1競(jìng)爭(zhēng)相同的CYP酶使得更多的活性氧產(chǎn)生,同時(shí)減少了AFB1誘導(dǎo)的DNA加合物的產(chǎn)生。隨著同種基質(zhì)中多毒素被同時(shí)檢出的情況增加,多毒素的聯(lián)合效應(yīng)在毒理研究上表現(xiàn)得更為復(fù)雜,因此有待深入探究。
FB由多氫醇與丙三羧酸組成的雙酯類(lèi)化合物,在神經(jīng)鞘脂代謝過(guò)程中能競(jìng)爭(zhēng)性地結(jié)合神經(jīng)鞘氨醇N-2?;D(zhuǎn)移酶,從而抑制神經(jīng)鞘氨醇的生物合成,阻礙鞘脂類(lèi)代謝,引發(fā)各種疾?。?2]。研究證實(shí),F(xiàn)B具有廣泛的動(dòng)物毒性,不僅能引起馬大腦白質(zhì)軟化癥[23]和豬肺水腫綜合征[24],還對(duì)小鼠的肝或腎造成損傷[25-26]。此外,F(xiàn)B還具有很強(qiáng)的細(xì)胞毒性[27]及免疫毒性[28],與人類(lèi)食道癌的發(fā)生密切相關(guān)[29-30]。因此,國(guó)際癌癥研究中心(International Agency for Research on Cancer)把FB列為2B級(jí)致癌物[31]。Dilkin等[32]對(duì)斷奶豬仔同時(shí)喂食含有AFB1和FB1的飼料,相比食用單純污染FB1的飼料,豬的生產(chǎn)力顯著下降。究其原因,主要是用于FB1解毒的肝受到AFB1的損傷,故加重了FB1中毒。McKean等[33]也考察了AFB1和FB1相互急性毒性作用,在F344大鼠和食蚊魚(yú)體內(nèi)監(jiān)測(cè)到交互作用指數(shù)為1.98,表明同時(shí)存在其風(fēng)險(xiǎn)指數(shù)增高。
ZEN類(lèi)毒素是由多種霉菌產(chǎn)生的一種類(lèi)雌激素的真菌毒素,主要為ZEN及其衍生物。由于ZEN結(jié)構(gòu)與雌激素類(lèi)似,因此ZEN主要作用靶點(diǎn)為雌激素受體,兩者結(jié)合力強(qiáng),導(dǎo)致受體構(gòu)型變化從而調(diào)節(jié)基因轉(zhuǎn)錄和蛋白質(zhì)合成,刺激乳腺癌細(xì)胞MCF-7進(jìn)入細(xì)胞周期,引起動(dòng)物的激素反饋調(diào)節(jié)紊亂。當(dāng)ZEN暴露過(guò)多,還會(huì)引起生殖毒性。Tsakmakidis等[34]體外實(shí)驗(yàn)表明,ZEN和α-ZEN可對(duì)豬的精液產(chǎn)生直接的毒性,并降低受精力,且毒性效應(yīng)依賴(lài)濃度增長(zhǎng)。Ayed等[35]通過(guò)大鼠骨髓瘤細(xì)胞和HeLa細(xì)胞證明,ZEN及其主要代謝物α-和β-ZOL對(duì)細(xì)胞活力的抑制呈濃度依賴(lài)性,并能加劇染色體畸變。
研究報(bào)道,許多中草藥及組方方劑具有保肝解毒的作用。因此,基于中藥策略對(duì)于真菌毒素引起的疾病具有一定的治療作用。白芍提取物對(duì)雛鴨和大鼠AFB1急性中毒造成的肝損傷有明顯緩解效果[36]。李俊麗等[37]研究表明,甘草甜素能抑制AFB1的致肝癌作用,可能與其水解產(chǎn)物葡萄糖醛酸有關(guān),葡萄糖醛酸與AFB1及其代謝物結(jié)合,促使毒素從尿中排泄,從而降低致癌性。AFB1可能通過(guò)影響DNA修復(fù)系統(tǒng)、藥物代謝酶系統(tǒng)及CYP代謝酶基因的異常表達(dá)導(dǎo)致肝癌的發(fā)生。黃芪煎劑可顯著抑制AFB1誘導(dǎo)的小鼠活體骨髓多染紅細(xì)胞微核率的升高,原因可能是黃芪中活性組分通過(guò)促進(jìn)DNA合成,增強(qiáng)DNA損傷的修復(fù)[38]。許多中藥能通過(guò)影響CYP而起到保肝的作用。李楊等[39]對(duì)AF慢性中毒的鴨使用復(fù)方柴芩顆粒1~2周,有效降低了中毒所致的CYP1A2等蛋白表達(dá)升高的趨勢(shì)。甘草是中國(guó)傳統(tǒng)中藥,其保肝、解毒效果明顯;苦參因含有苦參堿等保肝藥效成分,對(duì)肝損傷有良好的抑制作用,在臨床治療肝炎中得到應(yīng)用。陳燁等[40]考察了葛根芩連湯對(duì)大鼠肝CYP酶系各個(gè)亞型活性的影響,發(fā)現(xiàn)甘草能誘導(dǎo)CYP1A2,CYP2C6和CYP2D4活性,抑制CYP3A1和CYP3A2活性。有學(xué)者將探究苦參抑制肝損傷機(jī)制直指其對(duì)肝藥酶的影響。袁芳[41]給SD大鼠灌胃苦參的干燥根提取成分苦參堿和氧化苦參堿,分別測(cè)定CYP1A2,2D2,2C7,2E1和3A1活性。結(jié)果發(fā)現(xiàn),苦參堿組CYP2B1/2和CYP2E1酶活性升高,而CYP3A1酶活性降低;氧化苦參堿組CYP2B1/2酶活性升高,而CYP3A1酶活性降低。通過(guò)CYP活性影響的考察,結(jié)合類(lèi)似甘草和苦參組分中保肝成分研究,對(duì)發(fā)現(xiàn)抗AFB1致肝癌新藥可能提供新的線(xiàn)索。
