田洪榛,柏翠芳,陳光輝
· 綜述 ·
人臍帶間充質(zhì)干細胞的研究進展及在心臟疾病中的應用
田洪榛1,2,柏翠芳3,陳光輝1
近年來人們飲食及生活方式發(fā)生了巨大變化,特別是人口老齡化的加速,我國面臨心臟疾病發(fā)病率和死亡率快速增長的嚴峻形勢。心肌細胞是不可再生細胞,常規(guī)藥物治療、血運重建、冠狀動脈旁路移植等均不能使心肌細胞再生,尋找能夠彌補心肌缺失的方法顯得極為迫切。間充質(zhì)干細胞(MSCs)具有自我更新、不斷增殖、多向分化和免疫調(diào)節(jié)等能力,已成為再生醫(yī)學的研究焦點。1970年,F(xiàn)riedenstein等首次在骨髓中發(fā)現(xiàn)并提取到骨髓間充質(zhì)干細胞(BMMSCs)[1]。但從骨髓中提取BMMSCs的過程復雜,并對捐獻者造成損傷。胚胎干細胞(ESCs)能分化成體內(nèi)所有的細胞,是多能性干細胞的典型代表。近年研究發(fā)現(xiàn)誘導多能干細胞(iPSCs)具有與ESCs相似的多能性[2]。多能性是指這些細胞移植到免疫缺陷小鼠時可分化成三胚層(外胚層、中胚層及內(nèi)胚層)的任意細胞的能力。但是胚胎干細胞的應用會產(chǎn)生嚴重的倫理問題。而iPSCs可能存在如c-myc的融合致癌基因、插入突變、抑癌基因破壞等情況[3],其臨床應用受到批評與限制。尋找新的干細胞來源成為當務之急。
近期兩項“吸血鬼療法”的研究結果引人關注。研究者將幼鼠的血液移植注入年長小鼠體內(nèi),隨后觀察到年長小鼠的肌肉組織增加及神經(jīng)功能的恢復,提示該效應與幼鼠血液中的干細胞密切相關,發(fā)現(xiàn)血液中生長分化因子11(GDF11)和環(huán)磷酸腺苷應答元件結合蛋白(CREB)與此效應相關[4,5]。人類干細胞主要來自羊水、臍帶和胎盤,主要是間充質(zhì)干細胞。因人臍帶來源豐富,不對捐獻者造成損傷,不產(chǎn)生倫理問題,成本較低,目前人臍帶間充質(zhì)干細胞(HUCMSCs)正被廣泛研究。
人臍帶在懷孕的第5周開始發(fā)育,并繼續(xù)生長至50 cm左右。臍帶由三部分構成:羊膜被覆上皮、臍血管和位于兩者之間的黏液結締組織—沃頓膠質(zhì)。沃頓膠質(zhì)對臍血管臍帶有保護和支持作用。臍帶的粗細和重量主要取決于沃頓膠質(zhì)的數(shù)量。2003年,Mitchell等[6]首先在沃頓膠質(zhì)提取分離出具有多項分化潛能的間充質(zhì)干細胞,此后很多研究應用這種干細胞,并被稱作臍帶間充質(zhì)干細胞。
2.1HUCMSCs的細胞形態(tài)和表面標志 組織塊貼壁7 d后可見單個的梭形或多角形成纖維樣細胞;傳代后的細胞形態(tài)為相對均一的梭形,呈平行排列或旋渦狀、魚群狀排列生長。透射電鏡下觀察多次傳代后的細胞形態(tài)無明顯改變,活性穩(wěn)定。HUCMSCs體外培養(yǎng)傳代超過80代而沒有細胞形態(tài)的改變和細胞衰老跡象[6]。目前還沒有發(fā)現(xiàn)HUCMSCs的特異分子標記,只能通過檢測其免疫表型來間接鑒定。近年來的研究發(fā)現(xiàn),HUCMSCs高表達MSCs標記(CD73、CD90、CD105)和黏附分子標記(CD54、CD13、CD29、CD44),低表達MHC-Ⅰ分子標記(HLA-ABC)等,不表達造血干細胞標記(CD31、CD34、CD45、CD117、CD14)、內(nèi)皮細胞標記(CD33、CD133)及MHC-Ⅱ分子標記(HLA-DR、-DA、-DP、-DQ)等[7]。據(jù)報道HUCMSCs與ESCs的基因信息近似,HUCMSCs低表達一些轉錄因子如Oct-4、Sox-2、Nanog、KLF-4等,這些轉錄因子也多在ESCs表達[8]。
2.2HUCMSCs的免疫原性和免疫調(diào)節(jié)作用
