李 馨,李學(xué)軍
(北京大學(xué)基礎(chǔ)醫(yī)學(xué)院藥理學(xué)系,北京 100191)
染色體調(diào)節(jié)因子EZH2對(duì)腫瘤的表觀調(diào)控及靶向EZH2腫瘤治療藥物
李 馨,李學(xué)軍
(北京大學(xué)基礎(chǔ)醫(yī)學(xué)院藥理學(xué)系,北京 100191)
李學(xué)軍,現(xiàn)任北京大學(xué)醫(yī)學(xué)部基礎(chǔ)醫(yī)學(xué)院藥理學(xué)系教授,博士生導(dǎo)師。曾任北京大學(xué)基礎(chǔ)醫(yī)學(xué)院副院長和藥理系主任等?,F(xiàn)兼任中國藥理學(xué)會(huì)副理事長,生化與分子藥理專業(yè)委員會(huì)主任委員和世界中聯(lián)網(wǎng)絡(luò)藥理學(xué)會(huì)副會(huì)長,科技部、北京市科委、國家人事部世紀(jì)人才及國家自然科學(xué)基金委評(píng)審專家。研究方向?yàn)榉肿铀幚韺W(xué)。研究課題包括藥物靶點(diǎn)的確認(rèn)和新藥發(fā)現(xiàn)、網(wǎng)絡(luò)藥理學(xué)、水通道的生物學(xué)研究和新藥發(fā)現(xiàn)以及抗腫瘤藥物、心血管系統(tǒng)藥物等藥理學(xué)研究。已培養(yǎng)碩士、博士研究生40余人,發(fā)表SCI收錄文章80余篇。獲科技部重大專項(xiàng)、國家自然科學(xué)基金重大國際合作項(xiàng)目等10余項(xiàng)課題。曾獲國家教育部科技進(jìn)步獎(jiǎng)、五洲女子科技獎(jiǎng)和中國科協(xié)優(yōu)秀科技工作者等。
染色體調(diào)節(jié)因子zeste增強(qiáng)子同源物2(EZH2)是多梳抑制復(fù)合體2(PRC2)中的一個(gè)催化亞基,具有組蛋白H3K27甲基轉(zhuǎn)移酶的功能。EZH2在腫瘤的發(fā)生發(fā)展中發(fā)揮極其重要的作用,由EZH2失調(diào)所引起的表觀遺傳改變和基因表達(dá)譜異常的現(xiàn)象在腫瘤中廣泛存在。EZH2作為PRC2的催化亞基可促進(jìn)組蛋白甲基化,增加染色質(zhì)結(jié)構(gòu)穩(wěn)定性,發(fā)揮轉(zhuǎn)錄抑制作用;亦可通過PRC2非依賴的途徑發(fā)揮轉(zhuǎn)錄激活作用,相應(yīng)分子機(jī)制復(fù)雜,具有高度的組織特異性。目前已知的幾種EZH2失調(diào)機(jī)制包括EZH2異常表達(dá)、EZH2功能獲得性或缺失性突變、H3K27脫甲基酶UTX突變及復(fù)發(fā)性H3K27錯(cuò)義突變等。針對(duì)EZH2靶向藥物的設(shè)計(jì)策略主要集中于研發(fā)干擾其甲基轉(zhuǎn)移酶活性的小分子抑制劑,包括催化反應(yīng)中甲基供體的競爭性抑制劑和干擾PRC2穩(wěn)定性的抑制劑等。本文主要論述EZH2對(duì)腫瘤的表觀遺傳調(diào)控及靶向EZH2腫瘤治療藥物的研究進(jìn)展。
染色體調(diào)節(jié)因子EZH2;多梳抑制復(fù)合體2;腫瘤;組蛋白;甲基化;靶向治療
表觀遺傳是指在不改變遺傳物質(zhì)序列的前提下對(duì)基因或蛋白質(zhì)表達(dá)的調(diào)節(jié),主要包括DNA甲基化和組蛋白甲基化等多種調(diào)控方式。在基因表達(dá)調(diào)控及細(xì)胞命運(yùn)決定中,組蛋白的翻譯后修飾通過影響基因表達(dá)活性而發(fā)揮重要的調(diào)節(jié)作用。在腫瘤中,由表觀遺傳異常所導(dǎo)致的基因表達(dá)改變,是腫瘤發(fā)生發(fā)展的重要因素之一。近年來,隨著人類癌癥基因組計(jì)劃的深入展開,人們發(fā)現(xiàn)編碼染色體調(diào)節(jié)因子,即組蛋白修飾因子的基因在多種癌癥中存在廣泛的變異[1],并證實(shí)了染色體調(diào)節(jié)因子zeste增強(qiáng)子同源物2(enhancer of zeste homolog 2,EZH2)與癌癥的發(fā)生發(fā)展有關(guān)[2]。EZH2具有組蛋白H3K27甲基轉(zhuǎn)移酶活性,通過增加染色質(zhì)穩(wěn)定性調(diào)控基因表達(dá),在腫瘤中廣泛存在其異常表達(dá)和功能改變。本文主要從EZH2對(duì)腫瘤的表觀調(diào)控及靶向EZH2的腫瘤治療藥物方面進(jìn)行綜述。
1.1 實(shí)體腫瘤中EZH2表達(dá)增高
在最初的芯片研究中發(fā)現(xiàn),前列腺癌和乳腺癌組織中EZH2表達(dá)異常升高,且與腫瘤的侵襲性、晚期轉(zhuǎn)移及不良預(yù)后高度相關(guān)[3]。在黑色素瘤及其他實(shí)體腫瘤,如膀胱癌、卵巢癌、腎癌、非小細(xì)胞肺癌、肝細(xì)胞癌、腦腫瘤、胃癌、食道癌和胰腺癌中,均存在EZH2表達(dá)升高的現(xiàn)象[4]。在乳腺上皮細(xì)胞中過表達(dá)野生型EZH2導(dǎo)致乳腺上皮增生,誘發(fā)腫瘤,并且其致癌性與H3K27甲基轉(zhuǎn)移酶活性有關(guān)[5-6]。已在不同的腫瘤模型中證實(shí),EZH2可促進(jìn)腫瘤細(xì)胞增殖、遷移和侵襲[7]。
EZH2表達(dá)增加的機(jī)制有多種,其中之一是基因拷貝數(shù)增加。Sarmaki等[8]利用熒光標(biāo)記的原位雜交技術(shù)(fluorescencein situhybridization,F(xiàn)ISH)研究前列腺癌細(xì)胞、腫瘤異種移植物及臨床腫瘤組織中EZH2基因拷貝數(shù)目,發(fā)現(xiàn)相對(duì)于早期腫瘤,晚期腫瘤組織中EZH2的拷貝數(shù)目明顯增加,與EZH2的高表達(dá)相關(guān)。另一種常見的調(diào)節(jié)機(jī)制是EZH2的轉(zhuǎn)錄激活。在三陰乳腺癌和人類表皮生長因子受體2(human epidermal growth factor re?ceptor 2,HER2)高表達(dá)的乳腺癌亞型中,絲裂原激活蛋白激酶(mitogen-activated protein kinases,MAPK)/ERK通路激活與EZH2高表達(dá)有關(guān),磷酸化ETS轉(zhuǎn)錄激活因子1(E-twenty six transcription factor1,ELK1)與EZH2啟動(dòng)子區(qū)相互作用,增加EZH2的轉(zhuǎn)錄[9]。