除對(duì)AFB1誘導(dǎo)的疾病顯現(xiàn)出一定治療效果外,中藥材或天然組分對(duì)其他毒素引起的中毒也受到關(guān)注。原花青素(proanthocyanidins,PC)是廣泛存在植物中的一大類(lèi)多酚化合物,具有極強(qiáng)的抗氧化作用,可有效清除超氧陰離子自由基和羥基自由基。韓建鑫等[42]研究PC對(duì)ZEN中毒小鼠肝、腎的保護(hù)作用。實(shí)驗(yàn)結(jié)果表明,ZEN導(dǎo)致小鼠肝谷草轉(zhuǎn)氨酶和谷丙轉(zhuǎn)氨酶活性顯著或極顯著升高,超氧化物歧化酶活性顯著下降,丙二醛含量顯著升高,血清中尿酸和尿素含量顯著升高;而PC+ZEN組相比于ZEN組,谷草轉(zhuǎn)氨酶和谷丙轉(zhuǎn)氨酶活性顯著降低,超氧化物歧化酶活性顯著升高,丙二醛含量極顯著降低,尿酸和尿素含量顯著降低,表明PC能夠緩解ZEN對(duì)肝、腎的氧化損傷。
快速篩查鑒別出污染真菌毒素的樣品進(jìn)行早期預(yù)警是控制有害真菌毒素暴露于人體、避免引起慢性或急性中毒風(fēng)險(xiǎn)的有效措施。組裝操作簡(jiǎn)單、檢測(cè)快速的生物傳感器有望實(shí)現(xiàn)現(xiàn)場(chǎng)篩查,被逐漸應(yīng)用于真菌毒素檢測(cè)研究中。真菌毒素屬于小分子化合物,其傳感器檢測(cè)常依賴(lài)選擇性識(shí)別元件和檢測(cè)信號(hào)元件。前者主要包括生物分子(抗體、DNA和酶)和合成分子(分子印跡聚合物)等,后者如酶、納米粒子和熒光材料等元件。研究最廣泛的是免疫和適配體元件,根據(jù)是否依賴(lài)載體可分為標(biāo)記型和非標(biāo)記型。
4.1 免疫傳感器技術(shù)
4.1.1 標(biāo)記型免疫傳感器
不同于大分子,低分子質(zhì)量真菌毒素的檢測(cè)主要基于競(jìng)爭(zhēng)性免疫原理。樣品中待測(cè)物與免疫傳感器標(biāo)記的抗體或抗原競(jìng)爭(zhēng)數(shù)量有限的結(jié)合位點(diǎn),免疫標(biāo)記信號(hào)隨著待測(cè)物的增加而降低,通過(guò)濃度-信號(hào)關(guān)系,獲得待測(cè)物的含量水平。
近期研究表明,納米材料如膠體金、量子點(diǎn)等修飾的單克隆抗體,偶聯(lián)抗原或二級(jí)抗體可增強(qiáng)檢測(cè)響應(yīng)信號(hào)[43-44]。Urusov等[45]利用膠體金標(biāo)記的二抗,采用表面等離子體共振信號(hào)放大技術(shù)實(shí)現(xiàn)了對(duì)OTA痕量水平的檢測(cè)。Gan等[46]以磁性Fe3O4結(jié)合氧化石墨烯(FE-GO)為分離和淬滅材料,并在該材料上偶聯(lián)碲化鎘量子點(diǎn)(CdTe)標(biāo)記的抗體,通過(guò)記錄熒光信號(hào)的變化,測(cè)定牛奶中AFM1的含量,可實(shí)現(xiàn)最低檢測(cè)限達(dá)0.3 ng·L-1的超高靈敏度。標(biāo)記型非競(jìng)爭(zhēng)性免疫測(cè)定模式通常是夾心形式,酶、熒光材料或納米粒子標(biāo)記的二抗捕獲抗原生成信號(hào)。Masoomi等[47]設(shè)計(jì)了一種AFB1夾層型電化學(xué)免疫傳感器,通過(guò)檢測(cè)由于AFB1被二抗捕獲,金標(biāo)鐵納米顆粒上修飾的兒茶酚氧化產(chǎn)生的電信號(hào),使得該法AFB1在0.6~110 μg·L-1較寬的線(xiàn)性范圍內(nèi)得到檢測(cè),且免疫傳感器還可通過(guò)外部磁場(chǎng)再生重復(fù)利用。
4.1.2 非標(biāo)記免疫傳感器
摒棄復(fù)雜繁瑣的標(biāo)記過(guò)程,根據(jù)化合物本身結(jié)構(gòu)變化引起的檢測(cè)信號(hào)的改變來(lái)測(cè)定待測(cè)物的含量,稱(chēng)為非標(biāo)記免疫傳感器,該法主要優(yōu)點(diǎn)在于操作簡(jiǎn)單。
電化學(xué)阻抗譜(electrochemical impedance spectroscopy,EIS)的免疫傳感器已被證實(shí)更靈敏和準(zhǔn)確,EIS被廣泛用于研究傳感裝置接口的電性能和跟蹤在其表面上發(fā)生的反應(yīng)[48]。相比側(cè)向流動(dòng)系統(tǒng)[49],Kanungo等[50]設(shè)計(jì)連接實(shí)時(shí)流動(dòng)檢測(cè)工具的EIS技術(shù),可提高奶制品中AFM1和AFM2的檢測(cè)靈敏度,使得最低檢測(cè)限(limit of detection,LOD)高達(dá)1.0 ng·L-1?;?1-巰基烷酸(Mercap?toundecanoic acid,11-MUA)銀絲自主裝EIS免疫傳感平臺(tái)檢測(cè)花生中AFB1的LOD為0.01 ng·L-1,牛奶中AFM1在6.25~100 ng·L-1范圍內(nèi)線(xiàn)性關(guān)系良好[51]。簡(jiǎn)單的非標(biāo)記的直接競(jìng)爭(zhēng)法也在AFB1檢測(cè)中得到應(yīng)用。Li等[52]根據(jù)色氨酸殘基在280 nm處激發(fā)會(huì)有熒光產(chǎn)生,通過(guò)熒光共振能量轉(zhuǎn)移將色氨酸殘基發(fā)射的能量轉(zhuǎn)移至抗原AFB1上。結(jié)果顯示,相比無(wú)色氨酸殘基的AFB1抗體檢測(cè),該法的靈敏度提高了10倍。非標(biāo)記免疫傳感器操作簡(jiǎn)單,但由于常常存在非特異性結(jié)合的假陽(yáng)性反應(yīng),限制了其應(yīng)用。