2.2.1HUCMSCs具有極低的免疫原性 大量研究證實,HUCMSCs表達的 CD106、HLA-ABC 明顯低于 BMMSCs,因此HUCMSCs較BMMSCs具有更低的免疫原性[9]。在腦損傷和退行性變的動物試驗中進行細胞移植,發(fā)現(xiàn)機體并未針對移植細胞產(chǎn)生排斥反應[10]。近年來關于HUCMSCs的免疫特性進行了詳細的研究,Troyer和Weiss得出的結論是在體內(nèi)開放免疫環(huán)境中未見機體對HUCMSCs的免疫排斥,HUCMSCs在同種異基因移植的耐受性良好[11]。
2.2.2HUCMSCs的免疫調(diào)節(jié)作用 HUCMSCs可通過高表達白介素6(IL-6)和血管生長因子來抑制T細胞增殖[12],高表達具有抑制孕體胎兒排斥、介導異體皮和心臟移植免疫耐受效應的CD200[13]。還有研究表明HUCMSCs高表達人類白細胞抗原G(HLA-G)[14]或通過前列腺E2機制[15]抑制T細胞增殖,介導免疫耐受。HUCMSCs低水平表達ESCs的分子標記—OCT4,Nanog,Sox2和LIN28,從而能解釋將其移植到免疫缺陷大鼠體內(nèi)不產(chǎn)生畸胎瘤[16]。已證實在體外及小鼠體內(nèi)HUCMSCs能抑制人乳腺癌細胞的生長,其抗癌作用可能通過細胞-細胞接觸或分泌相關因子,使細胞凋亡相關基因及腫瘤抑制基因表達上調(diào)[17]。將HUCMSCs與樹突狀細胞共同培養(yǎng)發(fā)現(xiàn),成熟樹突狀細胞表面標志CD80、CD83、CD86水平下降,HUCMSCs直接降低了樹突狀細胞的共刺激分子和抗原呈遞能力,避免T細胞啟動[18]。HUCMSCs能表達具有免疫調(diào)節(jié)功能的因子,如IDO-1、IL-10、LIF、PD-L1、COX-2、TGF-β1、TSG-6、CD200、HGF、HLA-E、HLA-G和HO-1,將HUCMSCs與T細胞共同培養(yǎng),其通過接觸依賴機制和IDO-1等可溶性分子抑制T細胞增殖,并可激活T細胞抑制TGF-γ的水平,誘導IL-10分泌[19]。這些研究表明HUCMSCs在體外對T淋巴細胞、樹突狀細胞具有負性調(diào)節(jié)作用。
既往研究證實HUCMSCs在體外、體內(nèi)均可分化為心肌細胞、內(nèi)皮細胞、脂肪細胞、軟骨細胞、成骨細胞、神經(jīng)細胞、肝樣細胞、胰島細胞等[20,21]。
3.1HUCMSCs向心肌細胞分化的方法 已經(jīng)證實向培養(yǎng)基中加入5氮胞苷(5-Aza)、二甲基亞砜(DMSO)、1-磷酸鞘氨醇(S1P)等誘導劑,能在體外誘導HUCMSCs定向分化為心肌樣細胞。國外發(fā)現(xiàn)血管緊張素受體阻滯劑和匹格列酮等可促進HUCMSCs分化為心肌樣細胞[22,23]。
3.2HUCMSCs誘導心肌樣細胞機制 5-Aza處理HUCMSCs后,DLL4和Notch1基因的轉錄、表達水平升高(7 d時分別高達初始水平的7.8和11.4倍)[24],GATA4和Flk-1、Nkx2.5、Isl-1、Brachyury(T)等心臟發(fā)育過程中關鍵的轉錄因子表達增高,肌鈣蛋白I(cTnI)表達水平增高[25]。提示DLL4-Notch信號通路在HUCMSCs向心肌樣細胞的分化過程中有重要作用。還有研究發(fā)現(xiàn)經(jīng)5-Aza處理后,HUCMSCs的ERK磷酸化水平和MEF-2蛋白表達升高,進而引發(fā)STAT3磷酸化以及MEF-2C和MyoD基因表達的上調(diào),進一步激活心肌特異基因包括desmin、β-MHC、NKx2.5、cTnT、ANP 的轉錄,使HUCMSCs向心肌樣細胞分化[26]。