視網(wǎng)膜母細(xì)胞瘤抑制蛋白-轉(zhuǎn)錄因子E2F(pRB-E2F)通路也可調(diào)節(jié)EZH2表達(dá)。pRB/RB1磷酸化后促進(jìn)E2F蛋白從pRB-E2F復(fù)合體中解離,游離的E2F蛋白與EZH2啟動(dòng)子結(jié)合激活其轉(zhuǎn)錄[10]。除此之外,很多腫瘤相關(guān)轉(zhuǎn)錄因子可直接與EZH2的啟動(dòng)子結(jié)合,激活EZH2轉(zhuǎn)錄。在前列腺癌中,MYC和ETS轉(zhuǎn)錄因子可直接調(diào)節(jié)EZH2轉(zhuǎn)錄,而核轉(zhuǎn)錄因子Y亞基α(nuclear tran?scription factor Y subunit alpha,NF-YA),信號(hào)傳導(dǎo)與轉(zhuǎn)錄激活因子3(signal transducer and acti?vator of transcription 3,STAT3)和三磷酸腺苷酶家族蛋白2(ATPase family AAA domain-contain?ing protein,ATAD2)分別在上皮性卵巢癌、結(jié)腸癌和乳腺癌中調(diào)節(jié)EZH2的表達(dá)[4]。
缺氧可增加實(shí)體瘤中EZH2表達(dá)。Chang等[11]在EZH2的啟動(dòng)子區(qū)鑒定出缺氧誘導(dǎo)因子1α(hypoxia inducible factor-1α,HIF-1α)結(jié)合的保守序列HRE,證實(shí)低氧可誘導(dǎo)HIF-1α與此HRE區(qū)域結(jié)合,激活EZH2轉(zhuǎn)錄,促進(jìn)乳腺癌的生長。
EZH2的異常表達(dá)也受腫瘤相關(guān)病毒調(diào)節(jié)。Fujikawa等[12]通過比較成人T細(xì)胞白血病細(xì)胞ATL、正常CD4+陽性的T細(xì)胞及HTLV-1誘導(dǎo)的永生T細(xì)胞的轉(zhuǎn)錄組及表觀遺傳組,發(fā)現(xiàn)NF-κB可促進(jìn)EZH2表達(dá)升高,抑制微RNA-31(microRNA-31,miRNA-31)表達(dá),而miRNA-31的減少會(huì)進(jìn)一步激活NF-κB通路,最終導(dǎo)致基因組中H3K27me3廣泛積累,致使基因表達(dá)異常,這也被認(rèn)為是導(dǎo)致成人白血病發(fā)病原因之一。其中值得注意的是H3K27me3積累也出現(xiàn)在去甲基化酶KDM6B(JM?JD3)的啟動(dòng)子區(qū)域,抑制它的轉(zhuǎn)錄活性,從而打破組蛋白甲基化-去甲基化修飾的平衡。ATL細(xì)胞中表觀遺傳的改變和HTLV-1誘導(dǎo)永生的T細(xì)胞中表觀遺傳特點(diǎn)高度相似,且HTLV-1的Tax蛋白可調(diào)節(jié)EZH2功能,鑒于EZH2抑制劑在ATL細(xì)胞中的作用,F(xiàn)ujikawa等[12]認(rèn)為,EZH2抑制劑可更廣泛地應(yīng)用于HTLV-1引起的相關(guān)疾病的治療和防預(yù)。Tsang等[13]發(fā)現(xiàn),在HBV相關(guān)的肝癌中,轉(zhuǎn)錄因子YY1和EZH2的共同表達(dá)抑制了含有YY1結(jié)合位點(diǎn)的抑癌性miRNA的表達(dá),與較短的無病生存期有關(guān)。YY1可與EZH2和SUZ12結(jié)合,募集PRC2至染色體上,強(qiáng)烈抑制了5種NF-κB的抑制性miRNA表達(dá),促進(jìn)NF-κB通路激活,最終誘發(fā)腫瘤。
除了上述miRNA,還有許多miRNA可調(diào)節(jié)EZH2表達(dá)水平,如miRNA-25,-26a,-30d,-98,-101,-124,-137,-138,-144,-214和let-7,均可與EZH2的3′UTR區(qū)域結(jié)合,抑制EZH2蛋白翻譯;在多種類型腫瘤中,miRNA失調(diào)引起的EZH2表達(dá)上升與腫瘤的惡性程度成正相關(guān)[7]。
1.2 淋巴瘤中EZH2激活性突變
在7%~12%的大濾泡性淋巴瘤和22%彌漫性B細(xì)胞淋巴瘤中,EZH2催化結(jié)構(gòu)域SET的641位酪氨酸發(fā)生反復(fù)性體細(xì)胞突變[14-15]。開始認(rèn)為,突變可降低EZH2甲基轉(zhuǎn)移酶的活性,實(shí)際上EZH2-Y641突變確實(shí)降低了H3K27me1/2甲基轉(zhuǎn)移酶的活性,卻異常提高了H3K27me3甲基轉(zhuǎn)移酶的活性。在淋巴瘤中,突變型的EZH2總是與野生型EZH2以雜合子形式存在,推測這樣可彌補(bǔ)由EZH2-Y641突變所導(dǎo)致的H3K27me1/2水平降低[15]。相應(yīng)的,在小鼠淋巴細(xì)胞中特異性表達(dá)EZH2-Y641F,其脾中會(huì)出現(xiàn)H3K27me3廣泛升高現(xiàn)象[16]。類似的,SET結(jié)構(gòu)域中的A677G和A687V突變也可導(dǎo)致H3K27me3甲基轉(zhuǎn)移酶活性升高[17-18]。
1.3 染色體上PRC2募集增多
EZH2表達(dá)增加或者異常激活會(huì)使腫瘤中H3K27me3水平升高。除此之外,PRC2在染色體上募集增多也會(huì)引起H3K27me3水平增加。HOX轉(zhuǎn)錄反義RNA(HOX transcript antisense RNA,HOTAIR)是一種長非編碼RNA,過表達(dá)HOTAIR可加強(qiáng)PRC2與靶基因的結(jié)合,增加腫瘤細(xì)胞的侵襲性和遷移性;敲除HOTAIR可降低腫瘤的惡性程度,尤其是在PRC2高表達(dá)的腫瘤類型中更為明顯[19]。此外,HEIH,PCAT-1和H19等長非編碼RNA也可與EZH2相互作用,調(diào)節(jié)PRC2的募集過程,促進(jìn)腫瘤發(fā)生[7]。
1.4 惡性髓系疾病中EZH2發(fā)生失活性突變
