• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Studies of Iron-Porphyrin Complexes with Different Axial Ligands by Both Spin-Restrict and Spin-Polarized Density Functional Reactivity Theory

    2015-12-23 11:00:36-,-,-,,
    關(guān)鍵詞:血紅素

    -, -, -, ,

    (School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China)

    ?

    Studies of Iron-Porphyrin Complexes with Different Axial Ligands by Both Spin-Restrict and Spin-Polarized Density Functional Reactivity Theory

    WUWen-jie,ZHANGXiao-qing,HUIHua-ying,LILong,HUANGYing

    (School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China)

    AbstractHeme is a key cofactor of hemoproteins in which porphyrin is often found to be preferentially metallated by an iron cation. Density functional reactivity theory (DFRT) descriptors and their spin-polarized version have been previously applied to understand the metal-binding specificity of porphyrin in the literature. It was found that the iron-porphyrin complex significantly differs in many aspects from porphyrin complexes with other metal cations. In this study, we employ DFRT and its spin-polarized version to investigate the reactivity for a series of small ligands axially bonded to the iron-porphyrin complex with the general formula of L-Fe(Ⅱ)-porphyrin, where L= SMe, SHMe, 1H-imidazole, imidazol-1-ide, OH, H2O, H2O2, CO, NO, O2, furan, isoindole, pyrrole, and pyridine. Both global and local DFRT descriptors were examined within this framework. We found that, from the analysis of DFRT and spin-polarized DFRT descriptors, CO is the ligand giving rise to the most stable Fe(Ⅱ)-prophyrin complex, which at the same time is less reactive than other systems. We also discovered substantial differences in structural and reactivity descriptors between the systems with L=H2O and SHMe systems as well as the systems with L=OH and SMe. Quantitative reactivity relationships have been revealed. These results should help better understanding of the reactivity of heme bonding with different ligands for heme-containing enzymes and other metalloproteins alike.

    Key wordsporphyrin; heme; density functional reactivity theory (DFRT); spin-polarized DFRT

    Scheme 1 L-Fe(Ⅱ)-porphyrin systems investigated in this work, with L can be replaced by fractional groups in amino acid that usually bonded with heme in nature: from cysteine: MeS-, SHMe, from histidine: 1H-imidazole, imidazol-1-ide, from water: O2-, HO-, H2O, H2O2, and small gaseous molecules: CO, NO, O2, and also some other common ligands: furan, isoindole, pyrrole, pyridine

    Heme is a metal-binding porphyrin consisting of a heterocyclic organic ring made from four pyrrole subunits linked via methine bridges (Scheme 1). As the core cofactor of hemoproteins, it serves as a prosthetic group for many biological processes including oxidative metabolism[1-3], xenobiotic detoxification, synthesizing and sensing of diatomic gases, cellular differentiation, gene regulation at the level of transcription, protein translation and targeting, and protein stability. Therefore, hemoproteins such as hemoglobin[4], myoglobin[5], hemocyanin[6-7]and neuroglobin[8]are abundance in nature and play essential roles in physiological processes as sensors, activators, and carriers of gaseous molecules. Hemoglobin is most commonly found in its oxygen-binding state where the bonded metal cation is a divalent iron, Fe(Ⅱ). When in its resting or functioning state, up to two axial ligands are required to bond with the metal cation in the metal-porphyrin complex to carry out the catalytic process. The most common axial residues in hemoproteins are histidine and cysteine.

    Density functional reactivity theory (DFRT) and spin-polarized DFRT (SP-DFRT) have recently been applied to understand the metal-binding specificity of porphyrin[1-2], where it was found that both structure and electronic properties of the metal cation play important roles in differentiating its metal-binding specificity. Differences in metal-binding specificity of metal-porphyrin complexes can result from different causes. For example, no Ca-porphyrin or Cd-porphyrin complex exists in nature because Ca(Ⅱ) and Cd(Ⅱ) cations are too big to fit into the inner cavity of the porphyrin ring. For other complexes such as Zn(Ⅱ) and Mn(Ⅱ), it was concluded that electronic properties, as shown from the second-order perturbation theory analysis of the Fock matrix in the NBO basis and chemical reactivity descriptors such as hardness, electrophilicity, and dual descriptors, dictate their metal-binding specificity. It has also been revealed that the iron complex differs from other metal ion complexes in bonding and reactivity properties (i.e. charge distribution, stability, and nucleophilicity) when two axial bonds are formed, enhancing and facilitating the role of the iron cation as the center of the catalytic process and thus implying that the number and nature of the axial ligands also play an important role in the catalytic process. Another conclusion from those previous studies in the literature is that Fe(Ⅱ) and Ru(Ⅱ) complexes show similar reactivity from the spin unresolved DFRT perspective, but from the spin-polarized version of DFRT, the Fe-porphyrin complex stands up and often possesses the smallest value for each of the SP-DFRT quantities in most cases, indicating that the Fe system is most likely to increase the total spin number, and the spin resolution showed a remarkable difference between Ru and Fe complexes. These results suggest that the specificity difference of porphyrin between Fe and Ru cations is originated from both the electron and spin properties and that to differentiate their behaviors one has to resort to spin resolved reactivity indices.

    What is missing in these studies is that the impact of axial ligands is not well understood. These ligands might well affect the metal-porphyrin’s reactivity and metal-binding specificity. In this study, we will work on this missing piece of the puzzle and investigate thoroughly. We will try to address the following question: From the perspective of DFRT and SP-DFRT, in the gas phase under vacuum, what are the main differences in structure and reactivity properties for the iron-porphyrin complex when different axial ligands are present?

    1Theoretical Background and Computational Details

    These following systems with the general formula of porphyrin-Fe(Ⅱ)-L will be investigated in this study, where the ligand L represents either the fractional group in amino acid that usually bonds with heme in nature, such as cysteine, which is simplified by-SMe and SHMe, or histidine, which is represented by 1H-imidazole and imidazol-1-ide, or from water related species like O2-, HO-, H2O, and H2O2, or other small gaseous molecules, such as CO, NO, and O2. We also considered some other commonly available ligands, e.g., furan, isoindole, pyrrole, and pyridine. To study the impact of the axial ligands on structural and electronic properties of these complex, we used the divalent Fe(Ⅱ) as the core metal cation.