4.2 適配體傳感器技術(shù)
適配體傳感器的核心部件是適配體。適配體與配體相互作用,可以折疊形成穩(wěn)定的三維結(jié)構(gòu),例如發(fā)卡、假結(jié)、G-四分體和凸環(huán)[53]。相比抗體,適配體具有易于合成和修飾各種化學(xué)基團(tuán),穩(wěn)定性高等優(yōu)點(diǎn)[54-55]。因此,適配體作為抗體的替代品,越來(lái)越多地應(yīng)用于生物檢測(cè)中。二價(jià)陽(yáng)離子和pH值是影響適配體傳感器親和力的主要因素。Yang等[56]發(fā)現(xiàn),OTA與適配體的結(jié)合依賴(lài)于二價(jià)陽(yáng)離子的存在,由于當(dāng)鈣或鎂等二價(jià)陽(yáng)離子存在時(shí),帶負(fù)電荷的適配體可通過(guò)羧基和8-羥基與OTA形成一個(gè)穩(wěn)定的配位絡(luò)合物[55-58]。由此證明,在含有20 mmol·L-1鈣離子時(shí),該適配體對(duì)OTA顯示出極高的親和力(解離常數(shù)Kd49 nmol·L-1)[59]。在酸性條件下,OTA上的8-羥基質(zhì)子化被抑制,影響配位絡(luò)合物的形成,而pH為7.0時(shí)兩者表現(xiàn)出高親和性。因此,適配體識(shí)別小分子的檢測(cè)中,介質(zhì)條件是影響其檢測(cè)靈敏度的因素之一。
4.2.1 標(biāo)記型適配體傳感器
在標(biāo)記型適配體的真菌毒素檢測(cè)中,常用的標(biāo)記物包括熒光材料(熒光素、魯米若和量子點(diǎn)等)、GO、ALP及電活性化合物(二茂鐵、亞鐵氰化物和亞甲基藍(lán)等)等,根據(jù)檢測(cè)模式可分為“signal on”和“signal off”(圖1)?!皊ignal on”檢測(cè)是基于適配體與待測(cè)物結(jié)合后信號(hào)的產(chǎn)生,而“signal off”檢測(cè)則是基于適配體與待測(cè)物結(jié)合后信號(hào)的降低。
“signal on”的信號(hào)通常易于識(shí)別。Cheng等[59]采用熒光標(biāo)記的適配體和有機(jī)淬滅劑檢測(cè)OTA,線(xiàn)性范圍為1~10 μg·L-1。碳納米材料如石墨和單壁碳納米管等具有吸電子作用,大多已被用作熒光淬滅劑[60-62]。如在適配體的一端修飾羧基熒光素,當(dāng)適配體與碳納米材料相互作用時(shí),羧基熒光素即可通過(guò)“π-π”堆積作用將熒光能量傳遞到碳納米材料而發(fā)生淬滅[63-64]。Sheng等[60]研究顯示,相比于未修飾的石墨烯或單壁碳納米管,聚乙烯吡咯烷酮修飾的氧化石墨烯可顯著減少特異性吸附,有助于檢測(cè)限和靈敏度的提高。在眾多熒光納米材料中,上轉(zhuǎn)換納米發(fā)光顆粒作為檢測(cè)信號(hào)可實(shí)現(xiàn)多分析物同時(shí)檢測(cè)的目的。Wu等[65]設(shè)計(jì)了一種基于熒光共振能量轉(zhuǎn)移的適配體傳感器可同時(shí)檢測(cè)OTA和FB1。Zhou等[66]設(shè)計(jì)了一種金標(biāo)適配體傳感器可視化檢測(cè)OTA,整個(gè)檢測(cè)過(guò)程只需15 min且無(wú)干擾,最低檢測(cè)限為1 μg·L-1。
“signal off”模型可通過(guò)降低適配體的非特異性吸附改善檢測(cè)結(jié)果。因此,相比“signal on”可降低假陽(yáng)性的概率。Kuang等[67]利用膠體金輔助亞甲藍(lán)用作電化學(xué)氧化還原探針,通過(guò)檢測(cè)電化學(xué)信號(hào)來(lái)測(cè)定OTA。此外,基于適配體偶聯(lián)磁珠的方法也被用于OTA檢測(cè)。以上適配體傳感器一般均涉及多步復(fù)雜的偶聯(lián)過(guò)程,不利于實(shí)際檢測(cè)的操作。Wu等[65]設(shè)計(jì)一步法電化學(xué)適配體傳感器,硫醇和亞甲基藍(lán)雙標(biāo)記的適配體傳感器結(jié)合金電極檢測(cè)OTA。實(shí)現(xiàn)較寬的線(xiàn)性范圍(0.1~1000 ng·L-1)和滿(mǎn)意的LOD(0.095 μg·L-1)。
圖1 適配體傳感器模式.A:“signal on”模式;B:“signal off”模式.
