• 
    

    
    

      99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

      具有逆斷面的擬純正半群的同余

      2015-12-31 09:13:15王麗麗

      王麗麗,閆 媛

      (1.重慶理工大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,重慶 400054; 2.西北大學(xué) 數(shù)學(xué)學(xué)院,西安 710127)

      具有逆斷面的擬純正半群的同余

      王麗麗1,閆媛2

      (1.重慶理工大學(xué) 數(shù)學(xué)與統(tǒng)計(jì)學(xué)院,重慶400054; 2.西北大學(xué) 數(shù)學(xué)學(xué)院,西安710127)

      摘要:利用具有逆斷面的擬純正半群的分件半群L和R上的 o-同余所構(gòu)成的同余對(duì)來(lái)構(gòu)造此類半群的同余,證明了此類半群的所有o-同余的集合構(gòu)成一個(gè)完備格。

      關(guān)鍵詞:擬純正半群;逆斷面;同余;完備格

      1Introductions

      playaveryimportantroleininvestigatingthestructureS.In[3],McAlisterandMcFaddenshowedthat,ifSoisaQ-inversetransversalofS,thenΙandΛaresubbandsofS.TheregularsemigroupswithQ-inversetransversalSocanbeassembledbythreebricksSo, ΙandΛ,whereΙandΛareleftandrightnormalsubbandsofSrespectively(see[3]).

      AregularsemigroupSiscalledquasi-orthodoxifthereexistaninversesemigroupTandasurjectivehomomorphismφ:S→Tsuchthattφ-1isacompletesimplesubsemigroupofSforeacht∈E(T),whereE(T)denotesthesetofidemopotentsofT.LetSbeaquasi-orthodoxsemigroupwithaninversetransversalSo.In[5],SaitoshowsthatI[Λ]isaleft[right]regularband.Let

      Weobtainedin[5]and[11]thatL∩R=So, Ι∩Λ=E(So), E(L)=Ι, E(R)=ΛandthatΙ[Λ]isasubbandofSifandonlyifL[R]isasubsemigroupofS.Inthiscase, L[R]isaleft[right]inversesubsemigroupofS.

      ThecongruenceonregularsemigroupswithinversetransversalswasstudiedbyWangandTang(see[8-10]).In[8],theauthorsassembledthecongruenceonSo.In[5],Satiogaveastructuretheoryofquasi-orthodoxsemigroupswithinversetransversals.Inthispaper,wegivetheo-congruenceonquasi-orthodoxsemigroupswithinversetransversalsbytheo-congruencepairandthestructuretheoryin[5]andprovethatthesetofallo-congruencesonthiskindofsemigroupsisacompletelattice.

      2Preliminaries

      Welistseveralknownresults,whichwillbeusedfrequentlywithoutspecialreferenceinthispaper.

      Lemma2.1[2]LetSbearegularsemigroupwithaninversetransversalSo.Then: ① Ι={e∈E(S): eLeo}; ② Λ={f∈E(S): fRfo}.

      Lemma2.2[8]Sisorthodoxifonlyifforanyx,y∈S,(xy)o=yoxo.

      Lemma2.3[11]LetSbearegularseigroupwithaninversetransversalSo.

      ThenR[L]isasubsemigroupofSifandonlyifI[Λ]isasubsemigroupofS.

      Lemma2.4[5]LetLbealeftinversesemigroupandRarightinversesemigroup.SupposethatLandRhaveacommontranserversalSo.LetR×L→Ldescribedby(a,x)→a*xbemappingsuchthat,foranyx,y∈Landforanya,b∈R.

      (Q.1) (aox)o=(a*x)o;

      (Q.2) (aox)o(aox)=xoaoaooxooand

      (a*x)(a*x)o=aooxooxoao;

      (Q.3) aox xo(boy)=(aox)(aox)o((a*x)xoboy)and(a*x)xob*y=(a*xxo(boy))(b*y)o(b*y);

      (Q.4) aoxo=aooxo,a*xo=axo,ao*x=aoxooandaoox=aox.

      Defineamultiplicationontheset

      by

      ThenΓisaquasi-orthodoxsemigroupwithaninversetransversalwhichisisomorphictoSo.

      Conversely,everyquasi-orthodoxsemigroupwithaninversetransversalcanbeconstructedinthismanner.

      ForaregularsemigroupSwithaninversetransversalSo,thecompletelatticeofcongruencesonSisdenotedbyCon(S)andletρo=ρ|So.