    In DFRT[9], also called conceptual DFT or chemical DFT, many global and local reactivity descriptors have been introduced and applied to a number of problems[1-2,10-15]. In this paper, the descriptors we mainly employed are the following. Chemical potential,μ, and global hardness[16-17],η, are defined as the following derivatives:μ=(?E/?N)V=-χandη=(?2E)/?N2)V= (?μ/?N)V, respectively, whereEis the total energy of the system,Nthe number of electrons,νthe external potential, andχelectronegativity. According to Mulliken[18],

    μ=-χ= -(I+A)/2,

    (1)

    η=I-A,

    (2)

    withIandAas the first ionization energy and electron affinity, respectively, which can be approximated by the HOMO and LUMO energies viaI≈-εHOMOandA≈-εLUMO[19]. Softness[20],S, is defined as the inverse of the hardness,

    S= 1/2η,

    (3)

    and the electrophilicity index[21], a measure of the lowering of the total binding energy due to the maximal electron acceptance, can be expressed in terms ofμandηas

    ω=μ2/2η.

    (4)

    Other global DFRT reactivity indices such as nucleofugality, ΔEn, and electrofugality, ΔEe, are defined as follows[22-23]:

    ΔEn≡ -A + ω = [(μ + η)2]/(2η),

    (5)

    ΔEe= I + ω = [(μ - η)2]/(2η).

    (6)

    These global reactivity descriptors from the DFRT framework,μ,η,ω, ΔEn, and ΔEe, will be used to appraise the global chemical reactivity of our systems.

    To describe regioselectivity tendencies of individual atoms in molecules, local DFRT descriptors were employed. The first well known example of such a category is called the Fukui function[24-25], defined asf(r) = (?ρ(r)/?N)V= (?μ/?v(r))N, whereρ(r) is the electron density. Yang and Mortier[26]have proposed that for systems with a gain of electrons the condensed Fukui index,

    fk+= qk(N + 1) - qk(N),

    (7)

    in the finite difference approximation is a measure of nucleophilic attack, whereqk(N) is the gross atomic charge for atomkwithNelectrons, obtained from a population analysis (such as NBO analysis). For systems that can donate electrons, the condensed Fukui index is susceptible to electrophilic attack with

    fk-= qk(N) - qk(N -1).

    (8)

    For radical attack reactions,

    fk0= (fk++ fk-)/2,

    (9)

    whereqk(N + 1), qk(N), andqk(N - 1) are the gross NBO population on atomkin a molecule withN+1 (anion state),N(neutral state), andN-1 (cation state) electrons, respectively.

    In spin-polarized DFRT[27-29], the spin potential,μS, is defined as:μS=(?E/?NS)v,B,Nand can be further approximated by

    (10)

    (11)

    (12)

    ωS±=-(μS±)2/(2ηSS).

    (13)

    Spin-polarized Fukui function[30]is defined asfSS(r)=(?ρS(r)/?NS)V,B,N, andfNS(r)=(?ρ(r)/?NS)V,B,N, whereρS(r) is spin density. Under the frozen core approximation,fSS,k±andfNS,k±can be obtained as follows:

    fSS,k+=(|ΦLUMO, α,k|2+|ΦHOMO, β,k|2)/2,

    (14)

    fSS,k-=(|ΦHOMO, α,k|2+|ΦLUMO, β,k|2)/2,

    (15)

    fNS,k+=(|ΦLUMO, α,k|2-|ΦHOMO, β,k|2)/2,

    (16)

    fNS,k-=(|ΦHOMO, α,k|2-|ΦLUMO, β,k|2)/2,

    (17)

    whereΦHOMO,α,k,ΦHOMO,β,k,ΦLUMO,α,k,ΦLUMO,β,kare HOMO and LUMO orbitals forαandβelectrons, respectively.

    In addition to the global and local descriptors from DFRT and SP-DFRT, we will also employ NBO analyses to perform second-order perturbation analyses to understand the bonding features between the metal cation and the porphyrin ring and between the metal cation and the axially bonded pyridine groups.

    All calculations were performed using the B3LYP functional and a compound basis set, where the 6-31G basis sets were used for the elements C and H, and Pople’s 6-311+G(d) basis sets were used for N, O, S and Fe. All calculations were performed using the Gaussian 09 package version D01[31].

    2Results and Discussion

    Tab.1 shows a few key structural parameters of the series of L-Fe-porphyrin complexes with varying ligands L. Also shown in the Table is the multiplicity of the lowest-energy spin state for each of the systems studied. One can see that for the majority of complexes, the bond length between Fe-ion and coordinating atom of the ligand, Fe-LA, in the systems where the coordinating atom is protonated, is longer than that of the system whose coordinating atom is deprotonated. For example, Fe-LA of HO--Fe(Ⅱ)-porphyrin is 1.919 ?, whereas the same bond length becomes 2.254 ? in H2O-Fe(Ⅱ)-porphyrin. In MeS-Fe(Ⅱ)-porphyrin, the Fe-LA bond is 2.398 ?, but it becomes 3.001? in MeHS-Fe(Ⅱ)-porphyrin. This is reasonable because the negatively charged ligands are more strongly interacting with the positively charged iron cation. Also, the corresponding bond length between Fe ion and porphyrin plane, Fe-plane, has a reverse tendency, that is, the Fe-plane distance is shorter if the coordinating atom is protonized. For example, Fe-plane of HO--Fe(Ⅱ)-porphyrin is 0.665 ?, while Fe-plane of H2O-Fe(Ⅱ)-porphyrin is 0.155 ?. The Fe-plane distance of MeS--Fe(Ⅱ)-porphyrin is 0.625 ?, whereas that of MeHS-Fe(Ⅱ)-porphyrin is 0.081 ?. This tendency, shown clearly in Fig.1, is resulted from the stronger Fe-OH-or Fe-S-interaction in the deprotonated case: Since more interactions are devoted to this bond, fewer interactions from Fe to other species are subsequently resulted. For the majority of complexes the bond length between Fe-ion and porphyrin nitrogen atom, Fe-N(Pph) are rather similar, around 2.1 ?.