在13%骨髓纖維化、10%~23%骨髓異常增生綜合征和各種亞型骨髓增殖性腫瘤中,均存在EZH2失活性突變。突變存在于單等位基因或雙等位基因中,類型包括錯(cuò)義突變、移碼突變、剪接突變和早熟終止密碼子突變等[20-21]。EZH2失活性突變導(dǎo)致H3K27me3水平降低,EZH2抑制的靶基因恢復(fù)表達(dá),導(dǎo)致血液疾病的發(fā)生。同時(shí),據(jù)報(bào)道,降低小鼠的EZH2水平可以誘發(fā)骨髓增生異常綜合征[22]。因此,在急性骨髓性白血病和T細(xì)胞急性淋巴細(xì)胞白血病等兒科血液病的臨床診斷治療中,EZH2失活性突變也是首要檢測的對(duì)象[23]。
1.5 EZH2拮抗因子的失活性突變
UTX(ubiquitously transcribed tetratrico pep?tide repeat gene on X chromosome)是一種組蛋白去甲基化酶,主要功能是移除組蛋白H3K27上的甲基,拮抗EZH2功能。目前,已在多種骨髓瘤、髓母細(xì)胞瘤、食管癌、膀胱癌、胰腺癌和腎癌中發(fā)現(xiàn)UTX功能失活性突變[24]。這些突變使得UTX中具有催化活性的結(jié)構(gòu)域JmjC缺失,最終導(dǎo)致H3K27me3水平廣泛提高[25]。因此,UTX功能失活性突變間接導(dǎo)致了EZH2功能獲得性突變的效果。
1.6 EZH2與腫瘤干細(xì)胞
EZH2是維持腫瘤干細(xì)胞自我修復(fù)能力和誘發(fā)腫瘤的關(guān)鍵因素[26]。從乳腺癌細(xì)胞及腫瘤組織中分離出來的干細(xì)胞EZH2表達(dá)升高,并且EZH2是其維持干細(xì)胞特性所必需的[11]。EZH2在腫瘤干細(xì)胞中通過抑制血統(tǒng)特異性轉(zhuǎn)錄因子(lineage-speci?fying factors)表達(dá)抑制腫瘤細(xì)胞分化[27]。同時(shí),表達(dá)EZH2促進(jìn)乳腺癌發(fā)展,與腫瘤干細(xì)胞的形成有關(guān)[28]。腫瘤干細(xì)胞中EZH2表達(dá)較高,低分化的腫瘤中含有更多的腫瘤干細(xì)胞,而腫瘤中EZH2高表達(dá)與腫瘤發(fā)生發(fā)展密切相關(guān)。因此,有觀點(diǎn)認(rèn)為,EZH2可能促進(jìn)休眠祖細(xì)胞和分化細(xì)胞逆向轉(zhuǎn)化成惡性度更高的腫瘤干細(xì)胞。
1.7 PRC2與組蛋白乙?;福╤istone deacety?lases,HDAC)之間的關(guān)系
在哺乳動(dòng)物細(xì)胞中,PRC2與HDAC存在相互作用,并且HDAC抑制劑曲古柳菌素A(tricho?statin A,TSA)可影響由PRC2調(diào)節(jié)的轉(zhuǎn)錄抑制作用[3,29]。實(shí)驗(yàn)結(jié)果表明,HDAC可瞬時(shí)性地與PRC2結(jié)合,發(fā)揮協(xié)同催化功能,但是具體的調(diào)節(jié)機(jī)制目前尚不清楚。有觀點(diǎn)認(rèn)為,HDAC可以使H3K27去乙酰化,使得PRC2可以在K27的α-氨基上進(jìn)行甲基化反應(yīng)。HDAC也可調(diào)節(jié)其他組蛋白賴氨酸殘基的去乙?;鏗3K9,H3K14和H4K8。因此,也有觀點(diǎn)認(rèn)為,這些修飾改變組蛋白局部穩(wěn)定性,影響PRC2的基因沉默功能。
值得注意的是,在發(fā)育過程中,PRC2和EZH2的核心功能是沉默特定基因表達(dá),決定細(xì)胞命運(yùn)[30],但并不能統(tǒng)一概括成維持細(xì)胞干細(xì)胞特性或者促進(jìn)分化某單一方面功能。而在腫瘤的發(fā)生發(fā)展中,EZH2的作用機(jī)制也因腫瘤類型而不同。因此我們認(rèn)為,EZH2調(diào)節(jié)表觀遺傳決定細(xì)胞命運(yùn)的作用具有高度的細(xì)胞特異性和時(shí)間特異性。
除了上述EZH2調(diào)節(jié)H3K27me3抑制基因表達(dá)的功能之外,同時(shí)越來越多證據(jù)表明,在很多類型的腫瘤中,EZH2存在著非組蛋白甲基化依賴性的調(diào)節(jié)作用,并且以轉(zhuǎn)錄激活調(diào)節(jié)為主。
EZH2具有轉(zhuǎn)錄激活功能。在雌激素受體陽性的乳腺癌細(xì)胞系MCF-7中,EZH2與雌激素受體α、β-鏈蛋白及T細(xì)胞因子(T cell factor,TCF)形成轉(zhuǎn)錄調(diào)節(jié)復(fù)合體,激活細(xì)胞周期蛋白D1和c-MYC轉(zhuǎn)錄,EZH2中的Ⅰ/Ⅱ結(jié)構(gòu)域與該復(fù)合體的形成有關(guān),催化結(jié)構(gòu)域SET并未參與其中[31]。在雌激素受體陰性的乳腺癌細(xì)胞系MDA-MB-231中,EZH2與NF-κB通路中的RELA和RELB結(jié)合,激活NF-κB靶基因腫瘤壞死因子和白細(xì)胞介素6等轉(zhuǎn)錄[32]。增殖細(xì)胞核抗原(proliferating cell nuclear antigen,PCNA)相關(guān)因子PAF(KIA0101)在結(jié)腸癌中高表達(dá),通過激活Wnt通路促進(jìn)細(xì)胞增殖。實(shí)際上,Wnt通路激活后,PAF從PCNA中解離,與β-鏈蛋白和EZH2形成復(fù)合體,促進(jìn)Wnt靶基因的轉(zhuǎn)錄[33]。同樣的,EZH2在其中的作用與其甲基轉(zhuǎn)移酶的活性無關(guān)。
EZH2可調(diào)節(jié)非組蛋白的甲基化,影響蛋白活性。在雄激素抵抗的前列腺癌(castrate-resistant prostate cancer,CRPC)中,EZH2與雄激素受體協(xié)同發(fā)揮轉(zhuǎn)錄激活的作用。不同于上述的轉(zhuǎn)錄激活作用,EZH2在CRPC中的轉(zhuǎn)錄激活作用依賴于其甲基轉(zhuǎn)移酶的活性,但并不需要PRC2其他亞基的輔助。EZH2可通過調(diào)節(jié)雄激素受體及相關(guān)蛋白的甲基化從而發(fā)揮轉(zhuǎn)錄激活的功能,并且證實(shí)絲氨酸蘇氨酸激酶(serine/threonine kinase,AKT)對(duì)EZH2中S21的磷酸化調(diào)節(jié)是其發(fā)揮甲基轉(zhuǎn)移酶依賴性的轉(zhuǎn)錄激活作用所必需的[34]。在膠質(zhì)母細(xì)胞瘤中也有類似的機(jī)制,EZH2與STAT3結(jié)合并使其甲基化,甲基化修飾的STAT3更容易被磷酸化修飾轉(zhuǎn)變?yōu)榧せ顮顟B(tài)。同樣證實(shí),由AKT1介導(dǎo)的EZH2的S21磷酸化對(duì)EZH2與STAT3的結(jié)合是必需的。AKT-EZH2-STAT3通路維持膠質(zhì)母細(xì)胞瘤中腫瘤干細(xì)胞的干性,促進(jìn)腫瘤的進(jìn)展[35]。
