*國(guó)家自然科學(xué)基金(31260015)
miRNA-181a/b通過(guò)血清反應(yīng)因子調(diào)控血管平滑肌細(xì)胞表型*
侯雪1,魏曉星1*,張振明2,藺梟2,吳瓊2
(1.青海大學(xué)醫(yī)學(xué)院 基礎(chǔ)醫(yī)學(xué)部青海 西寧 810001;2.清華大學(xué)生命科學(xué)學(xué)院 北京 100084)
摘要目的研究miR-181a/b通過(guò)血清反應(yīng)因子(SRF,serum response factor )對(duì)血管平滑肌細(xì)胞向合成型表型轉(zhuǎn)化及細(xì)胞增殖遷移能力的調(diào)控作用。方法將miR-181a/b 瞬時(shí)轉(zhuǎn)染至人主動(dòng)脈平滑肌細(xì)胞(HAoSMCs)中,用實(shí)時(shí)定量PCR、CCK-8檢測(cè)方法和transwell實(shí)驗(yàn)分別檢測(cè)平滑肌細(xì)胞的表型標(biāo)記基因的表達(dá)水平、細(xì)胞增殖能力和遷移能力的變化。生物信息學(xué)分析預(yù)測(cè)miR-181a/b直接靶向血清反應(yīng)因子的3’UTR(非編碼區(qū)),并通過(guò)實(shí)時(shí)定量PCR、western blot及雙熒光素酶報(bào)告系統(tǒng)分別驗(yàn)證。結(jié)果實(shí)時(shí)定量PCR結(jié)果表示在HAoSMCs中過(guò)表達(dá)miR-181a/b能夠抑制收縮表型標(biāo)記基因的表達(dá),促進(jìn)合成表型標(biāo)記基因的表達(dá),CCK-8與transwell 實(shí)驗(yàn)結(jié)果表明,miR-181a/b可增強(qiáng)細(xì)胞的增殖和遷移能力。雙熒光素酶報(bào)告系統(tǒng)與western blot結(jié)果表明,miR-181a/b能夠直接作用SRF,抑制SRF的蛋白表達(dá)。結(jié)論miR-181a/b通過(guò)直接作用血清反應(yīng)因子的3’UTR促進(jìn)平滑肌細(xì)胞由收縮型表型向合成型表型轉(zhuǎn)化。
關(guān)鍵詞miRNA-181a/b血清反應(yīng)因子血管平滑肌細(xì)胞表型轉(zhuǎn)化
通訊作者侯雪(1991~),女,漢族,山東籍,2012級(jí)在讀碩士研究生. *:,研究生導(dǎo)師,Email:flemingo@126.com
中圖分類號(hào)R34
文獻(xiàn)標(biāo)識(shí)碼A
DOI:10.13452/j.cnki.jqmc.2015.03.005
AbstractObjectiveTo investigate the roles of miR-181a/b in the smooth muscle cells(SMC)phenotypic switch from contractile phenotype to synthetic phenotype through serum response factor(SRF).Methods miR-181a/b mimics or inhibitors were transiently transfected into Human Aortic Smooth Muscle Cells(HAoSMCs),the expression of SMC phenotype marker gene were detected by quantitative real time PCR(qRT-PCR),the proliferation and migration ability of HAoSMCs were measured by CCK-8 assay and transwell assay,respectively.In addition,miR-181a/b was indicated as directly targeting at 3’UTR of SRF based on bioinformatic analysis and identified by qRT-PCR,western blot assay and dual-luciferase assay.Results The results of qRT-PCR showed that miR-181a/b could down-regulate the expression level of SMC contractile marker genes and up-regulate the expression level of SMC synthetic marker genes.The results of CCK-8 assay and transwell assay showed that miR-181a/b could enhance the proliferation and migration ability of HAoSMCs,respectively.The results of Dual-luciferase assay and western blot assay showed that miR-181a/b could directly target 3’UTR of SRF and inhibit the protein expression level of SRF.Conclusion miR-181a/b regulates the shift of SMCs from contractile phenotype to synthetic phenotype through targeting at 3’UTR of SRF.