研究證實轉錄因子Nkx2.5促進HUCMSCs分化為心肌樣細胞,并使心肌樣細胞的cTnI、Desmin、Nkx2.5和GATA-4表達增加[27]。缺氧預處理能增強HUCMSC的增殖和向心肌樣細胞分化的能力,增加HUCMSCs和分化心肌樣細胞的抗缺氧能力,提高其在治療心肌梗死及心力衰竭的存活率[28]。急性心肌梗死大鼠模型的試驗提示,在急性心肌梗死后梗死相關的生物和物理因子通過TGF-β/ BMP-2途徑誘導HUCMSCs向心肌樣細胞分化[29]。干細胞的分化涉及多個基因的轉錄表達,多條信號通路及相互作用,最終才能分化為特定的終末分化細胞。目前仍需進一步研究來了解干細胞的分化機制。
Sun L等[30]將HUCMSCs經(jīng)靜脈輸注到兔、豚鼠和大鼠后,未觀察到肝臟、腎臟功能損害,無溶血及全身過敏反應,熱原及血液學指標未見異常,提示HUCMSCs的免疫耐性良好,經(jīng)靜脈途徑應用安全。許多急性心肌梗死的動物模型試驗提示移植HUCMSCs后,能通過保護心肌細胞免于凋亡、促進血管生成、減少心肌纖維化等作用,提高左室射血分數(shù)、縮小心肌梗死面積、改善心臟收縮功能[31,32]。
Xia等[33]對15例高齡冠心病合并冠狀動脈慢性閉塞的患者進行了HUCMSCs經(jīng)冠狀動脈移植,隨訪2年期間未發(fā)生心血管不良事件、心律失常等,患者的左室收縮功能顯著改善,心肌缺血及梗死面積縮小,這些效應與HUCMSCs對血管緊張素、醛固酮及炎癥因子的作用相關。Gao等[34]開展了關于HUCMSCs一項隨機雙盲對照研究,將116例急性ST段抬高的心肌梗死患者隨機分成治療組和安慰劑組,在成功血運重建后,治療組經(jīng)冠狀動脈注入了干細胞混懸液,隨訪18個月發(fā)現(xiàn)治療組的心肌活力增加、梗死面積縮小,左室射血分數(shù)明顯升高,左室舒張末期容積和左室收縮末期容積明顯減小,提示經(jīng)冠狀動脈移植HUCMSCs治療急性心肌梗死是一種安全有效的方法。Samuel Golpanian等[35]對TESI和TAC-HFT兩項隨機研究進行亞組分析顯示:心內(nèi)膜下注射間充質(zhì)干細胞治療缺血性心肌病在年齡大于60歲或小于60歲的患者均安全有效,年齡不影響干細胞的治療效果。Mushtaq M等[36]正在進行POSEIDON-DCM的隨機對照研究,這是一個關于自體骨髓間充質(zhì)干細胞和異體骨髓間充質(zhì)干細胞對擴張型心肌病的治療效果與安全性的研究,期待試驗結果的公布。
綜上,HUCMSCs具有極低的免疫原性、良好的多分化潛能和免疫調(diào)節(jié)、抗癌效應,其來源豐富,成本低,對供體無損傷,不涉及倫理問題,是再生醫(yī)學研究的重要成員。目前已嘗試在包括心肌梗死、心力衰竭、心肌病、白血病、糖尿病、多發(fā)性硬化等多系統(tǒng)多種疾病應用,但治療機制還不十分清楚,其治療的安全性及長期療效更需大樣本、多中心的隨機前瞻性試驗進行驗證。
[1] Friedenstein AJ,Chailakhjan RK,Lalykina KS. The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells[J]. Cell Tissue Kinet,1970,3(4):393-403.
[2] Yamanaka S,Takahashi K. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell,2006,126(4):663-76.
[3] Cavazzana-Calvo M,Payen E,Negre O,et al. Transfusion independence and HMGA2 activation after gene therapy of human betathalassaemia[J]. Nature,2010,467(7313):318-22.
[4] Sinha M,Jang YC,Oh J,et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle[J]. Science, 2014,344(6184):649-52.