EZH2與乳腺癌易感基因1(breast cancer gene 1,BRCA1)之間也存在著復(fù)雜的相互調(diào)節(jié)機(jī)制。在雌激素受體陰性的乳腺癌細(xì)胞中,敲降EZH2可抑制細(xì)胞生長,且與由EZH2敲降所導(dǎo)致的BRCA1表達(dá)升高有關(guān)[36]。類似的,EZH2會(huì)引起B(yǎng)CRA1由細(xì)胞核轉(zhuǎn)位至細(xì)胞漿,導(dǎo)致染色體穩(wěn)定性降低[37]。除此之外,也有報(bào)道表明,BCRA1可調(diào)節(jié)EZH2,BCRA1干擾EZH2與HOTAIR的相互作用[38],BCRA1低水平表達(dá)的細(xì)胞中EZH2表達(dá)更高,對(duì)于EZH2抑制劑更敏感。這些結(jié)果提示,EZH2與BCRA1之間存著復(fù)雜的相互調(diào)節(jié)機(jī)制,需要更深入的研究。
EZH2除了調(diào)節(jié)轉(zhuǎn)錄過程,還可調(diào)節(jié)其他的細(xì)胞生物過程。例如,在前列腺癌細(xì)胞中,胞質(zhì)內(nèi)EZH2水平高于正常前列腺細(xì)胞,它可以調(diào)節(jié)骨架蛋白的聚合過程,具體機(jī)制尚不清楚[39]。PRC2復(fù)合體可被多聚ADP核糖聚合酶依賴性的募集至DNA損傷處,參與DNA修復(fù),敲降EZH2會(huì)影響DNA損傷修復(fù),使得細(xì)胞對(duì)放射療法更加敏感[40]。
自Xu等[34]發(fā)現(xiàn)AKT對(duì)EZH2的S21磷酸化修飾可以使EZH2調(diào)節(jié)非組蛋白甲基化并發(fā)揮轉(zhuǎn)錄激活作用以來,越來越多的證據(jù)表明,EZH2的活性和穩(wěn)定性受翻譯后修飾的精確調(diào)控。
EZH2的許多蘇氨酸殘基可被修飾調(diào)節(jié)。細(xì)胞周期蛋白依賴性激酶(cyclin dependent kinase 1/2,CDK1/2)可調(diào)節(jié)EZH2的T350和T492磷酸化[41]。T350磷酸化增加EZH2與HOTAIR的相互作用,促進(jìn)EZH2在染色體上的募集[42];T492磷酸化影響PRC2復(fù)合體的形成,降低EZH2的甲基轉(zhuǎn)移酶活性[43]。同時(shí)也有報(bào)道指出,CDK1依賴的T350和T492磷酸化可促進(jìn)EZH2的泛素化降解[44]。
最近有研究顯示,糖基化也可影響EZH2的穩(wěn)定性和H3K27me3水平[45]。N-乙酰葡糖胺轉(zhuǎn)移酶〔O-linked N-acetylglucosamine(GlcNAc)trans? ferase,OGT〕可使EZH2的S75糖基化,敲降OGT會(huì)降低EZH2的穩(wěn)定性及H3K27me3水平,EZH2的S75A突變使其穩(wěn)定性降低。此OGT-EZH2調(diào)節(jié)通路可以部分解釋腫瘤OGT紊亂的致癌機(jī)制。
鑒于EZH2激活性突變是腫瘤發(fā)生發(fā)展的一個(gè)非常重要的誘因,EZH2抑制劑的研發(fā)工作已得到了科研工作者及制藥企業(yè)的廣泛關(guān)注,并且已有化合物在臨床前試驗(yàn)中表現(xiàn)出很好的潛在應(yīng)用價(jià)值。
4.1 EZH2酶活性抑制劑
第一個(gè)發(fā)現(xiàn)的EZH2酶活性抑制劑是3-去氮腺嘌呤(3-deazaneplanocin A,DNZep)。DNZep是一種S-腺苷同型半胱氨酸(s-adenosyl-l-homocys?teine,SAH)水解酶抑制劑,細(xì)胞內(nèi)SAH含量增加可影響包括EZH2在內(nèi)的多種甲基轉(zhuǎn)移酶的活性,即DNZep對(duì)EZH2活性的抑制作用是非特異的[46]。DNZep能夠抑制多種腫瘤生長,例如乳腺癌、前列腺癌、肺癌、腦瘤、結(jié)腸癌和肝癌[47]。DNZep可降低EZH2蛋白表達(dá)水平,降低H3K27me3水平,激活PRC2靶基因,特異性誘導(dǎo)腫瘤細(xì)胞凋亡。盡管DNZep在細(xì)胞和動(dòng)物模型中具有較好抗腫瘤效果,但其血漿半衰期短,非特異性抑制組蛋白甲基化,并在一些動(dòng)物模型中具有藥物毒性反應(yīng)[48]。
隨著高通量藥物篩選技術(shù)的普及,目前已發(fā)現(xiàn)許多潛在的EZH2抑制劑,包括EPZ005687,EPZ-6438,EI1,UNC1999和GSK126等。它們與S-腺苷基甲硫氨酸(s-adenosyl methionine,SAM)(甲基轉(zhuǎn)移酶催化反應(yīng)的甲基供體)競爭性結(jié)合于EZH2的催化口袋SET結(jié)構(gòu)域,抑制H3K27甲基轉(zhuǎn)移酶的活性?;衔顴PZ005687可以與野生型及突變型Y641的EZH2結(jié)合,解離平衡常數(shù)(Ki)是24 nmol·L-1,對(duì)EZH2的結(jié)合特異性是EZH1的50倍,是其他甲基轉(zhuǎn)移酶的500倍。EPZ005687可濃度依賴性降低含有EZH2-Y641或者EZH2-A677突變的雜合子淋巴癌細(xì)胞中H3K27me3水平,而對(duì)EZH2野生型的細(xì)胞活力影響不大[49]。同時(shí)發(fā)現(xiàn)的小分子抑制劑還有GSK126,它可與野生型及突變型EZH2結(jié)合,結(jié)合特異性是EZH1的150倍,是其他甲基轉(zhuǎn)移酶的至少1000倍,GSK126對(duì)含有突變型EZH2的淋巴瘤有顯著的抑制作用[50]。第三個(gè)發(fā)現(xiàn)的SAM競爭性抑制劑是EI1,它也可與野生型及突變型EZH2結(jié)合,結(jié)合特異性是EZH1的90倍,是其他甲基轉(zhuǎn)移酶的至少10 000倍。在EZH2突變的DLBCL細(xì)胞中,EI1降低細(xì)胞的H3K27me2/3水平,抑制細(xì)胞增殖,引起細(xì)胞周期阻滯,誘導(dǎo)凋亡[51]。以上這些化合物的給藥方式多以注射為主。