KeywordsmiRNA-181a/bSerum response factorVessel smooth muscle cellsPhenotype modulation
收稿日期2015-03-03
miRNA-181a/b REGULATES PHENOTYPES OF VESSEL SMOOTH
MUSCLE CELLS THROUGH SERUM RESPONSE FACTOR*
Hou Xue1,Wei Xiaoxing1*,Zhang Zhenming2,Lin Xiao2,Wu Qiong2
(1.Department of Basic Medical sciences,Qinghai University Medical College,Xining 810016,China;
2.School of Life Sciences,Tsinghua University,Beijing 100084,China)
本研究通過(guò)生物信息學(xué)分析發(fā)現(xiàn),SRF是miR-181a/b可能的靶基因,因此我們假定miR-181a/b可能能通過(guò)靶向SRF調(diào)控平滑肌細(xì)胞的表型轉(zhuǎn)化(圖 1A)。本研究結(jié)果表明,miR-181a/b使平滑肌細(xì)胞收縮表型標(biāo)記基因表達(dá)下調(diào),使平滑肌細(xì)胞合成型表型標(biāo)記基因表達(dá)上調(diào)。進(jìn)一步研究表明,miR-181a/b可以直接靶向SRF的3’UTR并且調(diào)控SRF的mRNA和蛋白表達(dá)水平。綜上所述,我們首次證明了miR-181a/b可通過(guò)直接靶向SRF進(jìn)而調(diào)控平滑肌細(xì)胞表型。
1材料與方法
人主動(dòng)脈平滑肌細(xì)胞(HAoSMCs)使用VascuLife SMC medium(Lifeline Cell Technology,美國(guó))在培養(yǎng)箱(37℃、5%CO2)培養(yǎng)。
PDGF誘導(dǎo)培養(yǎng)時(shí),在細(xì)胞培養(yǎng)液中加入濃度為10 ng/mL的PDGF,在培養(yǎng)箱(37℃、5%CO2)誘導(dǎo)培養(yǎng)24 h。
miR-181a/b類似物(mimics)/抑制劑(inhibitor)或陰性對(duì)照(吉瑪,上海,中國(guó))通過(guò)使用轉(zhuǎn)染試劑Lipofectamine RNAiMAX(Invitrogen,美國(guó))瞬時(shí)轉(zhuǎn)染至HAoSMCs中。pGL3-SRF或pGL3質(zhì)粒使用轉(zhuǎn)染試劑Lipofectamine 2000 reagent(Invitrogen,美國(guó))瞬時(shí)轉(zhuǎn)染至HAoSMCs中。
HAoSMCs的總RNA使用miRcute miRNA分離提取試劑盒(天根,北京,中國(guó))根據(jù)產(chǎn)品使用說(shuō)明進(jìn)行提取。mRNA的反轉(zhuǎn)錄反應(yīng)使用FastQuant反轉(zhuǎn)錄試劑盒(天根)進(jìn)行,miRNA的反轉(zhuǎn)錄反應(yīng)使用miRcute miRNA cDNA第一鏈合成試劑盒(天根)進(jìn)行。miR-181a/b表達(dá)水平的實(shí)時(shí)定量PCR檢測(cè)以U6作內(nèi)參,使用miRcute miRNA qPCR 檢測(cè)試劑盒(天根)進(jìn)行,平滑肌細(xì)胞表型標(biāo)記基因表達(dá)水平的實(shí)時(shí)定量PCR檢測(cè)以GAPDH作內(nèi)參,使用SuperReal PreMix(SYBR Green)檢測(cè)試劑盒(天根)。
HAoSMCs的蛋白質(zhì)樣品制備使用RIPA裂解液(華興博創(chuàng),北京,中國(guó))裂解,并加入蛋白酶抑制劑(華興博創(chuàng))。將蛋白質(zhì)樣品在12%的SDS-PAGE中進(jìn)行電泳,獲得的分離的蛋白條帶轉(zhuǎn)移至PDVF膜(Millipore,紐約,美國(guó))上,并在5%的脫脂牛奶中封閉1 h。一抗使用 SRF兔單克隆抗體(CST,波士頓,美國(guó)),4 ℃過(guò)夜孵育,二抗使用HRP-羊抗兔第二抗體(Sigma-Aldrich,密蘇里州,USA)室溫孵育2 h,最后使用化學(xué)發(fā)光劑ECL觀察。