    Tab.1 Selected structural parameters from the optimized structure of the heme complexes with 14 different ligands*

    *“Fe-N(Pph)” stands for the average bond length of Fe ion-porphyrin nitrogen bond distance; “Fe-Plane” denotes the out-of-plane distance of the metal ion from the porphyrin plane; “Fe-LA” represents the bond length of the Fe ion-coordinating atom bond.

    From the structural results, one finds that the values of Fe-N(Pph) and Fe-plane in MeS--Fe(Ⅱ)-porphyrin, 2.16 ? and 0.625 ?, respectively, are largest among the series, while in MeSH-Fe(Ⅱ)-porphyrin, Fe-N(Pph) and Fe-plane distances are the shortest (2.017 ? and 0.081 ?, respectively). This difference, especially in the value of Fe-plane distance of 0.625 ? -0.081 ? =0.544 ?, indicates that the flexibility of the porphyrin ring, which governs the resonance of electrons on the plane, can be affected by the pronated or deprotonated state of the axial sulfur atom. The same effect is observed in the systems with L=H2O and HO-, where the difference of 0.665 ?-0.155 ?=0.510 ? in the Fe-plane distance is seen. From these results, one can see that whether or not the axial ligand is deprotonated affects the extent of resonance on the heme plane and thus its chemical reactivity. Also, we find that in the system in which the coordinating atom is either S or O, the changing between protonation and deprotonation affects more than that in the remaining systems. Such changing, especially when the coordinating atom is oxygen, can be relatively easily occurred in nature. This might be the precise reason why the heme systems in nature prefer to choose S or O atom as the binding atom in the axial ligand.

    (a) H2O-Fe(Ⅱ)-porphyrin                (b) HO-Fe(Ⅱ)-porphyrin

    (c) MeHS-Fe(Ⅱ)-porphyrin                (d) MeS-Fe(Ⅱ)-porphyrinFig.1 Comparison of the optimized structures between the systems that the coordinating atom is more saturated: (a) H2O-Fe(Ⅱ)-porphyrin, (c) MeHS-Fe(Ⅱ)-porphyrin and the systems that the coordinating atom is less saturated: (b) HO-Fe(Ⅱ)-porphyrin, (d) MeS-Fe(Ⅱ)-porphyrin

    From the information of NBO charge distribution shown in Tab.2, one finds that in the systems with L=H2O2, H2O, HO-, the decline of electron density on Fe(Ⅱ) cation caused by coordination—the difference in electron density on Fe-ion between Fe(Ⅱ)-porphyrin and L-Fe(Ⅱ)-porphyrin—is larger than that in other systems. This large reduction of charge on the heme reaction center might well be a prerequisite of the catalyst. Also, compared with the most negative coordinating atom in those systems, they have the most ionic bond between the coordinating atom and Fe-ion. Comparatively, Fe-LA in the systems with L=CO and NO are more covalent bonding, especially OC-Fe(Ⅱ)-porphyrin, which has the lowest charge value on Fe ion, 0.677. From Tab.2, the donor-acceptor back-bonding interactions for pairs such as porphyrin (donor) → Fe (acceptor), Fe (donor) → porphyrin (acceptor), etc., from the second-order perturbation theory analysis of the Fock matrix in the NBO basis, provide the hyperconjugation or back-bonding interaction energies between different chemical motifs in a complex. From this Table, O2-Fe(Ⅱ)-porphyrin has larger value on L→Fe and Fe→Pph. That is, the back-bonding interactions where ligand acts as a donor and Fe as the acceptor, and where Fe as a donor and porphyrin as the acceptor, are stronger than most of other systems in the series. Data of bond length information from Tab.1 also shows that Fe-LA of O2-Fe(Ⅱ)-porphyrin is shorter than the rest. Therefore, O2is most strongly stabilized by porphyrin where Fe-ion acts as a “duct”. On the contrary, OC-Fe(Ⅱ)-porphyrin has larger value on Pph→Fe and Fe→L. In this system, the effect of hyperconjugation is quite different from that of the system with L=O2. This result can be used to explain why CO acts as catalyst killer, where electrons move away from porphyrin plane to C=O by hyperconjugation in OC-Fe(Ⅱ)-porphyrin to form a more stable bond, unlike O2-Fe(Ⅱ)-porphyrin, where electrons are tending to be delocalized on the heme plane, resulted in the fact that the system becomes more reactive.

    Global descriptor results from DFRT including HOMO/LUMO, chemical potential, hardness, and electrophilicity index for the three classes of metal-porphyrin complexes are tabulated in Tab.3. Since hardness is an indication of molecular stability, the smaller the hardness the less stable the system becomes; one finds that OC-Fe(Ⅱ)-porphyrin has the highest value of chemical hardness, indicating that it is much more stable than any other systems in the series. These two phenomena may be the reasons why CO acts as a catalyst killer. On the contrary, the systems with L=HO-, SMe, O2, have smaller values of hardness, indicating that these compounds are more likely to be intermediaries in chemical reactions, or that they are unstable and the ligand can be easily released under certain circumstances, like the system with L=O2.

    Tab.2 NBO charge distribution and second-order perturbation theory analyses of the heme complexes with 14 different ligands*

    *Charges listed are those on the Fe-ion, and nitrogen atoms of porphyrin, N(Pph), and coordinating atom, LA. L→Fe stands for the donor-acceptor interaction between L (ligand) and Fe-ion, where L serves as the electron donor and Fe as the electron acceptor. The total interaction, in kcal/mol, is the sum of all orbital contributions larger than 0.05 kcal/mol.

    Tab.3 Global reactivity descriptors from conceptual DFT including frontier orbitals HOMO and LUMO, chemical potential μ,

    Tab.4 Calculated DFT-based spin Global Reactivity Indicators (Units in eV)

    Tab.5 shows local reactivity descriptors from DFRT for a few key atomic sites of the systems. Recall that the dual descriptorf(2)(r) is defined as the difference between the nucleophilic Fukui function,f+(r), and the electrophilic Fukui function,f-(r), under the finite difference approximation and that it is positive in electrophilic (electron-accepting) regions and negative in nucleophilic (electron-donating) regions[1,32-33]. From Tab.5, one finds that the system with L=CO has the smallest values of Fukui function: bothfFe+(0.002) andfFe-(0.003), indicating that OC-Fe(Ⅱ)-porphyrin is unlikely to obtain or donate electrons especially on Fe-ion. Considering with global descriptors of OC-Fe(Ⅱ)-porphyrin, which also show a stable and inactive nature, one finds that after the coordination with CO, the reactivity of heme is completely destroyed.