UNC1999是第一個(gè)合成的可口服的EZH2抑制劑。UNC1999與野生型及突變型EZH2均有結(jié)合,特異性是EZH1的10倍,可同時(shí)抑制EZH2及EZH1的活性[52]。隨后發(fā)現(xiàn)了EPZ-6438,它的平衡解離常數(shù)是2.5 nmol·L-1,相對(duì)于EPZ005687,EPZ-6438具有更好的藥代動(dòng)力學(xué)特點(diǎn)和較高的口服生物利用度[53]。目前,EPZ-6438已經(jīng)在晚期實(shí)體瘤患者及頑固性B細(xì)胞淋巴瘤中進(jìn)行Ⅰ期臨床試驗(yàn)(NCT01897571)[54],另有 2個(gè) EZH2抑制劑(NCT02395601和NCT02082977)臨床試驗(yàn)已經(jīng)進(jìn)入患者招募階段。
有趣的現(xiàn)象是,這些抑制劑均可以降低細(xì)胞中H3K27me3水平,但是對(duì)具有EZH2激活性突變(EZH2-Y641,EZH2-A677)的腫瘤細(xì)胞更具有殺傷作用。這提示SAM競爭性抑制劑可能更適用于淋巴癌的治療。
4.2 干擾PRC2穩(wěn)定性的抑制劑
EZH2的催化活性需要PRC2復(fù)合體中其他亞基共同輔助完成。因此,干擾PRC2復(fù)合體裝配也是研發(fā)EZH2抑制劑的一個(gè)策略。一種模擬胚胎外胚層發(fā)育蛋白(embryonic ectoderm develop?ment,EED)中α螺旋結(jié)構(gòu)域的訂書肽(SAH-EZH2多肽),與EED競爭性結(jié)合于EZH2,干擾PRC2復(fù)合體形成。實(shí)驗(yàn)表明,在PRC2依賴性的白血病細(xì)胞MLL-AF9中,SAH-EZH2多肽可降低PRC2甲基轉(zhuǎn)移酶活性,使腫瘤細(xì)胞發(fā)生生長阻滯及去分化。同樣,在EZH2依賴性的B細(xì)胞淋巴瘤中,SAHEZH2多肽抑制細(xì)胞增殖,同時(shí)降低H3K27me3和EZH2蛋白水平[55]。
另外,一些具有抗腫瘤作用的天然產(chǎn)物也能抑制EZH2的活性,調(diào)節(jié)PRC2靶基因表達(dá)。例如,沒食子兒茶素-3-沒食子酸酯和飲食中ω-3多不飽和脂肪酸均可以通過調(diào)節(jié)蛋白酶體的降解作用降低EZH2的水平[56-57];姜黃素通過調(diào)節(jié)MAPK通路影響EZH2的蛋白水平[58]。
4.3 EZH2靶向治療的耐藥性及聯(lián)合用藥
在腫瘤治療中,細(xì)胞對(duì)化療藥物產(chǎn)生耐藥性是治療失敗的主要原因。隨著EZH2抑制劑研發(fā)的深入,腫瘤細(xì)胞對(duì)其耐藥性也漸漸的展現(xiàn)出來。在細(xì)胞模型中,長期暴露于EZH2抑制劑使腫瘤細(xì)胞系獲得二次突變(Y111L和Y661D),并且突變與細(xì)胞的耐藥性有關(guān)[59]。在非霍奇金淋巴瘤中,EPZ-6438與常規(guī)化療藥或者糖皮質(zhì)激素受體拮抗劑聯(lián)用,可協(xié)同性抑制腫瘤生長。在前列腺癌模型中,GSK216與依托泊苷聯(lián)用顯著增加了對(duì)小鼠和人前列腺癌細(xì)胞系的殺傷性[60]。在非小細(xì)胞肺癌的臨床前研究中,不同突變亞型的腫瘤對(duì)抑制EZH2的反應(yīng)不同。在攜帶BRG1/SMARCA4失活性突變和表皮生長因子激活性突變的細(xì)胞中,抑制EHZ2活性可增加細(xì)胞對(duì)拓?fù)洚悩?gòu)酶Ⅱ抑制劑的敏感性。而在缺少這些突變的細(xì)胞中,抑制EZH2活性反而促進(jìn)細(xì)胞對(duì)拓?fù)洚悩?gòu)酶Ⅱ抑制劑的耐受性[61]。因此,伴隨著人們對(duì)EZH2抑制劑耐藥機(jī)制研究的深入,聯(lián)合用藥將為靶向EZH2的抗腫瘤治療策略帶來更大的臨床應(yīng)用價(jià)值。
已有大量的數(shù)據(jù)證實(shí)了EZH2在腫瘤發(fā)生發(fā)展中的作用,導(dǎo)致EZH2失調(diào)的分子機(jī)制及其調(diào)控的下游分子通路因腫瘤類型不同而各異。EZH2表達(dá)升高主要存在于實(shí)體腫瘤,EZH2激活性突變在B細(xì)胞淋巴瘤中比較常見,失活性突變在骨髓增生異常綜合征及髓系增生性腫瘤中比較常見。從這些數(shù)據(jù)來看,在實(shí)體腫瘤以及淋巴癌中,EZH2主要是通過調(diào)節(jié)組蛋白甲基化、增加染色質(zhì)穩(wěn)定性、抑制腫瘤抑制基因表達(dá)而發(fā)揮促癌作用;而在髓系疾病和兒童膠質(zhì)瘤中,EZH2則發(fā)揮了抑癌基因的作用。同時(shí)也有報(bào)道指出,在某些腫瘤中,EZH2存在PRC2非依賴性的轉(zhuǎn)錄激活作用??偟膩碚f,在不同的細(xì)胞及腫瘤類型中,EZH2通過不同的調(diào)節(jié)機(jī)制影響腫瘤的發(fā)生發(fā)展,對(duì)其機(jī)制的深入研究將有助于推動(dòng)腫瘤的個(gè)體化治療,對(duì)實(shí)現(xiàn)精準(zhǔn)醫(yī)學(xué)意義重大。
[1]Dalgliesh GL,F(xiàn)urge K,Greenman C,Chen LA,Bignell G,Butler A,et al.Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes[J].Nature,2010,463(7279):360-363.
[2]Margueron R,Reinberg D.The polycomb complex PRC2 and its mark in life[J].Nature,2011,469(7330):343-349.
[3]Varambally S, Dhanasekaran SM, ZhouM,Barrette TR,Kumar-Sinha C,Sanda MG,et al.The polycomb group protein EZH2 is involved in progression of prostate cancer[J].Nature,2002,419(697):624-629.
[4]V?lkel P,Dupret B,Le Bourhis X,Angrand PO. Diverse involvement of EZH2 in cancer epigenetics[J].Am J Transl Res,2015,7(2):175-193.