將SRF的3’UTR克隆到pGL3熒光素酶報(bào)告質(zhì)粒(SRF-pGL3)(青蘭,蘇州,中國(guó))中。將pGL3報(bào)告質(zhì)粒與miR-181a/b mimics共轉(zhuǎn)染至HeLa細(xì)胞,轉(zhuǎn)染24 h后使用Dual-Luciferase報(bào)告檢測(cè)系統(tǒng)(Promega BioSciences,美國(guó))檢測(cè)熒光素酶活性。
1.5.1CCK-8實(shí)驗(yàn)
HAoSMCs以每孔約2000個(gè)細(xì)胞接種至96孔板中,分別轉(zhuǎn)染miR-181a/b mimics、miR-181a/b inhibitor和陰性對(duì)照物至細(xì)胞中,72 h后使用CCK-8試劑盒(碧云天,江蘇,中國(guó))檢測(cè)細(xì)胞增殖能力。每孔培養(yǎng)基中加入10 μL CCK-8溶液,用加了相應(yīng)量細(xì)胞培養(yǎng)液和CCK-8溶液但沒(méi)有加入細(xì)胞的孔作為空白對(duì)照。培養(yǎng)箱(37℃、5%CO2)孵育1 h后,多功能讀數(shù)儀檢測(cè)450 nm處吸光值。
1.5.2Transwell實(shí)驗(yàn)
細(xì)胞增殖能力在含有8 μm孔徑的聚碳酸酯膜的24孔transwell細(xì)胞培養(yǎng)體系(Corning,紐約,美國(guó))中進(jìn)行。分別轉(zhuǎn)染miR-181a/b mimics、miR-181a/b inhibitor及陰性對(duì)照物至HAoSMCs中36~48 h后,將約15,000個(gè)細(xì)胞接種至transwell內(nèi)室中,外室加入含20% FBS的培養(yǎng)基,37 ℃誘導(dǎo)12 h。遷移至transwell內(nèi)室膜外側(cè)的細(xì)胞經(jīng)結(jié)晶紫染色后在倒置顯微鏡下觀察。
統(tǒng)計(jì)學(xué)分析使用t檢驗(yàn)的方法。P<0.05、P<0.01分別代表顯著性差異及極顯著性差異。數(shù)據(jù)用平均值±標(biāo)準(zhǔn)差表示。
2結(jié)果
(A)miR-181a/b通過(guò)血清反應(yīng)因子調(diào)控血管平滑肌表型示意圖;(B)與對(duì)照細(xì)胞相比,倒置顯微鏡下(200×)觀察的PDGF誘導(dǎo)的HAoSMCs增殖能力增強(qiáng);(C)實(shí)時(shí)定量PCR結(jié)果顯示在PDGF誘導(dǎo)的HAoSMCs中,miR-143/145、miR-21(收縮型平滑肌細(xì)胞的生物標(biāo)記)的表達(dá)水平明顯降低,miR-181a和miR-181b的表達(dá)水平明顯升高.*:P<0.05,**:P<0.01.n=6,U6作為內(nèi)參
圖1miR-181a/b在PDGF誘導(dǎo)的HAoSMCs中表達(dá)上調(diào)圖
Figure 1miR-181a/b expression level increased in PDGF-treated HAoSMCs
PDGF(Platelet-derived growth factor,血小板源生長(zhǎng)因子)是一種抑制平滑肌收縮表型標(biāo)記基因表達(dá),促使平滑肌細(xì)胞向合成型轉(zhuǎn)化并促進(jìn)平滑肌細(xì)胞增殖和遷移的一種生長(zhǎng)因子。體外培養(yǎng)的HAoSMCs使用PDGF誘導(dǎo)24 h后使用倒置顯微鏡觀察,發(fā)現(xiàn)HAoSMCs的增殖能力明顯增強(qiáng)(圖1B)。
實(shí)時(shí)定量PCR檢測(cè)結(jié)果顯示,miR-181a和miR-181b的表達(dá)水平明顯升高(圖 1C),miR-143、miR-145和miR-21的表達(dá)水平明顯降低(圖1C)。其中miR-143/145簇對(duì)于維持平滑肌細(xì)胞收縮表型有著重要意義[1,2]。MiR-21在平滑肌細(xì)胞收縮表型標(biāo)記基因的表達(dá)中起著關(guān)鍵作用[3,4]。