[5] Villeda SA,Plambeck KE,Middeldorp J,et al. Young blood reverses age-related impairments in cognitive function and synaptic plasticity in mice[J]. Nat Med,2014,20(6):659-63.
[6] Mitchell K,Weiss ML,Mitchell JB,et al. Matrix cells from Wharton's jelly from neurons and glia[J]. Stem Cells,2003,21(1):50-60.
[7] Ishige I,Nagamura-Inoue T,Honda MJ,et al. Comparison of mesenchymal stem cells derived from arterial, venous, and Wharton’s jelly explants of human umbilical cord[J]. Int J Hematol,2009,90(2):261-9.
[8] Greco SJ,Liu K,Rameshwar P. Functional similarities among genes regulated by OCT4 in human mesenchymal and embryonic stem cells[J]. Stem Cells,2007,25(12):3143-54.
[9] Lu LL,Liu YJ,Yang SG,et al. Isolation and characterization of human umbilical cord mesenchymal stem cells with hematopoiesissupportive function and other potentials[J]. Haematologica,2006,91(8):1017-26.
[10] Liao W,Xie J,Zhong J,et al. Therapeutic effect of human umbilical cord multipotent mesenchymal stromal cells in a rat model of stroke[J]. Transplantation,2009,87(3):350-9.
[11] La Rocca G,Anzalone R,F(xiàn)arina F. The expression of CD68 in human umbilical cord mesenchymal stem cells: new evidences of presence in non-myeloid cell types[J]. Scand J Immunol,2009,70(2):161-2.
[12] Troyer DL,Weiss ML. Wharton's jelly-derived cells are a primitive stromal cell population[J]. Stem Cells,2008,26(3):591-9.
[13] Djouad F,Charbonnier LM,Bouffi C,et al. Mesenchymal stem cells inhibit the differentiation of dendritic cells through an interleukin-6-dependent mechanism[J]. Stem Cells,2007,25(8):2025-32.
[14] Fong CY,Chak LL,Biswas A,et al. Human Wharton's jelly stem cells have unique transcriptome profiles compared to human embryonic stem cells and other mesenchymal stem cells[J]. Stem Cell Rev,2011,7(1):1-16.
[15] Le Blanc K. Immunomodulatory effects of fetal and adult mesenchymalstem cells[J]. Cytotherapy,2003,5(6):485-9.
[16] Chen K,Wang D,Du WT,et al. Human umbilical cord mesenchymalstem cells hUC-MSCs exert immunosuppressive activities through a PGE2-dependent mechanism[J]. Clin Immunol,2010,135(3):448-58.
[17] Fong CY,Richards M,Manasi N,et al. Comparative growth behaviour and characterization of stem cells from human Wharton's jelly[J]. Reprod Biomed,2007,15(6):708-18.
[18] Witkowska-Zimny M,Wrobel E. Perinatal sources of mesenchymal stem cells: Wharton's jelly, amnion and chorion[J]. Cell Mol Biol Lett,2011,16(3):493-514.
[19] Donders R,Vanheusden M,Bogie JF,et al. Human Wharton’s Jelly-Derived Stem Cells Display Immunomodulatory Properties and Transiently Improve Rat Experimental Autoimmune Encephalomyelitis[J]. Cell Transplant,2015,24(10):2077-98.
[20] Anzalone R,Iacono ML,Corrao S,et al. New emerging potentials for human Wharton’s jelly mesenchymal stem cells: immunological features and hepatocyte-like differentiative capacity[J]. Stem Cells Dev,2010,19(4):423-38.
[21] Anzalone R,Lo Iacono M,Loria T,et al. Wharton’s Jelly mesenchymal stem cells as candidates for beta cells regeneration: extending the differentiative and immunomodulatory benefits of adult mesenchymal stem cells for the treatment of type 1 diabetes[J]. Stem Cell Rev,2011,7(2):342-63.
[22] Shinmura D,Togashi I,Miyoshi S,et al. Pretreatment of human mesenchymal stem cells with pioglitazone improved efficiency of cardiomyogenictransdifferentiation and cardiac function[J]. Stem Cells,2011,29(2):357-66.
[23] Numasawa Y,Kimura T,Miyoshi S,et al. Treatment of human mesenchymal stem cells with angiotensin receptor blocker improved efficiency of cardiomyogenictransdifferentiation and improved cardiac function via angiogenesis[J]. Stem Cells,2011,29(9):1405-14.