4.2.2 非標(biāo)記型適配體傳感器
非標(biāo)記適配體傳感器可直接檢測(cè)適配體和待測(cè)物反應(yīng)后產(chǎn)生的信號(hào)[53],主要以電化學(xué)檢測(cè)模式,一般由聚合物、金屬納米顆粒和金屬氧化物(如TiO2-脫乙酰殼多糖,脫乙酰殼多糖/聚苯胺和阿拉伯膠)修飾的電極組成[43,68]。利用點(diǎn)擊化學(xué)方法有助于適配體在電極表面的均勻分布和固定,從而提高檢測(cè)靈敏度[69-71]。
有研究顯示,制備出由聚乙二醇與適配體共軛的大分子,其在絲網(wǎng)印刷碳電極表面形成一個(gè)長(zhǎng)通道,而適配體作為通道的門(mén)檢測(cè)OTA[71-72]。熒光信號(hào)檢測(cè)屬于另一大類(lèi)檢測(cè)模式,依賴(lài)G-四分體的形成和釋放2條單鏈的模式來(lái)構(gòu)建適配體傳感器,結(jié)合鋱離子來(lái)增強(qiáng)熒光強(qiáng)度,LOD達(dá)到20 ng·L-1[73]。Guo等[61]利用實(shí)時(shí)定量聚合酶鏈反應(yīng)結(jié)合適配體傳感器檢測(cè)AFB1,在適配體3′端修飾生物素基團(tuán),再通過(guò)鏈霉親和素偶聯(lián)至管壁,整個(gè)反應(yīng)僅在一個(gè)PCR管中即可完成,且保證了25 ng·L-1的檢測(cè)限。
4.3 分子印跡技術(shù)
分子印跡聚合物(molecular imprinted poly?mer,MIP)屬于合成材料,根據(jù)模板單體合成為特征結(jié)構(gòu)的聚合物,可對(duì)特定的目標(biāo)分子提供高親和力。自組裝的官能團(tuán)圍繞在模板分子(目標(biāo))周?chē)?,在過(guò)量交聯(lián)劑的作用下形成固體材料,去除模板,構(gòu)建的聚合物在形狀和功能上與原始模板互補(bǔ)。通過(guò)合成一種分子印跡聚吡咯(MIPPy)膜,MIPPy吸附于表面等離子體共振元件,從而選擇性識(shí)別檢測(cè)OTA[75-76]。通過(guò)引入鐵離子構(gòu)建了T-2毒素的MIP電化學(xué)傳感器,通過(guò)增加金屬離子和模板的螯合,提高其靈敏度[77]。此外,制備成功的還有OTAMIP,ZEN-MIP,DON-MIP和AFB1-MIP,為專(zhuān)屬性檢測(cè)目標(biāo)毒素提供了新的選擇。
4.4 生物酶抑制技術(shù)
多種生物酶(膽堿酯酶、脲酶和葡萄糖氧化酶等)對(duì)真菌毒素具有敏感性,酶活性會(huì)受到真菌毒素的強(qiáng)烈抑制。實(shí)際分析中,乙酰膽堿酯酶使用最頻繁,包括檢測(cè)AFB1的乙酰膽堿酯酶生物傳感器[78-79]。此外,AFB1抑制乙酰膽堿酯酶的作用是可逆的,還可通過(guò)表面等離子體共振信號(hào)放大技術(shù)實(shí)時(shí)監(jiān)測(cè)真菌毒素水平[80]。然而,由于生物酶結(jié)合不具有強(qiáng)的選擇性,使其應(yīng)用也受到一定限制。
中藥材在全世界范圍內(nèi)有著廣泛的應(yīng)用。然而,中藥材在生產(chǎn)過(guò)程中易污染不同類(lèi)型的真菌毒素。因此,中藥中真菌毒素污染的提前預(yù)警,致病機(jī)制和毒理學(xué)研究都迫在眉睫。對(duì)中藥污染嚴(yán)重的強(qiáng)致毒類(lèi)的AF和OTA等毒物在分子水平作用機(jī)制的深入探索,將為真菌毒素長(zhǎng)期或急性暴露引發(fā)的中毒和慢性疾病的治療提供新的契機(jī),為解毒新藥的研發(fā)開(kāi)拓新的思路?;谥兴幉呗詰?yīng)對(duì)毒素中毒問(wèn)題,從機(jī)體長(zhǎng)期保健調(diào)節(jié)的理念上有助于緩解慢性中毒的風(fēng)險(xiǎn)。已構(gòu)建的快速生物傳感技術(shù)為中藥中真菌毒素污染在線(xiàn)快速檢測(cè)提供了方向,嘗試向受體(蛋白質(zhì)和核苷酸等)、檢測(cè)信號(hào)(電化學(xué)、光學(xué)和石英晶體微天平)、小型化(基因芯片和微流體等)、新型材料(納米粒和上轉(zhuǎn)換納米粒)和信號(hào)產(chǎn)生的設(shè)計(jì)(標(biāo)記和非標(biāo)記的分類(lèi)技術(shù))等方面突破,有望在復(fù)雜的中藥基質(zhì)中實(shí)現(xiàn)pg級(jí)的檢測(cè)靈敏度和較寬的線(xiàn)性范圍,并獲得性能優(yōu)異的傳感器。合理整合資源,形成從早期檢測(cè)、提前預(yù)警、毒物指標(biāo)的監(jiān)測(cè)到采取有效的應(yīng)對(duì)措施的數(shù)據(jù)網(wǎng)絡(luò),是控制中藥中真菌毒素污染和人體暴露風(fēng)險(xiǎn)的有效措施,也是未來(lái)需要共同努力的方向。
[1]Zheng RS,Xu H,Peng YX,Wang WL,Zhan RT,Chen WW.A high throughput coupled with high performance liquid chromatography-tandem mass spectrometry method for determination of af?latoxin B1,B2,G1,G2 in 10 traditional Chinese medicines[J].Chin J Chin Mater Med(中國(guó)中藥雜志),2014,39(2):273-277.