平滑肌細(xì)胞由收縮型表型向合成型表型轉(zhuǎn)化會(huì)改變細(xì)胞的增殖遷移能力以及平滑肌表型標(biāo)記基因的表達(dá)[5]。一些在平滑肌細(xì)胞特定表達(dá)的基因作為收縮表型的標(biāo)記基因包括SM22α(smooth muscle 22 alpha)[6]、SM-MHC(smooth muscle myosin heavy chain,平滑肌肌球蛋白重鏈)[7]、α-SMA(α-smooth muscle actin,α-平滑肌肌動(dòng)蛋白,ACTA2)[8]、calponin(鈣調(diào)蛋白)[9]、smoothelin[10]。與之相對(duì)應(yīng)的CRBP-1(cellular retinol binding protein,細(xì)胞視黃醇結(jié)合蛋白)[11]、moesin(膜突蛋白)[12]、smemb(smooth muscle embryonic myosin heavy chain,平滑肌胚胎型肌球蛋白重鏈)[13]、OPN(osteopontin,骨橋蛋白)[14]、MGP(matrix Gla protein,細(xì)胞基質(zhì)Gla蛋白)[15]是平滑肌細(xì)胞合成型標(biāo)記基因。
為了揭示miR-181a/b對(duì)平滑肌細(xì)胞表型標(biāo)記基因表達(dá)的調(diào)控作用,將miR-181a/b或抑制劑分別瞬時(shí)轉(zhuǎn)染至HAoSMCs內(nèi)。72 h后檢測(cè)平滑肌細(xì)胞表型標(biāo)記基因的表達(dá)水平,實(shí)時(shí)定量PCR結(jié)果顯示,在過(guò)表達(dá)miR-181a/b的HAoSMCs中收縮表型基因表達(dá)水平下調(diào)(圖 2A),合成表型標(biāo)記基因表達(dá)水平上調(diào)(圖2B)。與之相反的是在HAoSMCs中抑制miR-181a/b的表達(dá)水平使細(xì)胞中的平滑肌收縮表型標(biāo)記基因表達(dá)上調(diào)(圖2C),合成型標(biāo)記基因表達(dá)水平下調(diào)(圖2D)。
SRF是一種平滑肌收縮基因表達(dá)的重要調(diào)控因子[16]。在HAoSMCs中利用siSRF沉默SRF的表達(dá)(圖2E-F),實(shí)時(shí)定量PCR結(jié)果顯示,平滑肌收縮表型基因表達(dá)水平降低(圖 2G),而合成型基因表達(dá)水平升高(圖 2H)。
181a/b在HAoSMCs中過(guò)表達(dá)使收縮型標(biāo)記基因(SM-MHC,α-SMA,SM22α,smoothelin,calponin)表達(dá)下調(diào)(A),合成型標(biāo)記基因(moesin,MGP,CRBP-1,smemb,OPN)表達(dá)上調(diào)(B).抑制miR-181a/b的表達(dá)會(huì)促進(jìn)收縮型標(biāo)記基因的表達(dá)(C),抑制合成型標(biāo)記基因的表達(dá)(D).使用siSRF敲除HAoSMCs的SRF后,SRF的mRNA(E)和蛋白表達(dá)(F)水平都明顯下調(diào),收縮型標(biāo)記基因表達(dá)降低(G),合成型標(biāo)記基因表達(dá)升高(H).*:P<0.05,**:P<0.01,n=6,GAPDH 作為內(nèi)參
圖2miR-181a/b 調(diào)控HAoSMCs表型標(biāo)記基因的表達(dá)圖
Figure 2miR-181a/b regulates expressions of HAoSMCs phenotype marker genes
CCK-8檢測(cè)結(jié)果表明miR-181a/b促進(jìn)HAoSMCs的增殖(A),miR-181a/b抑制劑(inhibitor)抑制HAoSMCs 的增殖(B).*:P<0.05,**:P<0.01,n=6.(C)使用transwell檢測(cè)法檢測(cè)HAoSMCs的遷移能力變化,倒置顯微鏡下觀察(200×),與對(duì)照組相比,過(guò)表達(dá)miR-181a/b細(xì)胞組遷移能力明顯增強(qiáng),而抑制miR-181a/b細(xì)胞組細(xì)胞遷移能力明顯降低
圖3miR-181a/b對(duì)HAoSMCs的增殖及遷移能力的作用圖
Figure 3Effect of miR-181a/b on proliferation and migration of HAoSMCs