      3Themainresults

      Inthissection,wefirstestablishacharacterizationofo-congruencesabstractlybyo-congruencespair.Wedescribeao-congruencespairoftheform(ρL,ρR)withρL∈Con(L)andρR∈Con(R)satisfyingsomeconditionsinorderthattheyproduceao-congruenceonSnaturally.

      Definition3.1AcongruenceρofaregularsemigroupSwithaninversetransversalSoisao-congruence,ifforx,y∈S,xρyifandonlyifxoρoyo.

      SupposeρRandρLareo-congruencesonRandL,respectively.Then(ρL,ρR)iscalledao-congruencepairforΓifthefollowingconditionshold:

      (C.1) ρL|So=ρR|So;

      (C.2) (?c∈R)(?x,y∈L)xρLy?(cox)ρL(coy) and (c*x)ρR(c*y);

      (C.3) (?z∈L)(?a,b∈R)aρRb?(aoz)ρL(boz) and (a*z)ρR(b*z).

      Define a relationρ(ρL,ρR) onΓby the following rule,

      Theorem3.2LetΓbeaquasi-orthodoxsemigrouphavinganinversetransversalasinLemma2.4,and(ρL,ρR)beao-congruencepaironΓ.Thenρ(ρL,ρR)isao-congruenceonΓ.Conversely,everyo-congruencepaironΓcanbeconstructedintheabovemanner.

      ProofLet(ρL,ρR)beao-congruencepaironΓ.Obviously, ρ(ρL,ρR)isanequivalenceonΓ.For(x,a),(y,b)∈Γ,with(x,a)ρ(ρL,ρR)(y,b),wehavexρLy,aρRb.Letz∈Landc∈Rbesuchthat(z,c)∈Γ.ByaρRbandC.3,wehave

      Itfollowsthat

      xxo(a oz)ρLyyo(b oz) and

      (a*z)cocρR(b*z)coc

      FromQ2,wehave

      sothatzozoo(aoz)o=(aoz)o.Thus

      Andsimilarly,

      Hence,byQ1,wehave

      Similarly,

      Thus

      Thatis,

      Andwecanprovesimilarly,

      Thusρ(ρL,ρR)isacongruenceonΓ.SinceρRandρLareo-congruenceonRandL,respectively.ThenwehavexoρL|S o yo,aoρR|S o bo.Itfollowsthat

      Itisclearthat(x,a)o=(xo,ao)forany(x,a)∈Γ.Thereforeρ(ρL,ρR)isao-congruenceonΓ.

      Conversely,assumethatρisao-congruenceonΓ.WedefinethefollowingequivalencesonLandR,respectively,

      SinceρisacongruenceonΓ,wehaveρLandρRareequivalencesonLandR,respectively.

      Let(x,a),(y,b),(x1,a1),(y1,b1)∈Γ.IfxρLyandx1ρLy1,then

      Nowweimmediatelyget

      Andthisimpliesthat

      Then

      Sowehaveprovedthatxx1ρLyy1.Similarly,wehaveaa1ρRbb1.

      ItisobviousthatxρLyifandonlyifxoρLyoandaρRbifandonlyxoρRyo.ThereforeρL,ρRareo-congruence.

      Andwehavethefollowingcases:

      ① ρR|So=ρL|Soisobvious.SoC.1holds.

      ②Letx,y∈LandxρLy.Then

      Hence,forany(z,c)∈Γ,

      Thatis,

      Sinceρisao-congruenceonΓ,

      ByQ1andQ2,

      Itfollowsthat

      (cox)oρL(coy)oand(c*x)oρR(c*y)o

      SinceρL,ρRareo-congruence,

      NowC.2holds.

      ③WecansimilarlyproveC,3.Nowfromtheaboveprove, (ρL,ρR)isao-congruencepaironΓ.

      Bythedirectlypart, ρ(ρL,ρR)isao-congruence.If(x,a)ρ(ρL,ρR)(y,b),thenwehave

      xρLy,aρRb

      Thus

      Itfollowsthat

      Thatis

      Thus, ρ(ρR,ρL)?ρ.Sinceρ?ρ(ρR,ρL)isobvious, ρ(ρR,ρL)=ρ.

      Wedenotethesetofallo-congruencesonΓandthesetofallo-congruencepairsonΓconstructedasinTheorem3.2byC(Γ)andCP(Γ).

      Thereverseimplicationisobvious.

      Define≤onCP(Γ)by

      ThenCP(Γ)isapartialorderedsetwithrespectto≤.ByTheorem3.2andLemma3.3,wecaneasilyseethatC(Γ)andCP(Γ)areisomorphicaspartialorderedset.