[2]GraySL,LackeyBR,TatePL,RileyMB,Camper ND.Mycotoxins in root extracts of american and asian ginseng bind estrogen receptors A and B[J].Exp Bio Med,2004,229(6):560-568.
[3]Yang MH,Chen JM,Zhang XH.Immunoaffinity column clean-up and liquid chromatography with post-column derivatization for analysis of aflatox?ins in traditional Chinese medicine[J].Chromato?graphia,2005,62(9):499-504.
[4]Yang L,Wang LN,Pan JY,Xiang L,Yang M,Loqriecco AF.Determination of ochratoxin A in traditional Chinese medicinal plants by HPLC-FLD[J].Food Addit Contam Part A Chem Anal Con?trol Expo Risk Assess,2010,27(7):989-997.
[5]Kong W,Wei R,Logrieco AF,Wei J,Wen J,Xiao X,et al.Occurrence of toxigenic fungi and determination of mycotoxins by HPLC-FLD in func?tional foods and spices in China markets[J].Food Chem,2014,146(1):320-326.
[6]Liu HM,Kong WJ,Liu CM,Yang MH.Rapid anal?ysis and identification of multi-class mycotoxins in morinda officinalis by UFLC-ESI-MS/MS[J].Rsc Adv,2015,5(78):63561-63571.
[7]Kong WJ,Yang XH,Yang MH,Hao Z,Ouyang Z,Zhao M.Photoluminescent nanosensors capped with quantum dots for high-throughput determination of trace contaminants:strategies for enhancing ana?lytical performance[J].Trends Anal Chem,2016,78:36-47.
[8]Zheng RS.A high-throughput method for the deter?mination of aflatoxin B1,B2,G1,G2,ochratoxin A and sterigmatocystin in traditional Chinese medi?cines by high performance liquid chromatographytandem mass spectrometry(中藥材污染真菌毒素的液質(zhì)聯(lián)用高通量檢測(cè)研究)[D].Guangzhou:Guangzhou Univ Chin Med(廣州中醫(yī)藥大學(xué)),2014.
[9]Tan J,Zheng RS,Wang WL,Xu H.Simultaneous determination of aflatoxins and zearalenone in Chinese crude drugs by high performance liquid chromatography-tandem mass spectrometry[J].Chin J Lishizhen Med Mater Med Res(時(shí)珍國(guó)醫(yī)國(guó)藥),2012,23(10):2469-2472.
[10]Kuang PL.Inspection of AFB1 quantity in Chinese traditional medicines[J].Chin J Tradit Pat Med(中成藥),2000,22(7):478-479.
[11]Zheng R,Mao D,Wang SM,Zhang S,Ji S. Determination of 10 mycotoxins in peach kernel by high performance liquid chromatography-tandem mass spectrometry[J].Chin J Food Safe Qual(食品安全質(zhì)量檢測(cè)學(xué)報(bào)),2014,5(3):824-832.
[12]Wa′s kiewicz A,Beszterda M,Bocianowski J,Golinski P.Natural occurrence of fumonisins and ochratoxin A in some herbs and spices commer?cialized in Poland analyzed by UPLC-MS/MS meth?od[J].Food Microbiol,2013,36(2):426-431.
[13]Rawal S,Jr CR.Metabolism of aflatoxin B1 in turkey livermicrosomes:the relative roles ofcyto?chromes P450 1A5 and 3A37[J].Toxicol Appl Pharmacol,2011,254(3):349-354.
[14]Chan KT,Hsieh DP,Lung ML.In vitroaflatoxin B1-induced p53 mutations[J].Cancer Lett,2003,199(1):1-7.
[15]Van Vleet TR,Watterson TL,Klein PJ,Coulombe RA.Aflatoxin B1alters the expression of p53 in cytochrome P450-expressing human lung cells[J].Toxicol Sci,2006,89(2):399-407.
[16]Partanen HA,EI-Nezami HS,Lepp?nen JM,Myllynen PK,Woodhouse HJ,Vahakanqas KH. Aflatoxin B1transfer and metabolism in human placenta[J].Toxicol Sci,2010,113(1):216-225.
[17]Luhe A,Hildebrand H,Bach U,Dingermann S,Ahr HJ.A new approach to studying ochratoxin A(OTA)-induced nephrotoxicity:expression profilingin vivoandin vitroemploying cDNA microarrays[J].J Toxicol Sci,2003,73(2):315-328.
[18]Berger V,Gabriel AF,Sergent T,Trouet A,Larondelle Y,Schneider YJ.Interaction of ochra?toxin A with human intestinal Caco-2 cells:possible implication of a multidrug resistance-associated protein(MRP2)[J].Toxicol Lett,2003,140-141(7):465-476.
[19]Kumagai S.Ochratoxin A:plasma concentration and excretion into bile and urine in albumin-defi?cient rats[J].Food Chem Toxicol,1985,23(23):941-943.