為了確定miR-181a/b是否對(duì)平滑肌細(xì)胞增殖和遷移能力有調(diào)控作用,miR-181a/b mimics或inhibitors分別被轉(zhuǎn)染至HAoSMCs內(nèi)72 h。HAoSMCs的增殖能力的檢測(cè)使用CCK-8試劑盒進(jìn)行,細(xì)胞遷移能力檢測(cè)利用transwell系統(tǒng)進(jìn)行。CCK-8檢測(cè)結(jié)果顯示,過(guò)表達(dá)miR-181a/b 能夠促進(jìn)HAoSMCs的增殖能力(圖 3A),miR-181a/b inhibitor能夠抑制HAoSMCs的增殖能力(圖 3B)。transwell實(shí)驗(yàn)結(jié)果顯示miR-181a/b明顯地促進(jìn)HAoSMCs的遷移能力,而miR-181a/b inhibitor能夠減弱HAoSMCs的遷移能力(圖 3C)。
雙熒光素酶報(bào)告系統(tǒng)結(jié)果表明miR-181a/b能夠直接降低SRF的熒光活性(A,B).過(guò)表達(dá)miR-181a/b的細(xì)胞中SRF的mRNA表達(dá)水平(C)抑制miR-181a/b的細(xì)胞中的SRF表達(dá)水平(D).miR-181a/b抑制HAoSMCs中的SRF的蛋白表達(dá)水平(E),而抑制miR-181a/b的表達(dá)促進(jìn)SRF的蛋白表達(dá)(F).*:P<0.05
圖4miR-181a/b直接靶向SRF并降低SRF的表達(dá)圖
Figure 4miR-181a/b directly binds to SRF and down-regulates the SRF level
雙熒光素酶報(bào)告系統(tǒng)被用來(lái)確定miR-181a/b是否直接靶向HAoSMCs中的SRF的3’UTR。miR-181a或miR-181b與SRF-pGL3共轉(zhuǎn)染至HAoSMCs中,24 h后檢測(cè)熒光素酶的熒光活性。結(jié)果顯示miR-181a/b能夠直接抑制SRF-pGL3質(zhì)粒的熒光活性(圖 4A-B),表明miR-181a/b能夠直接靶向HAoSMCs中的SRF的3’UTR。
為進(jìn)一步確定miR-181a/b對(duì)SRF的表達(dá)的調(diào)控作用,將miR-181a/b類似物或抑制劑分別轉(zhuǎn)染入HAoSMCs內(nèi),72 h后分別利用實(shí)時(shí)定量PCR和western blot檢測(cè)SRF的基因及蛋白的表達(dá)水平。實(shí)時(shí)定量PCR結(jié)果顯示,在過(guò)表達(dá)miR-181a/b的HAoSMCs中SRF的表達(dá)水平下調(diào),而在抑制miR-181a/b的HAoSMCs中SRF的表達(dá)水平上調(diào)(圖4C-D)。western blot結(jié)果顯示,SRF的蛋白表達(dá)水平能夠被miR-181a/b抑制(圖 4E),被miR-181a/b inhibitor促進(jìn)(圖 4F)。
3討論
血管平滑肌細(xì)胞的表型異常轉(zhuǎn)變引發(fā)的過(guò)度增殖和遷移是導(dǎo)致動(dòng)脈粥樣硬化、術(shù)后再狹窄等血管疾病的細(xì)胞學(xué)基礎(chǔ)[17-19]。影響平滑肌表型轉(zhuǎn)化的因素多種多樣,包括細(xì)胞外基質(zhì)、血管受損、細(xì)胞因子、轉(zhuǎn)錄因子[20-22]。
SRF在平滑肌細(xì)胞的分化過(guò)程中可結(jié)合至平滑肌細(xì)胞基因啟動(dòng)子區(qū)的CArG區(qū)從而激活基因的轉(zhuǎn)錄[23-24]。SRF在血管中的作用可被共因子myocardin和ELK1調(diào)控。多種miRNAs(miR-21[25]、miR-143[26]和miR-145[27]等)參與調(diào)控平滑肌細(xì)胞的分化及去分化過(guò)程。
MicroRNAs(miRNAs)是一類廣泛存在于動(dòng)物、植物及病毒中的長(zhǎng)約18~22個(gè)核苷酸序列的非編碼RNA,通過(guò)靶向基因的3’非編碼區(qū)(3’UTR)調(diào)控基因表達(dá)[28,29]。miRNAs在胚胎發(fā)育[30]、細(xì)胞分化[31]、增殖[32]、凋亡[33]、造血[34]及癌癥治療[35-36]等方面有調(diào)控作用。另外miRNAs可以調(diào)控一些血管相關(guān)細(xì)胞的細(xì)胞行為,如血小板聚集、平滑肌增殖等[37]。miRNA作為一類重要的調(diào)控因子,在不同的病理生理狀態(tài)下表達(dá)情況會(huì)發(fā)生改變,可對(duì)相關(guān)基因進(jìn)行精細(xì)調(diào)控。所以,可以利用這一特性研究miRNA在血管疾病的靶基因及作用機(jī)制。