    3Conclusions

    Porphyrin metallated with a divalent metal cation, mostly Fe (Ⅱ) in nature, is one of the key cofactors in hemoproteins. Recent studies have utilized density functional reactivity theory and its spin-polarized version to explain the nature of metal-binding specificity. In this contribution, we also employed DFRT and SP-DFRT to investigate the structure and both global and local reactivity descriptors of a series of L-Fe(Ⅱ)-porphyrin complexes with L = CO, imidazole-1-ide, 1H-imidazole, isoindole, NO, pyrrole, pyridine, O2-, O2, HO-, H2O, H2O2, furan, SHMe, MeS-to study the impact of axial ligands on the structure and reactivity propertie of the heme systems. We found that OC-Fe(Ⅱ)-heme has the most stable and inactive system, serving as a catalyst killer. We also discovered substantial differences in structural and reactivity descriptors between the systems with L=H2O and SHMe systems as well as the systems with L=HO and SMe. Quantitative reactivity relationships have been revealed. These results should help better understanding of the reactivity of heme bonding with different ligands for heme-containing enzymes and other metalloproteins alike.

    References:

    [1]FENG X T, YU J G, LEI M,etal. Toward understanding metal-binding specificity of porphyrin: A conceptual density functional theory study [J]. J Phys Chem B, 2009,113(40):13381-13389.

    [2]FENG X T, YU J G, LIU R Z,etal. Why iron? A spin-polarized conceptual density functional theory study on metal-binding specificity of porphyrin [J]. J Phys Chem A, 2010,114(21):6342-6349.

    [3]SONO M, ROACH M P, COULTER E D,etal. Heme-containing oxygenases [J]. Chem Rev, 1996,96(7):2841-2888.

    [4]MONOD J, WYMAN J, CHANGEUX J P. On the nature of allosteric transitions: a plausible model [J]. J Mol Biol, 1965,12(1):88-118.

    [5]QIU Y, SUTTON L, RIGGS A F. Identification of myoglobin in human smooth muscle [J]. J Biol Chem, 1998,273(36):23426-23432.

    [6]WILCOX D E, PORRAS A G, HWANG Y T,etal. Substrate analog binding to the coupled binuclear copper active site in tyrosinase [J]. J Am Chem Soc, 1985,107(13):4015-4027.

    [7]WINKLER M E, LERCH K, SOLOMON E I,etal. Competitive inhibitor binding to the binuclear copper active site in tyrosinase [J]. J Am Chem Soc, 1981,1039(23):7001-7003.

    [8]BURMESTER T, WEICH B, REINHARDT S,etal. A vertebrate globin expressed in the brain [J]. Nature, 2000,407(6803):520-523.

    [9]LIU S B, PARR R G. Second-order density-functional description of molecules and chemical changes [J]. J Chem Phys, 1997,106(13):5578-5586.

    [10]HUANG Y, ZHONG A G, RONG C Y,etal. Structure, spectroscopy, and reactivity properties of porphyrin pincers: A conceptual density functional theory and time-dependent density functional theory study [J]. J Phys Chem A, 2008,112(2):305-311.

    [11]ZHONG A G, RONG C Y, LIU S B. Structural and dynamic properties of (SiO2)6silica nanostructures: a quantum molecular dynamics study [J]. J Phys Chem A, 2007,111(16):3132-3136.

    [12]LIU S B. Origin and nature of bond rotation barriers: a unified view [J]. J Phys Chem A, 2013,117(5):962-965.

    [13]LIU S B, GOVIND N, PEDERSEN L G. Exploring the origin of the internal rotational barrier for molecul es with one rotatable dihedral angle [J]. J Chem Phys, 2008,129:094104.

    [14]XIA Y, YIN D L, RONG C Y,etal. Impact of lewis acids on diels-alder reaction reactivity: A conceptual density functional theory study [J]. J Phys Chem A, 2008,112(40):9970-9977.

    [15]LIU S B. Where does the electron go? The nature of ortho/para and meta group directing in electrophilic aromatic substitution [J]. J Chem Phys, 2014,141(19):194109.

    [16]PEARSON R G. Hard and soft acids and bases [J]. J Am Chem Soc, 1963,85(22):3533-3539.

    [17]PARR R G, PEARSON R G. Absolute hardness: companion parameter to absolute electronegativity [J]. J Am Chem Soc, 1983,105(26):7512-7516.

    [18]MULLIKEN R S. A new electroaffinity scale; together with data on valence states and on valence ionization potentials and electron affinities [J]. J Chem Phys, 1934,2(11):782-793.

    [19]JANAK J F. Proof that ?E/?ni=ε in density-functional theory [J]. Phys Rev B, 1978,18(12):7165-7168.

    [20]YANG W, PARR R G. Hardness, softness, and the fukui function in the electronic theory of metals and catalysis [J]. Proc Natl Acad Sci, 1985,82(20):6723-6726.

    [22]AYERS P W, ANDERSON J S M, RODRIGUEZ J I,etal. Indices for predicting the quality of leaving groups [J]. Phys Chem Chem Phys, 2005,7(9):1918-1925.

    [23]AYERS P W, ANDERSON J S M, BARTOLOTTI L J. Perturbative perspectives on the chemical reaction prediction problem [J]. Int J Quantum Chem, 2005,101(5):520-534.

    [24]PARR R G, YANG W. Density functional approach to the frontier-electron theory of chemical reactivity [J]. J Am Chem Soc, 1984,106(14):4049-4050.

    [25]LIU S B. Conceptual density functional theory and some recent developments [J] Acta Phys Chim Sin, 2009,25(3):590-600.

    [26]YANG W, MORTIER W J. The use of global and local molecular parameters for the analysis of the gas-phase basicity of amines [J]. J Am Chem Soc, 1986,108(19):5708-5711.

    [27]VON BART U, HEDIN L. A local exchange-correlation potential for the spin polarized case: I [J]. J Phys C: Solid State Phys, 1972,5(5):1629-1642.

    [28]RAJAGOPAL A K, CALLAWAY J. Inhomogeneous Electron Gas [J]. Phys Rev B, 1973,7(5):1912-1919.