[20]Marin-Kuan M,Nestler S,Verguet C,Bezencon C,Piquet D,Mansourian R,et al.A toxicogenomics approach to identify new plausible epigenetic mechanisms of ochratoxin a carcinogenicity in rat[J].Toxicol Sci,2006,89(1):120-134.
[21]Corcuera LA,Arbillaga L,Vettorazzi A,Azqueta A,Lopez de Cerain A.Ochratoxin A reduces aflatoxin B1induced DNA damage detected by the comet assay in Hep G2 cells[J].Food Chem Toxicol,2011,49(11):2883-2889.
[22]Showker JL.Alteration of tissue and serum sphin?ganine to sphingosine ratio:an early biomarker of exposure to fumonisin-containing feeds in pigs[J].Toxicol Appl Pharmacol,1993,118(1):105-112.
[23]Liu SY,Yang MH.Research progress on fumoni?sins[J].Chin J Anhui Agric Sci(安徽農(nóng)業(yè)科學(xué)),2009,37(24):11397-11399.
[24]Burmeister HR,Ellis JJ,Yates SG.Correlation of biological to chromatographic data for two myco?toxins elaborated by fusarium[J].J Appl Microbiol,1971,49(21):673-675.
[25]Ribar S,Mesaric M.Fumonisins-mycotoxins produced by fusarium monififorme[J].Lijec vjesn,1993,120(3-4):85-91.
[26]Zhao DX,Ding XW.The toxicity of fumonisins and its contamination in food[J].Chin J Modern Food Sci Technol(現(xiàn)代食品科技),2005,21(2):206-209.
[27]IgarashiD, BethkeG, XuY, TsudaK,Glazebrook J,Katagiri F.Pattern-triggered immunity suppresses programmed cell death triggered by fumonisin b1[J].PLos One,2013,8(4):60769-60769.
[28] Tardieu D,Bailly JD,Skiba F,Grosjean F,Guerre P.Toxicokinetics of fumonisin B1in turkey points and tissue persistence after exposure to a diet containing the maximum European tolerance for fumonisins in avian feeds[J].Food Chem Toxicol, 2008,46(9):3213-3218.
[29]Bowers E,Hellmich R,Munkvold G.Comparison of fumonisin contamination using HPLC and ELISA methods in Bt and near-isogenic maize hybrids in?fested with european corn borer or western bean cutworm[J].J Agric Food Chem,2014,62(27):6463-6472.
[30]Missmer SA,Suarez L,F(xiàn)elkner M,Wang E,Merrill AH,Rothman KJ,et al.Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border[J].Environ Health Pre?spect,2006,114(2):237-241.
[31]Zhang XL,Wang Y,Li AK.Advances in research on biological detoxification of mycotoxins in feed[J].Chin J Anim Nutr(動(dòng)物營(yíng)養(yǎng)學(xué)報(bào)),2014,26(10):2971-2978.
[32]Dilkin P,Direito G,Simas MM,Mallmann CA,Correa B.Toxicokinetics and toxicological effects of single oral dose of fumonisin B1containing Fusarium verticillioides culture material in weaned piglets[J].Chem Biol Interact,2010,185(3):157-162.
[33]Mckean C,Tang L,Tang M,Billam M,Wang CW,Thodorakis RJ,et al.Comparative acute and com?binative toxicity of aflatoxin B1and fumonisin B1in animals and human cells[J].Food Chem Toxicol,2006,44(6):868-876.
[34]Tsakmakidis IA,Lymberopoulos AG,Alexopoulos C,Boscos CM,Kyriakis SC.In vitroeffect of zearale?none and alpha-zearalenol on boar sperm charac?teristics and acrosome reaction[J].Reprod Domest Anim,2006,41(5):394-401.
[35]Ayed Y,Ayedboussema I,Ouanes Z,Bacha H.In vitroandin vivoinduction of chromosome aber?rations by alpha-and beta-zearalenols:comparison with zearalenone[J].Mutat Res,2011,726(1):42-46.
[36]Chen BY,Qin LR,Lei JB.Studies on paeoniae alba detoxication effect to experimental chronic aflatoxinsis in Beijing duckling[J].Chin J Huazhong Agric Univ(華中農(nóng)業(yè)大學(xué)學(xué)報(bào)),1988,7(1):55-60.
[37]Li JL,Yan RQ,Wang HY,Huang ML,Huang XY. Effect of glycyrrhizin silymarin citrus peal and juice on aflatoxin B1induced hepatocarcinogenesis in rats[J].Chin J Cancer(癌癥),1993,(2):104-107.
[38]Hong ZF,Wang ZX,Gao BZ.Effect of astragalus membranaceus on the mutagenicity of aflatoxin B1[J].Chin J Tradit Med Sci Technol(中國(guó)中醫(yī)藥科技),1996,3(5):14.
[39]Li Y,Gao Z,Rong Q,Yang XM,Zhang R.Phar macological mechanism of“Compound Chai Qin Particles”in treating duck chronic poisoning of afla?toxin B1[J].Chin J Acta Agr Zhejiang(浙江農(nóng)業(yè)學(xué)報(bào)),2015,27(8):1337-1344.
[40]Chen Y,Yuan J,Wang XH,Rui XJ,Zhang YF. Effect of Gegen qinlian decoction and different synergies on liver CYP450 isoforms[J].Chin J Chin Tradit Pat Med(中成藥),2013,35(8):1593-1598.
[41]Yuan F.Effect and underlying mechanism of mat?irne and oxymatirne on the activity of liver CYP450 in rats(苦參堿及氧化苦參堿對(duì)大鼠肝臟CYP450酶活性影響及其機(jī)制研究)[D].Guangzhou:Sun Yat-sen University(中山大學(xué)),2013.