越來(lái)越多的文獻(xiàn)表明,miR-181家族參與調(diào)控血管的生理和病理過(guò)程。miR-181家族有四個(gè)成員:miR-181a、miR-181b、miR-181c、miR-181d,它們分別有不同的靶基因調(diào)控不同的通路[38]。miR-181a和miR-181b是miR-181家族中研究較為清楚且在基因上成簇存在。miR-181家族廣泛參與調(diào)控急性骨髓白血病致癌過(guò)程[39]、免疫系統(tǒng)代謝調(diào)控[40]、血管炎癥反應(yīng)[38]、淋巴細(xì)胞發(fā)育及穩(wěn)態(tài)[41]。其中miR-181a通過(guò)靶向NOX4調(diào)控內(nèi)皮細(xì)胞增殖,通過(guò)調(diào)控骨橋蛋白(osteopontin,OPN)表達(dá)參與調(diào)控動(dòng)脈粥樣硬化的形成[42,43]。miR-181b通過(guò)靶向NF-κB信號(hào)通路中的importin-α3調(diào)節(jié)血管炎癥[44]。miR-181c是CD4(+)T 細(xì)胞的負(fù)調(diào)控因子[45],miR-181d調(diào)節(jié)胸腺細(xì)胞的急性應(yīng)激反應(yīng)[46]。
本研究選取miR-181a/b作為切入點(diǎn),研究了miR-181a/b在平滑肌細(xì)胞表型轉(zhuǎn)化中的功能。結(jié)果表明,平滑肌細(xì)胞由收縮表型向合成表型轉(zhuǎn)化后,miR-181a/b表達(dá)明顯上調(diào)。miR-181a/b抑制收縮表型基因的表達(dá),促進(jìn)合成表型基因的表達(dá),同時(shí)能促進(jìn)平滑肌細(xì)胞的遷移與增殖能力。而miR-181a/b inhibitor的作用與miR-181a/b的作用相反。
除此之外,在平滑肌細(xì)胞中沉默SRF的表達(dá)用來(lái)驗(yàn)證其功能,SRF沉默后抑制平滑肌收縮基因的表達(dá),促進(jìn)合成基因的表達(dá),這一結(jié)果與文獻(xiàn)[16]報(bào)道的維持平滑肌收縮功能一致。
通過(guò)生物信息學(xué)分析,SRF可能是miR-181a/b的靶基因,通過(guò)雙熒光素酶報(bào)告系統(tǒng)驗(yàn)證miR-181a/b可以直接靶向SRF的3’-UTR序列。western blot結(jié)果表明miR-181a/b明顯降低SRF的蛋白表達(dá),實(shí)時(shí)定量PCR結(jié)果顯示miR-181a/b降低SRF的mRNA表達(dá)。
本研究首次證明了在HAoSMCs中SRF是miR-181a/b的靶基因,miR-181a/b通過(guò)直接靶向SRF調(diào)控平滑肌細(xì)胞向合成表型轉(zhuǎn)化,是對(duì)miRNA調(diào)控血管系統(tǒng)復(fù)雜網(wǎng)絡(luò)的補(bǔ)充。本研究結(jié)果為血管疾病治療提供途徑和方法。
參考文獻(xiàn)
[1]Davis BN,Hilyard AC,Nguyen PH,et al.Induction of microRNA-221 by platelet-derived growth factor signaling is critical for modulation of vascular smooth muscle phenotype[J].J Biol Chem,2009,284:3728-3738.
[2]Elia L,Quintavalle M,Zhang J,et al.The knockout of miR-143 and-145 alters smooth muscle cell maintenance and vascular homeostasis in mice:correlates with human disease[J].Cell Death Differ,2009,16:1590-1598.