    [29]GUNNARSON O, LUNDQVIST B I. Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism [J]. Phys Rev B, 1976,13(10):4274-4298.

    [31]FRISCH M J, TRUCKS G W, SCHLEGEL H B,etal. Gaussian 03, Revision E.01[CP]. Gaussian, Inc: Wallingford CT, 2014.

    [32]MORELL C, GRAND A, TORO-LABBE A. New dual descriptor for chemical reactivity [J]. J Phys Chem A, 2005,109(1):205-212.

    [33]AYERS P W, MORELL C, DE PROFT D,etal. Understanding the woodward-hoffmann rules by using changes in electron density [J]. Chem Eur J, 2007,13(29): 8240-8247.

    (編輯楊春明)

    連接不同軸向配體鐵卟啉體系的自旋非極化和自旋極化密度泛函活性理論研究

    吳文杰,張曉青,惠華英,李龍,黃鶯*

    (湖南中醫(yī)藥大學(xué)藥學(xué)院, 中國 長沙410208)

    摘要血紅素在許多生化反應(yīng)中起著至關(guān)重要的作用,且血紅素的核心為卟啉環(huán)配位鐵離子.文獻(xiàn)采用密度泛函活性理論及其自旋極化方法對卟啉環(huán)連接的金屬離子的選擇性進(jìn)行了研究,發(fā)現(xiàn)卟啉環(huán)連接鐵離子時(shí)其結(jié)構(gòu)和活性與連接其他金屬離子的體系有很大的差異.實(shí)驗(yàn)研究表明,軸向連接不同配體對體系的結(jié)構(gòu)和活性有顯著影響.本文采用密度泛函活性理論及其自旋極化方法對鐵卟啉體系中鐵離子軸向連接不同配體的體系進(jìn)行系統(tǒng)探究.軸向配體包括 SMe, SHMe, 1H-咪唑及衍生物, OH, H2O, H2O2, CO, NO, O2, 呋喃,異吲哚,吡咯和吡啶.通過對全局和局域化學(xué)活性描述符的計(jì)算分析發(fā)現(xiàn),當(dāng)配體是CO時(shí),體系化學(xué)性質(zhì)穩(wěn)定、反應(yīng)活性也低;在眾多種體系中H2O和SHMe的得失質(zhì)子對體系活性的影響最大.這些計(jì)算結(jié)果對更深入了解血紅素及其類似體系的活性和作用機(jī)理有重要意義.

    關(guān)鍵詞卟啉環(huán); 血紅素; 密度泛函活性理論; 自旋-密度泛函活性理論

    中圖分類號O621.13

    文獻(xiàn)標(biāo)識碼A

    文章編號1000-2537(2015)05-0040-08

    通訊作者*,E-mail:1125218638@qq.com

    基金項(xiàng)目:湖南省教育廳科研資助項(xiàng)目(14C0806)