[42]Han JX,He JB,Gao F.Protective effects of proan?thocyanidins on the liver and kidney oxidative demage induced by zearalenone in mice[J].Chin J China Anim Husbandry Vet Med(中國(guó)畜牧獸醫(yī)),2016,43(2):402-406.
[43]Bonel L,Vidal JC,Duato P,Castillo JR.Ochratoxin A nanostructured electrochemical immunosensors based on polyclonal antibodies and gold nanoparti?cles coupled to the antigen[J].Anal Methods,2010,2(4):335-341.
[44]Liu JH,Liu JY,Yang LB,Chen X,Zhang MY,Meng FL,et al.Nanomaterial-assisted signal enhancement of hybridization for DNA biosensors:a review[J].Sensors,2009,9(9):7343-7364.
[45]UrusovAE,KostenkoSN,SveshnikovPG,Zherdew AV,Dzantiew BB.Ochratoxin A immuno?assay with surface plasmon resonance registra?tion:lowering limit of detection by the use of colloi?dal gold immunoconjugates[J].Sen Actuat B,2011,156(1):343-349.
[46]Gan N,Zhou J,Xiong P,Hu FT,Cao YT,Li TH,et al.An ultrasensitive electrochemiluminescent immunoassay for aflatoxin M1 in milk,based on extraction by magnetic graphene and detection by antibody-labeled CdTe quantumn dots-carbon nanotubes nanocomposite[J].Toxins,2013,5(5):865-883.
[47]Masoomi L,Sadeghi O,Banitaba MH,Shahrjerdi A,Davarani SSH.A non-enzymatic nanomagnetic electro-immunosensor for determination of aflatox?in B1as a model antigen[J].Sen Actuat B,2013,177(2):1122-1127.
[48]Radi AE,Mu?ozberbel X,Lates V,Marty JL. Label-free impedimetric immunosensor for sensitive detection of ochratoxin A[J].Biosens Bioelectron,2009,24(7):1888-1892.
[49]And VGA,Nikolelis DP.Flow injection monitoring of aflatoxin M1in milk and milk preparations using filter-supported bilayer lipid membranes[J].Anal Chem,1998,70(11):2366-2371.
[50]Kanungo L,Bacher G,Bhand S.Flow-based impedimetric immunosensor for aflatoxin analysis in milk products[J].Appl Biochem Biotechnol,2014,174(3):1157-1165.
[51]Bacher G,Pal S,Kanungo L,Bhand S.A labelfree silver wire based impedimetric immunosensor for detection of aflatoxin M1in milk[J].Sen Actuat B,2012,168(2):223-230.
[52]Li T,Byun JY,Kim BB,Shin YB,Kim MG.Labelfree homogeneous FRET immunoassay for the detection of mycotoxins that utilizes quenching of the intrinsic fluorescence of antibodies[J].Biosens Bioelectron,2013,42(1):403-408.
[53]Hermann T,Patel DJ.Adaptive recognition by nucleic acid aptamers[J].Science,2000,287(5454):820-825.
[54]Schmidt K S,Borkowski S,Kurreck J,Stephens AW,Bald R,Hecht M,et al.Application of locked nucleic acids to improve aptamerin vivostability and targeting function[J].Nucleic Acids Res,2004,32(19):5757-5765.
[55]Yang XH,Kong WJ,Yang MH,Zhao M,Ouyang Z. Application of aptamer identification technology in rapid analysis of mycotoxins[J].Chin J Anal Chem(分析化學(xué)),2013,41(2):297-306.
[56]Cheng Y,Lates V,Prieto-Simón B,Marty JL,Yang X.Rapid high-throughput analysis of ochra?toxin A by the self-assembly of DNAzyme-aptamer conjugates in wine[J].Talanta,2013,116(22):520-526.
[57]Yang C,Wang Y,Marty JL,Yang X.Aptamerbased colorimetricbiosensing ofochratoxin A using unmodified gold nanoparticles indicator[J].Sen Actuat B,2011,156(1):95-99.
[58]Bonel L,Vidal JC,Duato P,Castillo JR.An electro?chemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer[J].Biosens Bioelectron,2011,26(7):3254-3259.
[59]Cheng CI,Chang YP,Chu YH.Biomolecular inter?actions and tools for their recognition:focus on the quartz crystal microbalance and its diverse surface chemistries and applications[J].Chem Inform,2012,41(22):1947-1971.
[60]Sheng L,Ren J,Miao Y,Wang J,Wang E.PVP-coated graphene oxide for selective determination of ochratoxin A via quenching fluorescence of free aptamer[J].Biosens Bioelectron,2011,26(8):3494-3499.
[61]Guo Z,Ren J,Wang J,Wang E.Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A[J].Talanta,2011,85(5):2517-2521.
[62]CruzaguadoJA,PennerG.Determinationof ochratoxin A with a DNA aptamer[J].J Agric Food Chem,2008,56(22):10456-10461.
[63]Zheng M,Jagota,Walls DJ.Structure-based carbon nanotube sorting by sequence-dependent DNA assembly[J].Science,2003,302(5650):1545-1548.
[64]Zhu Z,Yang R,You M,Zhang X,Wu Y,Tan W. Single-walled carbon nanotube as an effective quencher[J].Anal Bioanal Chem,2010,396(1):73-83.
[65]Wu J,Chu H,Mei Z,Deng Y,Xue F.Ultrasensi?tive one-step rapid detection of ochratoxin A by the folding-based electrochemical aptasensor[J].Anal Chim Acta,2012,753(21):27-31.