[3]Sarkar J,Gou D,Turaka P,et al.MicroRNA-21 plays a role in hypoxia-mediated pulmonary artery smooth muscle cell proliferation and migration[J].Am J Physiol Lung Cell Mol Physiol,2010,299:L861- 871.
[4]Albinsson S,Suarez Y,Skoura A,et al.MicroRNAs are necessary for vascular smooth muscle growth,differentiation,and function[J].Arterioscler Thromb Vasc Biol,2010,30:1118-1126.
[5]Rensen SS,Doevendans PA,van Eys GL.Regulation and characteristics of vascular smooth muscle cell phenotypic diversity[J].Neth Heart J,2007,15:100-108.
[6]Kumar MS,Owens GK.Combinatorial control of smooth muscle-specific gene expression[J].Arterioscler Thromb Vasc Biol,2003,23:737-747.
[7]Miano JM,Cserjesi P,Ligon KL,et al.Smooth muscle myosin heavy chain exclusively marks the smooth muscle lineage during mouse embryogenesis[J].Circ Res,1994,75:803-812.
[8]Mack CP,Owens GK.Regulation of smooth muscle alpha-actin expression in vivo is dependent on CArG elements within the 5′ and first intron promoter regions[J].Circ Res,1999,84:852-861.
[9]Mack CP,Somlyo AV,Hautmann M,et al.Smooth muscle differentiation marker gene expression is regulated by RhoA-mediated actin polymerization[J].J Biol Chem,2001,276:341-347.
[10]van der Loop FT,Schaart G,Timmer ED,et al.Smoothelin,a novel cytoskeletal protein specific for smooth muscle cells[J].J Cell Biol,1996,134:401-411.
[11]Sluiter I,van der Horst I,van der Voorn P,et al.Premature differentiation of vascular smooth muscle cells in human congenital diaphragmatic hernia[J].Exp Mol Pathol,2013,94195-202.
[12]Doevendans PA,van Eys G.Smooth muscle cells on the move:the battle for actin[J].Cardiovasc Res,2002,54:499-502.
[13]Yoshida T,Owens GK.Molecular determinants of vascular smooth muscle cell diversity[J].Circ Res,2005,96:280-291.
[14]Speer MY,McKee MD,Guldberg RE,et al.Inactivation of the osteopontin gene enhances vascular calcification of matrix Gla protein-deficient mice:evidence for osteopontin as an inducible inhibitor of vascular calcification in vivo[J].J Exp Med,2002,196:1047-1055.
[15]Lai YM,F(xiàn)ukuda N,Su JZ,et al.Novel mechanisms of the antiproliferative effects of amlodipine in vascular smooth muscle cells from spontaneously hypertensive rats[J].Hypertens Res,2012,25:109-115.
[16]Chen J,Kitchen CM,Streb JW,et al.Myocardin:a component of a molecular switch for smooth muscle differentiation[J].J Mol Cell Cardiol,2002,34:1345-1356.
[17]Alexander MR,Owens GK.Epigenetic control of smooth muscle cell differentiation and phenotypic switching in vascular development and disease[J].Annu Rev Physiol,2012,74:13-40.
[18]Orr AW,Hastings NE,Blackman BR,et al.Complex regulation and function of theinflammatory smooth muscle cell phenotype in atherosclerosis[J].J Vasc Res,2010,47:168-180.
[19]Doran AC,Meller N,McNamara CA.Smooth muscle cells in the initiation and early progression of atherosclerosis[J].Arterioscler Thromb Vasc Biol,2008,28:812-819.
[20]Shen JY,Chan-Park MB,He B,et al.Three-dimensional microchannels in biodegradable polymeric films for control orientation and phenotype of vascular smooth muscle cells[J].Tissue Eng,2006,12:2229-2240.
[21]Owens GK,Kumar MS,Wamhoff BR.Molecular regulation of vascular smooth muscle cell differentiation in development and disease[J].Physiol Rev,2004,24:767-801.
[22]Hao H,Gabbiani G,Bochaton-Piallat ML.Arterial smooth muscle cell heterogeneity:implications for atherosclerosis and restenosis development[J].Arterioscler Thromb Vasc Biol,2003,23:1510-1520.