    收稿日期:2015-01-28

    DOI:10.7612/j.issn.1000-2537.2015.05.007

    猜你喜歡
    血紅素
    雞血血紅蛋白酶法提取血紅素工藝優(yōu)化
    氯化血紅素與十二烷基-β-D-麥芽糖苷復(fù)合膠團(tuán)的催化氧化性能
    響應(yīng)面法優(yōu)化酶解豬血制備血紅素工藝
    血紅素加氧酶-1的表達(dá)對氟尿嘧啶誘導(dǎo)食管癌細(xì)胞凋亡的影響
    血紅素氧合酶-1與急性腎損傷研究新進(jìn)展
    血紅素加氧酶-1對TNF-α引起內(nèi)皮細(xì)胞炎癥損傷的保護(hù)作用
    連續(xù)4周口服雷公藤甲素對大鼠血紅素加氧酶的影響
    重 結(jié) 晶 法 制 備 次 氯 血 紅 素
    變異血紅素的快速分析方法
    富血紅素多肽研究進(jìn)展
    久久国产乱子免费精品| 婷婷色麻豆天堂久久| 岛国毛片在线播放| 久久久久久久久久久免费av| 成年女人看的毛片在线观看| 免费无遮挡裸体视频| 国产乱人偷精品视频| 日日啪夜夜爽| 久久久欧美国产精品| 特级一级黄色大片| 亚洲经典国产精华液单| 午夜福利在线观看免费完整高清在| 国内少妇人妻偷人精品xxx网站| 免费大片黄手机在线观看| 国产精品一区二区在线观看99 | 亚洲欧美中文字幕日韩二区| 欧美日韩亚洲高清精品| 午夜福利视频1000在线观看| 干丝袜人妻中文字幕| 啦啦啦啦在线视频资源| 亚洲最大成人手机在线| 国产综合精华液| 又粗又硬又长又爽又黄的视频| 纵有疾风起免费观看全集完整版 | 免费观看性生交大片5| 免费电影在线观看免费观看| 日韩欧美 国产精品| 国产高清不卡午夜福利| 亚洲成人av在线免费| 亚洲欧美精品自产自拍| 精华霜和精华液先用哪个| 2022亚洲国产成人精品| 免费av毛片视频| 男女边吃奶边做爰视频| 久久精品久久精品一区二区三区| 亚洲国产精品成人综合色| 久久精品久久久久久噜噜老黄| 五月伊人婷婷丁香| 男女边吃奶边做爰视频| 大香蕉97超碰在线| 亚洲成人一二三区av| 内地一区二区视频在线| 中文字幕av在线有码专区| 国产成人精品福利久久| 日韩av在线免费看完整版不卡| 欧美日韩精品成人综合77777| 中文字幕av在线有码专区| 99久久九九国产精品国产免费| 国产精品国产三级专区第一集| 亚洲一级一片aⅴ在线观看| 亚洲熟妇中文字幕五十中出| 国内精品宾馆在线| 亚洲成人久久爱视频| 亚洲成人一二三区av| 99热这里只有精品一区| 亚洲精品乱码久久久v下载方式| 国产高清三级在线| 尾随美女入室| 三级经典国产精品| 色吧在线观看| 简卡轻食公司| 国产亚洲精品av在线| 2021天堂中文幕一二区在线观| 亚洲最大成人av| 国产中年淑女户外野战色| 国产欧美日韩精品一区二区| 亚洲精品,欧美精品| 我要看日韩黄色一级片| 18禁动态无遮挡网站| 日本熟妇午夜| 婷婷色综合大香蕉| 日韩欧美精品免费久久| 国产淫语在线视频| 亚洲真实伦在线观看| 舔av片在线| 人妻系列 视频| 亚洲欧美成人精品一区二区| 国内揄拍国产精品人妻在线| 69av精品久久久久久| 狠狠精品人妻久久久久久综合| 色综合色国产| 爱豆传媒免费全集在线观看| 欧美xxxx性猛交bbbb| 天堂av国产一区二区熟女人妻| 国产永久视频网站| 国产亚洲最大av| 亚洲精品成人av观看孕妇| 免费看不卡的av| 亚洲av国产av综合av卡| av在线播放精品| 欧美极品一区二区三区四区| 欧美不卡视频在线免费观看| 99久久精品热视频| av女优亚洲男人天堂| a级一级毛片免费在线观看| 22中文网久久字幕| av一本久久久久| 国产精品国产三级国产专区5o| 中文资源天堂在线| 亚洲欧美成人综合另类久久久| 国产成人a∨麻豆精品| 亚洲图色成人| 91午夜精品亚洲一区二区三区| 噜噜噜噜噜久久久久久91| 麻豆精品久久久久久蜜桃| 中国美白少妇内射xxxbb| 日本色播在线视频| 嫩草影院入口| 国产成人精品一,二区| 日韩欧美 国产精品| 91久久精品国产一区二区三区| 亚洲人与动物交配视频| 伊人久久精品亚洲午夜| 亚洲av成人精品一二三区| 久久久久九九精品影院| 中文字幕av在线有码专区| 免费看a级黄色片| 天美传媒精品一区二区| 国产 一区 欧美 日韩| 永久网站在线| 少妇裸体淫交视频免费看高清| 晚上一个人看的免费电影| 久久久久久久亚洲中文字幕| 天天躁夜夜躁狠狠久久av| 亚洲av一区综合| 91精品国产九色| 日韩国内少妇激情av| 97人妻精品一区二区三区麻豆| 91久久精品国产一区二区成人| 老师上课跳d突然被开到最大视频| 国产一级毛片七仙女欲春2| 有码 亚洲区| 日韩一区二区三区影片| av福利片在线观看| or卡值多少钱| 伊人久久国产一区二区| 2022亚洲国产成人精品| 国语对白做爰xxxⅹ性视频网站| 99热这里只有是精品50| 国产精品福利在线免费观看| 成人无遮挡网站| 成人美女网站在线观看视频| 黄片无遮挡物在线观看| 国产免费视频播放在线视频 | 国内揄拍国产精品人妻在线| 成年人午夜在线观看视频 | 国产男人的电影天堂91| 免费看av在线观看网站| 免费观看在线日韩| 超碰av人人做人人爽久久| 亚洲久久久久久中文字幕| 熟女电影av网| 午夜亚洲福利在线播放| 亚洲人成网站高清观看| 国产一区二区三区av在线| 天天躁日日操中文字幕| 亚洲欧美成人精品一区二区| 美女黄网站色视频| 欧美xxxx性猛交bbbb| 国产一区二区三区综合在线观看 | 日韩精品青青久久久久久| 日韩成人av中文字幕在线观看| 九九爱精品视频在线观看| 亚洲av二区三区四区| 亚洲自偷自拍三级| 久热久热在线精品观看| h日本视频在线播放| 亚洲国产精品专区欧美| 一本一本综合久久| 九草在线视频观看| 少妇的逼好多水| 青春草亚洲视频在线观看| 国产91av在线免费观看| 精品人妻偷拍中文字幕| 精品久久久久久久末码| 免费人成在线观看视频色| 久久国产乱子免费精品| 亚洲欧美中文字幕日韩二区| 欧美激情久久久久久爽电影| 亚洲av福利一区| 国产乱来视频区| 国产白丝娇喘喷水9色精品| 五月玫瑰六月丁香| 欧美成人精品欧美一级黄| 