[66]Zhou WL,Kong WJ,Dou XW,Zhao M,Ouyang Z.An aptamer based lateral flow strip for on-site rapid detectionofochratoxin A inAstragalus membranaceus[J].J Chromatogr,B 2016,1022:102-108.
[67]Kuang H,Chen W,Xu DH,Xu LG,Zhu YY,Chu HQ,et al.Fabricated aptamer-based electro?chemical"signal-off"sensor of ochratoxin A[J].Biosens Bioelectron,2010,26(2):710-716.
[68]Rhouati A,Hayat A,Hernandez DB,Maraihi Z,Munoz R,Marty JL.Development of an automated flow-based electrochemical aptasensor for on-line detection of ochratoxin A[J].Sen Actuators B,2013,176(1):1160-1166.
[69]Sch?ning MJ,Poghossian A.Recent advances in biologically sensitive field-effect transistors(BioFETs)[J].Analyst,2002,127(9):1137-1151.
[70]Lee J,Jo M,Kim TH,Ahn JY,Lee DK,Kim S,et al.Aptamer sandwich-based carbon nanotube sensors for single-carbon-atomic-resolution detec?tion of non-polar small molecular species[J].LabChip,2010,11(1):52-56.
[71]Khan R,Dey NC,Hazarika AK,Saini KK,Dhayal M.Mycotoxin detection on antibody-immobilized conducting polymer-supported electrochemically polymerized acacia gum[J].Anal Biochem,2010,410(2):185-190.
[72]Hayat A,Sassolas A,Marty JL,Radi AE.Highly sensitive ochratoxin A impedimetric aptasensor based on the immobilization of azido-aptamer onto electrografted binary film via click chemistry[J].Talanta,2013,103(2):14-19.
[73]Ran Q,Peng R,Liang C,Ye SQ,Xian YZ,Zhang WJ,et al.Covalent immobilization of horse?radish peroxidase via click chemistry and its direct electrochemistry[J].Talanta,2011,83(5):1381-1385.
[74]Zhang J,Liu B,Liu H,Zhang X,Tan W.Aptamerconjugated gold nanoparticles for bioanalysis[J].Nanomedicine,2013,8(6):983-993.
[75]Piletsky SA,Karim K,Piletska EV,Day CJ,F(xiàn)reebairn KW,Legge C,et al.Recognition of ephedrine enantiomers by molecularly imprinted polymers designed using a computational approach[J].Analyst,2001,126(10):1826-1830.
[76]Yu JCC,Lai EPC.Polypyrrole film on miniaturized surface plasmon resonance sensor for ochratoxin A detection[J].Synth Met,2004,143(3):253-258.
[77]Yu JCC,Lai EPC.Interaction of ochratoxin A with molecularly imprinted polypyrrole film on surface plasmon resonance sensor[J].ReactFunct Polym,2005,63(3):171-176.
[78]Puiu M,Istrate O,Rotariu L,Bala C.Kinetic approach of aflatoxin B1-acetylcholinesterase interac?tion:a tool for developing surface plasmon reso?nance biosensors[J].Anal Biochem,2012,421(2):587-594.
[79]Moscone D,Arduini F,Amine A.A Rapid Enzy?matic Method for Aflatoxin B Detection[M].State of New Jersey:MicrobialToxinsHumanaPress,2011,73:217-235.
[80]Rejeb IB,Arduini F,Arvinte A,Amine A,Gargouri M,Micheli L,et al.Development of a bio-electrochemi?cal assay for AFB1 detection in olive oil[J].Bio?sens Bioelectron,2009,24(7):1962-1968.
Advances in toxicological study and rapid detection of common mycotoxins in medicinal herbs
ZHANG Cheng1,2,DOU Xiao-wen1,YANG Mei-hua1
(1.Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education Chinese Academy of Medical Sciences&Peking Union Medical College,Beijing 100193,China;2.School of Pharmacy,Jiangsu University, Zhenjiang 212013,China)
Mycotoxins,secondary metabolites produced by certain fungi,have become one of the most harmful factors that affect the clinical safety of medicinal herbs that probably can be contaminated by harmful toxins generated from fungi in the whole process from planting to clinical use.Therefore,more toxicological research of mycotoxins,a better knowledge of the pathogenesis and quick detection with sensitivity and accuracy will play an important role in targeted therapy of poisoning by mycotoxins and early warning.In this paper,the current status of mycotoxin contamination in medicinal herbs was ana?lyzed,and the progress of toxicological study on common contaminants was reviewed.In view of the high toxicity of toxins,the strategy of″Prevention First″is highly desirable.Hence,the development of rapid detection of typical mycotoxins was systematically discussed.The review was intended to provide ref?erence for ensuring clinical safe administration of medicinal herbs and for reducing the risk of mycotoxin poisoning.
medicinal herbs;mycotoxins;toxicology;rapid detection;security risk
YANG Mei-hua,E-mail:yangmeihua15@hotmail.com,Tel:(010)57833277
R99,R996.2
A
1000-3002-(2016)12-1369-10
10.3867/j.issn.1000-3002.2016.12.015
Foundation item:The project supported by Beijing Natural Science Foundation(7152101);National Natural Science Foundation of China(81274072);and CAMS Innovation Fund for Medical Sciences(2016-I2M-1-012)
2016-12-01接受日期:2016-12-27)
(本文編輯:齊春會(huì))
北京市自然科學(xué)基金(7152101);國(guó)家自然科學(xué)基金(81274072);中國(guó)醫(yī)學(xué)科學(xué)院醫(yī)學(xué)與健康科技創(chuàng)新工程經(jīng)費(fèi)資助(2016-I2M-1-012)
楊美華,E-mail:yangmeihua15@hotmail.com, Tel:(010)57833277