[24] Zhu L,Ruan Z,Yin Y,et al. Expression and significance of DLL4--Notch signaling pathway in the differentiation of human umbilical cord derived mesenchymal stem cells into cardiomyocytes induced by 5-azacytidine[J]. Cell BiochemBiophys,2015,71(1):249-53.
[25] Gao LR,Zhang NK,Ding QA,et al. Common expression of stemness molecular markers and early cardiac transcription factors in Wharton’s jelly-derived mesenchymal stem cells and hESCs[J]. Cell Transplant,2013,22(10):1883-900.
[26] Qian Qian,Hui Qian,Xu Zhang,et al. 5-Azacytidine Induces Cardiac differentiation of human umbilical cord-derived mesenchymal stem cells by activating extracellular regulated kinase[J]. Stem Cells Dev,2012,21(1):67-75.
[27] Ruan Z,Zhu L,Yin Y,et al. Overexpressing NKx2.5 increases the differentiation of human umbilical cord drived mesenchymal stem cells into cardiomyocyte-like cells[J]. Biomed Pharmacother,2016,78:110-5.
[28] Zhang L,Yang J,Tian YM,et al. Beneficial Effects of Hypoxic Preconditioning on Human Umbilical Cord Mesenchymal Stem Cells[J]. Clin J Physiol,2015,58(5):343-53.
[29] Chang SA,Lee EJ,Kang HJ,et al. Impact of Myocardial Infarct Proteins and Oscillating Pressure on the Differentiation of Mesenchymal Stem Cells: Effect of Acute Myocardial Infarction on Stem Cell Differentiation[J]. Stem Cells,2008,26(7):1901-12.
[30] Sun L,Xu R,Sun X,et al. Safety evaluation of exosomes derived from human umbilical cord mesenchymal stromal cell[J]. Cytotherapy,2016,18(3):413-22.
[31] Zhao Y,Sun X,Cao W,et al. Exosomes Derived from Human Umbilical Cord Mesenchymal Stem Cells Relieve Acute Myocardial Ischemic Injury[J]. Stem Cells Int,2015,2015:761643.
[32] Latifpour M,Nematollahi-Mahani SN,Deilamy M,et al. Improvement in cardiac function following transplantation of human umbilical cord matrix-derived mesenchymal cells[J]. Cardiology,2011,120(1):9-18.
[33] Xia Li,You-dong Hu,Ying Chen,et al. Mechanisms of Improvement of Left Ventricular Function by Intracoronary Human Umbilical Cord-Derived Mesenchymal Stem Cell Infusion in Very Old Patients with Coronary Chronic Total Occlusion[J]. Current Pharmaceutical Design,2015,21(26):3844-50.
[34] Gao LR,Chen Y,Zhang NK,et al. Intracoronary infusion of Wharton’s jelly-derived mesenchymal stem cells in acute myocardial infarction: double-blind, randomized controlled trial[J]. BMC Med,2015,13:162.
[35] Samuel Golpanian,Jill El-Khorazaty,Adam Mendizabal,et al. Effect of Aging on Human Mesenchymal Stem Cell Therapy in Ischemic Cardiomyopathy Patients[J]. J Am Coll Cardiol,2015,65(2):125-32.
[36] Mushtaq M,DiFede DL,Golpanian S. Rationale and design of the Percutaneous Stem Cell Injection Delivery Effects on Neomyogenesis in Dilated Cardiomyopathy (the POSEIDON-DCM study): a phase I/II, randomized pilot study of the comparative safety and efficacy of transendocardial injection of autologous mesenchymal stem cell vs. allogeneic mesenchymal stem cells in patients with non-ischemic dilated cardiomyopathy[J]. J CardiovascTransl Res,2014,7(9):769-80.
本文編輯:姚雪莉
歡迎投稿,歡迎訂閱!
中國科技核心期刊,科技論文統(tǒng)計源期刊E-mail:ebcvm_cj@126.com;
網(wǎng)址:www.ebcvm.com/www.ebcvm.org
R541
A
1674-4055(2016)09-1144-03
1100853 北京,解放軍總醫(yī)院心血管內(nèi)科;2010051 呼和浩特,解放軍第253醫(yī)院心腎內(nèi)科;3100853 北京,解放軍總醫(yī)院心臟介入中心
陳光輝,E-mail:13910669498@163.com
10.3969/j.issn.1674-4055.2016.09.42