[5]Cha TL,Zhou BP,Xia WY,Wu YD,Yang CC,Chen CT,et al.Akt-mediated phosphorylation of EZH2 suppresses methylation of lysine 27 in his?tone H3[J].Science,2005,310(5746):306-310.
[6]Gonzalez E,Moore M,Li X,Toy A,Huang W,Sabel S,et al.EZH2 expands breast stem cells through activation of NOTCH1 signaling[J].Proc Natl Acad Sci USA,2014,111(8):3098-3103.
[7]Yamaguchi H,Hung MC.Regulation and role of EZH2 in cancer[J].Cancer Res Treat,2014,46(3):209-222.
[8] Saram?ki OR,Tammela TL,Martikainen PM,Vessella RL,Visakorpi T.The gene for polycomb group protein enhancerofzeste homolog 2(EZH2)is amplified in late-stage prostate cancer[J].Genes Chromosomes Cancer,2006,45(7):639-645.
[9]Fujii S,Tokita K,Wada N,Ito K,Yamauchi C,Ito Y,et al.MEK-ERK pathway regulates EZH2 overexpression in association with aggressive breast cancer subtypes[J].Oncogene,2011,30(39):4118-4128.
[10]Bracken AP,Pasini D,Capra M,Prosperini E,Colli E, Helin K.EZH2 is downstream of the pRB-E2F path?way,essential for proliferation and amplified in cancer[J].EMBO J,2003,22(20):5323-5335.
[11]Chang J,Yang Y,Xia WY,Chen T,Xie XM,Chao H,et al.EZH2 promotes expansion of breast tumor initiating cells through activation of RAF1-β-catenin signaling[J].Cancer Cell,2011,19(1):86-100.
[12]Fujikawa D,Nakagawa S,Hori M,Kurokawa N,Soejima A,Nakano K,et al.Polycomb-dependent epigenetic landscape in adult T-cell leukemia[J].Blood,2016,127(14):1790-1802.
[13]Tsang P,Wu K,Kang W,Lee Y,Wu F,Yu Z,et al.Yin yang 1-mediated epigenetic silencing of tumour-suppressive microRNAs activates nuclear factor-κB in hepatocellular carcinoma[J].J Pathol,2016,238(5):651-664.
[14]Morin RD,Johnson NA,Severson TM,Mungall AJ,An J,Goya R,et al.Somatic mutations altering EZH2(Tyr641)in follicular and diffuse large B-cell lymphomas of germinal-center origin[J].Nat Genet,2010,42(2):181-185.
[15]Yap B,Chu J,Berg T,Schapira M,Cheng W,Moradian A,et al.Somatic mutations at EZH2 Y641 act dominantly through a mechanism of selec?tively altered PRC2 catalytic activity,to increase H3K27 trimethylation[J].Blood,2011,117(8):2451-2459.
[16]Berg T,Thoene S,Yap D,Wee T,Schoeler N,Rosten P,et al.Enic mouse model demonstrating the oncogenic role of mutations in the polycombgroup gene EZH2 in lymphomagenesis[J].Blood,2014,123(25):3914-3924.
[17]McCabe MT,Graves AP,Ganji G,Diaz E,Halsey WS,Jiang Y,et al.Mutation of a677 in his?tone methyltransferase EZH2 in human B-cell lym?phoma promotes hypertrimethylation of histone H3 on lysine 27(H3K27)[J].Proc Natl Acad Sci USA,2012,109(8):2989-2994.
[18]MajerCR,JinL,ScottMP,KnutsonSK,Kuntz KW,Keilhack H,et al.A687V EZH2 is a gain-of-function mutation found in lymphoma patients[J].FEBS Lett,2012,586(19):3448-3451.
[19]Gupta RA,Shah N,Wang KC,Kim J,Horlings HM,Wong DJ,et al.Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis[J].Nature,2010,464(7291):1071-1076.