日本-黄色视频高清免费观看| av一本久久久久| 精品久久久久久成人av| 亚洲精品视频女| 日韩av在线大香蕉| 免费看不卡的av| 91av网一区二区| 性色avwww在线观看| 国产精品人妻久久久久久| 亚洲乱码一区二区免费版| 国产黄a三级三级三级人| 嫩草影院精品99| 18禁在线无遮挡免费观看视频| 久热久热在线精品观看| 在线播放无遮挡| 亚洲精品aⅴ在线观看| 色吧在线观看| 欧美xxxx黑人xx丫x性爽| 嘟嘟电影网在线观看| 国产又色又爽无遮挡免| 中文天堂在线官网| 久久久久久久久大av| 久久韩国三级中文字幕| 久久精品久久久久久久性| 国产激情偷乱视频一区二区| 成年女人看的毛片在线观看| 天堂√8在线中文| 婷婷色av中文字幕| 男的添女的下面高潮视频| 免费观看无遮挡的男女| 国产精品人妻久久久久久| 亚洲伊人久久精品综合| 女人被狂操c到高潮| 在线天堂最新版资源| 青春草亚洲视频在线观看| 国产大屁股一区二区在线视频| 免费看a级黄色片| 国产在视频线精品| 久久久久国产网址| 亚洲最大成人av| av在线老鸭窝| 精品久久久久久电影网| 又爽又黄无遮挡网站| 亚洲电影在线观看av| 听说在线观看完整版免费高清| 老女人水多毛片| 深夜a级毛片| 久久国内精品自在自线图片| 色综合色国产| 超碰av人人做人人爽久久| 亚洲在线观看片| 亚洲精品日韩av片在线观看| 国产麻豆成人av免费视频| 日本熟妇午夜| 18禁在线播放成人免费| 国产 一区 欧美 日韩| 国产 一区精品| 亚洲av免费高清在线观看| 久久久欧美国产精品| 最近最新中文字幕免费大全7| 超碰97精品在线观看| 天堂中文最新版在线下载 | 性色avwww在线观看| 伦精品一区二区三区| 五月玫瑰六月丁香| 日日啪夜夜爽| 国内揄拍国产精品人妻在线| 久热久热在线精品观看| 久久99蜜桃精品久久| 高清欧美精品videossex| 99re6热这里在线精品视频| 国产黄a三级三级三级人| 亚洲av在线观看美女高潮| 2022亚洲国产成人精品| 国产成人aa在线观看| 99视频精品全部免费 在线| 欧美一区二区亚洲| 午夜视频国产福利| 国产黄a三级三级三级人| 精品亚洲乱码少妇综合久久| 3wmmmm亚洲av在线观看| 色视频www国产| 三级国产精品欧美在线观看| 精品久久久精品久久久| 久久久久久久久久成人| or卡值多少钱| 80岁老熟妇乱子伦牲交| 又粗又硬又长又爽又黄的视频| 午夜精品国产一区二区电影 | 最新中文字幕久久久久| 干丝袜人妻中文字幕| 久久久久久九九精品二区国产| 亚洲高清免费不卡视频| 久久久久国产网址| 最近中文字幕高清免费大全6| 欧美潮喷喷水| 亚洲18禁久久av| 免费黄网站久久成人精品| 日产精品乱码卡一卡2卡三| 国产老妇伦熟女老妇高清| 三级男女做爰猛烈吃奶摸视频| 午夜亚洲福利在线播放| 伦精品一区二区三区| 一级毛片电影观看| 国产激情偷乱视频一区二区| 国产黄a三级三级三级人| 精品人妻一区二区三区麻豆| 热99在线观看视频| 亚洲国产成人一精品久久久| 黄片无遮挡物在线观看| 美女高潮的动态| 91午夜精品亚洲一区二区三区| 毛片女人毛片| 插逼视频在线观看| 国产精品久久视频播放| 熟妇人妻久久中文字幕3abv| 最近视频中文字幕2019在线8| 国产精品麻豆人妻色哟哟久久 | 中文字幕久久专区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 直男gayav资源| 国产午夜精品久久久久久一区二区三区| 精品一区二区三区视频在线| 永久网站在线| 一级毛片我不卡| 九草在线视频观看| 国产av国产精品国产| 国产伦一二天堂av在线观看| 一级毛片久久久久久久久女| 欧美激情国产日韩精品一区| 欧美一区二区亚洲| 欧美激情国产日韩精品一区| 天美传媒精品一区二区| 天天一区二区日本电影三级| 天美传媒精品一区二区| 天天一区二区日本电影三级| 91在线精品国自产拍蜜月| 国产又色又爽无遮挡免| 久久久精品欧美日韩精品| 秋霞伦理黄片| 日本猛色少妇xxxxx猛交久久| 一级爰片在线观看| 爱豆传媒免费全集在线观看| 国产日韩欧美在线精品| 国产欧美另类精品又又久久亚洲欧美| 丝袜喷水一区| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 中文字幕久久专区| 亚洲内射少妇av| 在线观看免费高清a一片| 久久亚洲国产成人精品v| 一级a做视频免费观看| 黄色欧美视频在线观看| 九色成人免费人妻av| 久久久a久久爽久久v久久| 国产伦精品一区二区三区视频9| 99久国产av精品| 天天躁夜夜躁狠狠久久av| 日本欧美国产在线视频| 亚洲av日韩在线播放| 毛片女人毛片| 肉色欧美久久久久久久蜜桃 | 乱码一卡2卡4卡精品| 亚洲怡红院男人天堂| 亚洲av不卡在线观看| 亚洲成人精品中文字幕电影| 麻豆乱淫一区二区| 只有这里有精品99| 国产精品一二三区在线看| 日韩av在线免费看完整版不卡| 能在线免费观看的黄片| 亚洲av国产av综合av卡| 国产69精品久久久久777片| 日韩精品青青久久久久久| 亚洲人与动物交配视频| 国产精品久久久久久久电影| 日韩强制内射视频| 日韩 亚洲 欧美在线| 在线播放无遮挡| 亚洲av免费在线观看| 天堂影院成人在线观看| 国产 亚洲一区二区三区 | 晚上一个人看的免费电影| 哪个播放器可以免费观看大片| 国产单亲对白刺激| 亚洲乱码一区二区免费版| 人妻系列 视频| 男女边摸边吃奶| 在线免费观看不下载黄p国产| 国产爱豆传媒在线观看| 97精品久久久久久久久久精品| 麻豆久久精品国产亚洲av| 国产亚洲av嫩草精品影院| 亚洲国产高清在线一区二区三| 一级毛片我不卡| 一级毛片黄色毛片免费观看视频| 亚洲综合精品二区| 九九在线视频观看精品| 亚洲va在线va天堂va国产| 精品不卡国产一区二区三区| 国产精品久久视频播放| .