      Proposition3.4LetΩ?C(T)andTρ=(ρL,ρR)whereρ∈Ω.Then

      Thisimpliesthat

      Wehaveprovethat

      Now,bysumminguptheaboveresults,weobtainthefollowingtheorem.

      Theorem3.5letΓbeconstructedinTheorem2.4.ThenCP(Γ)formsacompletelatticewithrespectto≤andC(Γ)isisomorphictoCP(Γ)ascompletelattice.

      References:

      [1]BlythTS,McFaddenRB.Regularsemigroupswithamultiplicativeinversetransversal[J].ProcRoySocEdinburgh, 1982, 92A: 253-270.

      [2]TangXL.Regularsemigroupswithinversetransversal[J].SemigroupsForum, 1997, 55(1): 24-32.

      [3]McAlisterDB,McFaddenRB.Regularsemigroupswithinversetransversals[J].QuartJMathOxford, 1983, 34(2): 459-474.

      [4]McAlisterDB,McFaddenRB.Regularsemigroupswithinversetransversalasmatrixsemigroups[J].QuartJMathOxford, 1984, 35(2): 455-474.

      [5]SatioT.Quasi-orthodoxsemigroupswithinversetransversals[J].SemigroupForum, 1987, 36:47-54.

      [6]PetrichM.Thestructureofcompletelysemigroups[J].TransAmMathSoc, 1974, 189: 211-236.

      [7]PetrichM,ReillyN.Completelyregularsemigroups[M].NewYork:Wiley, 1999.

      [8]WangLM.OncongruencelatticeofregularsemigroupswithQ-inversetransversals[J].SemigroupForum, 1995, 50: 141-160.

      [9]TangXL,WangLM.Congruencesonregularsemigroupswithinversetransversals[J].CommAlgebra, 1995, 23: 4157-4171.

      [10]WangLM,TangXL.Congruencelatticeofregularsemigroupswithinversetransversals[J].Comm.Algebra, 1998, 26: 1234-1255.

      [11]SaitoT.Anoteonregularsemigroupswithinversetransversals[J].SemigroupForum, 1986,33: 149-152.

      (責(zé)任編輯劉舸)

      收稿日期:2015-06-18

      基金項(xiàng)目:西北大學(xué)研究生自主創(chuàng)新基金資助項(xiàng)目(YZZ14082)

      作者簡(jiǎn)介:王麗麗(1982—),女,山東泰安人,博士,主要從事代數(shù)學(xué)群論研究。

      doi:10.3969/j.issn.1674-8425(z).2015.08.027

      中圖分類號(hào):O175

      文獻(xiàn)標(biāo)識(shí)碼:A

      文章編號(hào):1674-8425(2015)08-0150-05

      CongruencesonQuasi-OrthodoxSemigroupswithInverseTransversals

      WANGLi-li1, YAN Yuan2

      (1.CollegeofMathematicsandStatistics,ChongqingUniversityofTechnology,

      Chongqing400054,China; 2.SchoolofMathematics,

      NorthwestUniversity,Xi’an710127,China)

      Abstract:We gave a o-congruence on a quasi-orthodox semigroups with inverse transversals Soby the o-congruence pair abstractly which consists of o-congruence on the structure component parts L and R. We proved that the set of all o-congruences on this kind of semigroups is a complete lattice.

      Key words:quasi-orthodox semigroups; inverse transversal; congruence; complete lattice

      引用格式:王麗麗,閆媛.具有逆斷面的擬純正半群的同余[J].重慶理工大學(xué)學(xué)報(bào):自然科學(xué)版,2015(8):150-154.

      Citationformat:WANGLi-li,YANYuan.CongruencesonQuasi-OrthodoxSemigroupswithInverseTransversals[J].JournalofChongqingUniversityofTechnology:NaturalScience,2015(8):150-154.

      米脂县| 新乡县| 安国市| 望都县| 平陆县| 西丰县| 永新县| 团风县| 双流县| 稻城县| 于田县| 城步| 丘北县| 会泽县| 镇康县| 神木县| 安溪县| 图们市| 沁源县| 固安县| 黄大仙区| 阿瓦提县| 忻城县| 济宁市| 鄂尔多斯市| 黔南| 天全县| 颍上县| 依兰县| 兰考县| 曲沃县| 龙岩市| 游戏| 商水县| 阳泉市| 安仁县| 绥中县| 平塘县| 贡觉县| 凤城市| 莱州市|