[20]Ernst T,Chase AJ,Score J,Hidalgo-Curtis CE,Bryant C,Jones AV,et al.Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders[J].Nat Genet,2010,42(8):722-726.
[21]Nikoloski G,Langemeijer SM,Kuiper RP,Knops R,Massop M,T?nnissen ER,et al.Somatic muta?tions of the histone methyltransferase gene EZH2 in myelodysplastic syndromes[J].Nat Genet,2010,42(8):665-667.
[22]Makishima H,Jankowska M,Tiu V,Szpurka H,Sugimoto Y,Hu Z,et al.Novel homo-and hemizy?gous mutations in EZH2 in myeloid malignancies[J].Leukemia,2010,24(10):1799-1804.
[23]Muto T,Sashida G,Oshima M,Wendt GR,Mochizuki-Kashio M,Nagata Y,et al.Concurrent loss of Ezh2 and Tet2 cooperates in the pathogen?esis of myelodysplastic disorders[J].J Exp Med,2013,210(12):2627-2639.
[24]van Haaften G,Dalgliesh GL,Davies H,Chen L,Bignell G,Greenman C,et al.Somatic mutationsof the histone H3K27 demethylase gene UTX in human cancer[J].Nat Genet,2009,41(5):521-523.
[25]Jankowska AM,Makishima H,Tiu RV,Szpurka H,Huang Y,Traina F,et al.Mutational spectrum analysis ofchronic myelomonocytic leukemia includes genes associated with epigenetic regula?tion:UTX,EZH2,and DNMT3A[J].Blood,2011,118(14):3932-3941.
[26]Lee J,Son MJ,Woolard K,Donin NM,Li A,Cheng CH,et al.Epigenetic-mediated dysfunction of the bone morphogenetic protein pathway inhibits differentiation of glioblastoma-initiating cells[J].Cancer Cell,2008,13(1):69-80.
[27]Ezhkova E,Pasolli HA,Parker JS,Stokes N,Su IH,Hannon G,et al.Ezh2 orchestrates gene expression forthe stepwise differentiation of tissue-specific stem cells[J].Cell,2009,136(6):1122-1135.
[28]Kalashnikova V,Revenko S,Gemo T,Andrews P,Tepper G,Zou X,et al.ANCCA/ATAD2 overex?pression identifies breast cancer patients with poor prognosis,acting to drive proliferation and survival of triple-negative cells through control of B-Myb and EZH2[J].Cancer Res,2010,70(22):9402-9412.
[29]Van Der Vlag J,Otte P.Transcriptional repression mediated by the human polycomb-group protein EED involves histone deacetylation[J].Nat Genet,1999,23(4):474-478.
[30]Lee TI,Jenner RG,Boyer LA,Guenther MG,Levine SS,Kumar RM,et al.Control of developmental regulators by Polycomb in human embryonic stem cells[J].Cell,2006,125(2):301-313.
[31]Shi B,Liang J,Yang X,Wang YN,Zhao Y,Wu HJ,et al.Integration of estrogen and Wnt signaling circuits by the polycomb group protein EZH2 in breast cancer cells[J].Mol Cell Biol,2007,27(14):5105-5119.
[32]Lee ST,Li Z,Wu Z,Aau M,Guan P,Karuturi RK,et al.Context-specific regulation of NF-κB target gene expression by EZH2 in breast cancers[J].Mol Cell,2011,43(5):798-810.
[33]Jung HY,Jun S,Lee M,Kim HC,Wang X,Ji H,et al.PAF and EZH2 induce Wnt/β-catenin signaling hyperactivation[J].Mol Cell,2013,52(2):193-205.
[34]Xu K,Wu ZJ,Groner AC,He HH,Cai C,Lis RT,et al.EZH2 oncogenic activity in castration-resistant prostate cancer cells is Polycomb-independent[J].Science,2012,338(6113):1465-1469.
[35]Kim E,Kim M,Woo DH,Shin Y,Shin J,Chang N,et al.Phosphorylation of EZH2 activates STAT3 signaling via STAT3 methylation and promotes tumorigenicity of glioblastoma stem-like cells[J].Cancer Cell,2013,23(6):839-852.
[36]Gonzalez ME,Li X,Toy K,DuPrie M,Ventura AC,Banerjee M,et al.Downregulation of EZH2 decreases growth ofestrogen receptor-negative invasive breast carcinoma and requires BRCA1[J].Onco?gene,2009,28(6):843-853.
[37]Gonzalez ME,DuPrie ML,Krueger H,Merajver SD,Ventura AC,Toy KA,et al.Histone methyltransfer?ase EZH2 induces Akt-dependent genomic instability and BRCA1 inhibition in breast cancer[J].Cancer Res,2011,71(6):2360-2370.
[38]Wang L,Zeng XZ,Chen S,Ding LY,Zhong J,Zhao C,et al.BRCA1 is a negative modulator of the PRC2 complex[J].EMBO J,2013,32(11):1584-1597.
[39]Su IH,Dobenecker MW,Dickinson E,Oser M,Basavaraj A,Marqueron R,et al.Polycomb group protein ezh2 controls actin polymerization and cell signaling[J].Cell,2005,121(3):425-436.
[40]Campbell S,Ismail IH,Young LC,Poirier GG,Hendzel MJ.Polycomb repressive complex 2 con?tributes to DNA double-strand break repair[J].Cell Cycle,2013,12(16):2675-2683.
[41]Chen S,Bohrer R,Rai N,Pan YQ,Gan L,Zhou XZ,et al.Cyclin-dependent kinases regulate epigenetic gene silencing through phosphorylation of EZH2[J].Nat Cell Biol,2010,12(11):1108-1114.
[42]Kaneko S,Li G,Son J,Xu CF,Margueron R,Neubert TA,et al.Phosphorylation of the PRC2 component Ezh2 is cell cycle-regulated and upregulates its binding to ncRNA[J].Genes Dev,2010,24(23):2615-2620.
[43]Wei YK,Chen H,Li Y,Lang JY,Yeh P,Shi B,et al.CDK1-dependent phosphorylation of EZH2 suppresses methylation of H3K27 and promotes osteogenic differentiation of human mesenchymal stem cells[J].Nat Cell Biol,2011,13(1):87-94.
[44]Wu C,Zhang Y.Cyclin-dependent kinase 1(CDK1)-mediated phosphorylation of enhancer of zeste 2(Ezh2)regulates its stability[J].J Biol Chem,2011,286(32):28511-28519.