国产精品久久| 精品久久久精品久久久| 大话2 男鬼变身卡| 三级毛片av免费| 91午夜精品亚洲一区二区三区| 三级毛片av免费| 国产av在哪里看| 欧美3d第一页| 精品国产三级普通话版| 丝袜喷水一区| 国产精品三级大全| 97超碰精品成人国产| 国产国拍精品亚洲av在线观看| 美女被艹到高潮喷水动态| 国产精品三级大全| 91狼人影院| 啦啦啦中文免费视频观看日本| 国产成人精品福利久久| 插阴视频在线观看视频| 身体一侧抽搐| 国产麻豆成人av免费视频| 国产极品天堂在线| 国产乱来视频区| 国产 一区精品| 久久久久久久国产电影| 国产 亚洲一区二区三区 | 老女人水多毛片| 国产精品一区二区三区四区久久| 精品久久久久久久人妻蜜臀av| 我要看日韩黄色一级片| 国产成人精品福利久久| 亚洲精品国产av成人精品| 欧美三级亚洲精品| 人妻少妇偷人精品九色| 久久99精品国语久久久| 晚上一个人看的免费电影| 热99在线观看视频| 国产精品久久久久久久久免| 亚洲欧美精品自产自拍| 国产永久视频网站| 国产一区亚洲一区在线观看| 亚洲国产成人一精品久久久| 久久99精品国语久久久| 三级毛片av免费| 日韩av不卡免费在线播放| 简卡轻食公司| 午夜福利网站1000一区二区三区| 久久午夜福利片| 欧美变态另类bdsm刘玥| 日日撸夜夜添| 男人狂女人下面高潮的视频| 国产免费一级a男人的天堂| 天美传媒精品一区二区| 国产午夜精品一二区理论片| 国产一区亚洲一区在线观看| 丝瓜视频免费看黄片| 日本午夜av视频| 秋霞在线观看毛片| 国产免费一级a男人的天堂| 日本一二三区视频观看| 亚洲无线观看免费| 国产精品一及| 丝瓜视频免费看黄片| 亚洲国产精品sss在线观看| 精品人妻熟女av久视频| 91精品国产九色| 亚洲色图av天堂| 搡老乐熟女国产| 日韩在线高清观看一区二区三区| 女人十人毛片免费观看3o分钟| 最近中文字幕2019免费版| 一本一本综合久久| 国产黄频视频在线观看| 亚洲精品一区蜜桃| 一级a做视频免费观看| 伦精品一区二区三区| 国产精品久久久久久av不卡| 永久免费av网站大全| 韩国高清视频一区二区三区| 精品久久久久久电影网| 秋霞伦理黄片| av在线播放精品| 全区人妻精品视频| 少妇熟女欧美另类| 久久精品久久久久久噜噜老黄| 国产色爽女视频免费观看| 床上黄色一级片| 搞女人的毛片| 日韩欧美精品免费久久| 日韩av在线免费看完整版不卡| 男人狂女人下面高潮的视频| 美女黄网站色视频| 亚洲欧美成人精品一区二区| 嫩草影院入口| 日韩人妻高清精品专区| 蜜桃亚洲精品一区二区三区| 高清日韩中文字幕在线| 成人午夜精彩视频在线观看| 最近中文字幕高清免费大全6| 国产熟女欧美一区二区| 最近的中文字幕免费完整| 亚洲国产精品sss在线观看| 精品人妻一区二区三区麻豆| 亚洲精品国产成人久久av| 欧美激情久久久久久爽电影| 男人和女人高潮做爰伦理| 神马国产精品三级电影在线观看| 亚洲精品乱码久久久v下载方式| 又粗又硬又长又爽又黄的视频| 色5月婷婷丁香| 男女视频在线观看网站免费| 麻豆久久精品国产亚洲av| 成人鲁丝片一二三区免费| 亚洲怡红院男人天堂| 日韩一区二区视频免费看| 国产高清有码在线观看视频| 三级国产精品欧美在线观看| 久久草成人影院| 亚洲av免费在线观看| 日韩成人伦理影院| 亚洲国产最新在线播放| 亚洲精品久久久久久婷婷小说| 亚洲精品国产av蜜桃| 国产欧美另类精品又又久久亚洲欧美| 人妻一区二区av| 亚洲va在线va天堂va国产| 汤姆久久久久久久影院中文字幕 | 青青草视频在线视频观看| 精品不卡国产一区二区三区| 少妇熟女欧美另类| 美女国产视频在线观看| 91精品一卡2卡3卡4卡| 国模一区二区三区四区视频| 久久久午夜欧美精品| 亚洲精品乱码久久久v下载方式| 国产精品三级大全| 网址你懂的国产日韩在线| 亚洲精品日本国产第一区| 97人妻精品一区二区三区麻豆| 精品亚洲乱码少妇综合久久| or卡值多少钱| 美女脱内裤让男人舔精品视频| 最近的中文字幕免费完整| 亚洲美女视频黄频| 国产伦精品一区二区三区四那| 一二三四中文在线观看免费高清| 国产女主播在线喷水免费视频网站 | av黄色大香蕉| 国产精品精品国产色婷婷| .国产精品久久| 精品欧美国产一区二区三| 国产永久视频网站| 亚洲成人久久爱视频| 人人妻人人澡欧美一区二区| 亚洲国产精品成人久久小说| 免费看光身美女| 成人特级av手机在线观看| 在线播放无遮挡| 日韩三级伦理在线观看| 国产视频内射| av在线观看视频网站免费| 非洲黑人性xxxx精品又粗又长| 久久久久久九九精品二区国产| 一级黄片播放器| 婷婷六月久久综合丁香| 亚洲欧美成人精品一区二区| 婷婷色综合www| 少妇人妻一区二区三区视频| 国产成人精品一,二区| 久久99热这里只频精品6学生| 国产一级毛片七仙女欲春2| 如何舔出高潮| 国产一区二区亚洲精品在线观看| 欧美最新免费一区二区三区| 青春草国产在线视频| 爱豆传媒免费全集在线观看| 亚洲欧美日韩东京热| 午夜爱爱视频在线播放| 久久久成人免费电影| 中文字幕av在线有码专区| 性色avwww在线观看| 日韩欧美精品v在线| 亚洲人成网站高清观看| 久久97久久精品| 亚洲精品aⅴ在线观看| 九九爱精品视频在线观看| 搡老乐熟女国产| 天堂中文最新版在线下载 | 国产色爽女视频免费观看| 69人妻影院| 91久久精品电影网| 内地一区二区视频在线| 乱人视频在线观看| 你懂的网址亚洲精品在线观看| 美女高潮的动态| 国产成人精品婷婷| 三级经典国产精品| 青春草国产在线视频| 亚洲国产欧美在线一区| 看十八女毛片水多多多| 麻豆精品久久久久久蜜桃| 亚洲国产欧美在线一区| 成年版毛片免费区| 少妇人妻精品综合一区二区| 国产精品国产三级国产av玫瑰| 亚洲最大成人中文| 非洲黑人性xxxx精品又粗又长| 97超视频在线观看视频| 国产毛片a区久久久久| 久久人人爽人人片av| 最近最新中文字幕免费大全7| 国产成人freesex在线| 亚洲欧美中文字幕日韩二区| www.色视频.com| 亚洲在久久综合| 国产成人aa在线观看| 美女黄网站色视频| 国产精品一区二区三区四区免费观看| 日韩 亚洲 欧美在线| 亚洲精品乱久久久久久| 人妻制服诱惑在线中文字幕| 亚洲精品成人av观看孕妇| av又黄又爽大尺度在线免费看| 三级经典国产精品| 亚洲成人一二三区av| 久久久久久久午夜电影| 肉色欧美久久久久久久蜜桃 | 夫妻性生交免费视频一级片| 成年免费大片在线观看| 亚洲欧洲日产国产|