[23]Du KL,Ip HS,Li J,et al.Myocardin is a critical serum response factor cofactor in the transcriptional program regulating smooth muscle cell differentiation[J].Mol Cell Biol.2003,23:2425-2437.
[24]Miano JM.Serum response factor:toggling between disparate programs of gene expression[J].J Mol Cell Cardiol,2003,35:577-593.
[25]Wang Z,Wang DZ,Hockemeyer D,et al.Myocardin and ternary complex factors compete for SRF to control smooth muscle gene expression[J].Nature,2004,428:185-189.
[26]Cordes KR,Sheehy NT,White MP,et al.miR-145 and miR-143 regulate smooth muscle cell fate and plasticity[J].Nature,2009,460:705-710.
[27]Davis BN,Hilyard AC,Lagna G,et al.SMAD proteins control DROSHA-mediated microRNA maturation[J].Nature,2008,454:56-61.
[28]Bartel DP.MicroRNAs:genomics,biogenesis,mechanism,and function[J].Cell,2004,116:281-297.
[29]He L,Hannon GJ.MicroRNAs:small RNAs with a big role in gene regulation[J].Nat Rev Genet,2004,5:522-531.
[30]Darnell DK,Kaur S,Stanislaw S,et al.MicroRNA expression during chick embryo development[J].Dev Dyn,2006,235:3156-3165.
[31]Ivey KN,Srivastava D.MicroRNAs as regulators of differentiation and cell fate decisions[J].Cell Stem Cell,2010,7:36-41.
[32]Brennecke J,Hipfner DR,Stark A,et al.bantam encodes a developmentally regulated microRNA that controls cell proliferation and regulates the proapoptotic gene hid in Drosophila[J].Cell,2003,113:25-36.
[33]Jovanovic M,Hengartner MO.miRNAs and apoptosis:RNAs to die for[J].Oncogene,2006,25:6176-6187.
[34]Montagner S,Deho L,Monticelli S.MicroRNAs in hematopoietic development[J].Bmc Immunol,2014,15:14.
[35]Soifer HS,Rossi JJ,Saetrom P.MicroRNAs in disease and potential therapeutic applications[J].Mol Ther,2007,15:2070-2079.
[36]Dong H,Lei J,Ding L,et al.MicroRNA:function,detection,and bioanalysis[J].Chem Rev,2013,113:6207-6233.
[37]Urbich C,Kuehbacher A,Dimmeler S.Role of microRNAs in vascular diseases,inflammation,and angiogenesis[J].Cardiovasc Res,2008,79:581-588.
[38]Sun X,Sit A,F(xiàn)einberg MW.Role of miR-181 family in regulating vascular inflammation and immunity[J].Trends Cardiovasc Med,2014,24:105-112.
[39]Su R,Lin HS,Zhang XH,et al.MiR-181 family:regulators of myeloid differentiation and acute myeloid leukemia as well as potential therapeutic targets[J].Oncogene,2014,6:1-14.
[40]Williams A,Henao-Mejia J,Harman CC,et al.miR-181 and metabolic regulation in the immune system[J].Cold Spring Harb Symp Quant Biol,2013,78:223-230.
[41]Henao-Mejia J,Williams A,Goff LA,et al.The microRNA miR-181 is a critical cellular metabolic rheostat essential for NKT cell ontogenesis and lymphocyte development and homeostasis[J].Immunity,2013,38:984-997.
[42]Scatena M,Liaw L,Giachelli CM.Osteopontin:a multifunctional molecule regulating chronic inflammation and vascular disease[J].Arterioscler Thromb Vasc Biol,2007,27:2302-2309.
[43]Remus EW,Lyle AN,Weiss D,et al.miR181a protects against angiotensin II-induced osteopontin expression in vascular smooth muscle cells[J].Atherosclerosis,2013,228:168-174.
[44]Sun X,Icli B,Wara AK,et al.MicroRNA-181b regulates NF-kappaB-mediated vascular inflammation[J].J Clin Invest,2012,122:1973-1990.
[45]Xue Q,Guo ZY,Li W,et al.Human activated CD4(+)T lymphocytes increase IL-2 expression by downregulating microRNA-181c[J].Mol Immunol,2011,48:592-599.
[46]Belkaya S,Silge RL,Hoover AR,et al.Dynamic modulation of thymic microRNAs in response to stress.PLoS One,2011,6:e27580.