[45]Chu CS Lo PW,Yeh YH,Hsu PH,Peng SH,Teng YC,et al.O-GlcNAcylation regulates EZH2protein stability and function[J].Proc Natl Acad Sci USA,2014,111(4):1355-1360.
[46]Glazer I,Hartman D,Knode C,Richard M,Chiang K,Tseng K,et al.3-Deazaneplanocin:a new and potent inhibitor of S-adenosylhomocysteine hydrolase and its effects on human promyelocytic leukemia cell line HL-60[J].Biochem Biophys Res Commun,1986,135(2):688-694.
[47]Tan J,Yang X,Zhuang L,Jiang X,Chen W,Lee PL,et al.Pharmacologic disruption of Poly?comb-repressive complex 2-mediated gene repres?sion selectively induces apoptosis in cancer cells[J].Genes Dev,2007,21(9):1050-1063.
[48]Miranda TB,Cortez CC,Yoo CB,Liang G,Abe M,Kelly TK,et al.DZNep is a global histone methyla?tion inhibitor that reactivates developmental genes not silenced by DNA methylation[J].Mol Cancer Ther,2009,8(6):1579-1588.
[49]Knutson K,Wigle J,Warholic M,Sneeringer J,Allain J,Klaus R,et al.A selective inhibitor of EZH2 blocks H3K27 methylation and kills mutant lymphoma cells[J].Nat Chem Biol,2012,8(11):890-896.
[50]McCabe MT,Ott HM,Ganji G, Korenchuk S,Thompson C,Van Aller GS,et al.EZH2 inhibition as a therapeutic strategy for lymphoma with EZH2-activating mutations[J].Nature, 2012, 492(7427):108-112.
[51]Qi W,Chan H,Teng L,Li L,Chuai S,Zhang R,et al.Selective inhibition of Ezh2 by a small molecule inhibitor blocks tumor cells proliferation[J].Proc Natl Acad Sci USA,2012,109(52):21360-21365.
[52]KonzeKD,Ma A,Li F,Barsyte-Lovejoy D,Parton T,Macnevin CJ,et al.An orally bioavailable chemicalprobe ofthe lysine methyltrans ferasesEZH2and EZH1[J].ACS Chem Biol,2013,8(6):1324-1334.
[53]Knutson SK,Warholic NM,Wigle TJ,Klaus CR,Allain CJ,Raimondi A,et al.Durable tumor regression in genetically altered malignant rhab?doid tumors by inhibition ofmethyltransferase EZH2[J].Proc Natl Acad Sci USA,2013,110(19):7922-7927.
[54]Knutson SK,Kawano S,Minoshima Y,Warholic NM,Huang KC,Xiao Y,et al.Selective inhibition of EZH2 by EPZ-6438 leads to potent antitumor activity in EZH2-mutant non-Hodgkin lymphoma[J].Mol Cancer Ther,2014,13(4):842-854.
[55]Kim W,Bird GH,Neff T,Guo G,Kerenyi MA,Walensky LD,et al.Targeted disruption of the EZH2-EED complex inhibits EZH2-dependent cancer[J].Nat Chem Biol,2013,9(10):643-650.
[56]Choudhury SR,Balasubramanian S,Chew YC,Han B,Marquez VE,Eckert RL.(-)-Epigallocate?chin-3-gallate and DZNep reduce polycomb protein level via a proteasome-dependent mechanism in skin cancer cells[J].Carcinogenesis,2011,32(10):1525-1532.
[57]DimriM, BommiPV, SahasrabuddheAA,Khandekar JD,Dimri GP.Dietary omega-3 polyun?saturated fatty acids suppress expression of EZH2 in breast cancer cells[J].Carcinogenesis,2010,31(3):489-495.
[58]Hua WF,F(xiàn)u YS,Liao YJ,Xia WJ,Chen YC,Zeng YX,et al.Curcumin induces down-regulation of EZH2 expression through the MAPK pathway in MDA-MB-435 human breast cancer cells[J].Eur J Pharmacol,2010,637(1/3):16-21.
[59]Gibaja V,Shen F,Harari J,Korn J,Ruddy D,Saenz-Vash V,et al.Development of secondary mutations in wild-type and mutant EZH2 alleles cooperates to confer resistance to EZH2 inhibitors[J].Oncogene,2016,35(5):558-566.
[60]Kirk JS,Schaarschuch K,Dalimov Z,Lasorsa E,Ku S,Ramakrishnan S,et al.Top2a identifies and provides epigenetic rationale for novel combi?nation therapeutic strategies for aggressive pros?tate cancer[J].Oncotarget,2015,6(5):3136-3146.
[61]FillmoreM, XuCX, DesaiT, BerryM,Rowbotham P,Lin J,et al.EZH2 inhibition sensi?tizes BRG1 and EGFR mutant lung tumours to TopoⅡinhibitors[J].Nature,2015,520(7546):239-242.
Regulation of chromosome regulator EZH2 in cancer epigenetics and EZH2 targeted drugs in cancer therapy
LI Xin,LI Xue-jun
(Department of Pharmacology,School of Basic Medical Science,Peking University,Beijing 100191,China)
Enhancer of zeste homolog 2(EZH2)is the catalytic subunit of polycomb repressor complex 2(PRC2),a complex that methylates lysine-27 of histone H3(H3K27).PRC2 facilitates chro?matin compaction and gene silencing by modulating the methylation of H3K27,which is thought to be the classical function of EZH2 in several types of cancer.In some other situations,EZH2 also acts as an acti?vator of transcription in a PRC2-independent manner.EZH2 has been demonstrated to be extensively involved in the development and progression of cancer by inducing aberrant histone modification and gene transcription via aberrant EZH2 expression,functional mutation or other mechanisms which are very context-dependent.EZH2 inhibitors targeting the catalytic activity of EZH2 or the stability of PRC2 have been designed for cancer therapies and some of them have produced positive effects.This review focuses on the regulation of EZH2 on cancer epigenetics and the development of therapeutic drugs targeting EZH2.
chromosome regulator EZH2;polycomb repressor complex 2;tumor;histone;methylation; targeted therapies
LI Xue-jun,E-mail:xjli@bjmu.edu.cn,Tel:(010)82802863
R966
A
1000-3002-(2016)12-1273-09
10.3867/j.issn.1000-3002.2016.12.006
Foundation item:The project supported by National Natural Science Foundation of China(81673453)
2016-09-19接受日期:2016-12-15)
(本文編輯:齊春會(huì))
國家自然科學(xué)基金(81673453)
李學(xué)軍,E-mail:xjli@bjmu.edu.cn,Tel:(010)82802863