• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Continuities of Progressive and MixingAlgorithm for Surface Modeling and Editing

    2015-12-20 09:14:08LIUYukun劉玉坤
    關鍵詞:劉玉

    LIU Yukun(劉玉坤)

    1School of Information Science and Engineering,Hebei University of Science and Technology,Shijiazhuang 050018,China

    2Institute for Research of Applicable Computing,University of Bedfordshire,Luton LU1 3JU,UK

    Introduction

    The progressive and mixing algorithm (PAMA)is first presented in the author's thesis[1].The PAMA is a novel method of surface modeling and editing.

    In computer graphics,there are many researches involved,such as geometric algorithms of construction and edition of curves and surfaces,lighting,texturing,2Dand 3D rendering technologies, and human-computer interactions[2-6].The surface modeling and editing is one of the most active branches of researches in computer graphics.The algorithms of surface modeling and editing have been applied to other relevant fields,these being computer-aided design (CAD) and computer-aided geometric design(CAGD).They have played a very important role in industry designs of cars,ships,airplanes,etc.

    In the surface modeling and editing,one can use a variety of splines to fit varied shapes of curves and surfaces for design purposes.Among the splines,the fundamental and popular ones are Bézier-splines and B-splines.Béziersplines have many good geometric properties,for example,the convex hull property,variation-diminishing property,and convergence.

    A problem of Bézier-splines is that the degree of the Bézier curve or surface is dependent directly on the number of vertices of the Bézier polygon.This problem leads to the global characteristics of the Bézier control points,that is,each control point has an effect on the entire shape of the Bézier curve or surface.When a control point is moved,the entire shape of the Bézier curve or surface will be unexpectedly changed.

    To solve this problem,B-splines are used.B-splines are defined locally.That is,changes in one of control points affect the corresponding curve segment or surface patch locally without influences on other parts.This merit is very useful in practical designs,such as CAD and CAGD.However,it cannot meet the design needs only to change the positions of control points because these changes are limited.In real designs,one requires more control on shapes of curves and surfaces.For this reason,many more variants of splines,such as Beta-splines(orβ-splines),ν-splines,and τ-splines,are invented[7].They can improve the freedom of control on shapes of curves and surfaces and maintain the continuities of curvature or torsion of them.

    1 Related Studies

    For a curve,the basic idea of splines is to divide the given curve into smaller intervals, and form an approximating curve consisting of pieces of curve segments.As regards a surface,the similar idea is to split the given surface into smaller patches,and construct an approximating surface composed of pieces of surface patches.In this way,the splines curve or surface can replace the original curve or surface in a design.The former is usually easy to be modeled and changed for design purpose while the latter is not practical to be controlled for the same purpose.Since the global smoothness is necessary for the approximating curve or surface,the piecewise curve or surface must be concerned with continuities between two adjoined segments or patches.Let us first explore two types of continuities,parameter continuities and geometric continuities.

    1.1 Parameter continuities and geometric continuities

    Since splines are represented with spline functions,a curve or surface constructed with splines can be represented with parameter polynomials.A Bézier curve of degree nis written in a Bernstein polynomial form with one parameter as

    where uis the parameter and takes a value 0≤u≤1,biare the control points,and(u)are Bernstein polynomials and(u)=()n i ui(1-u)n-i.A Bézier surface of degree(m,n)is expressed in a Bernstein polynomial form with two parameters as

    where uand v are the parameters and take values 0≤u,v≤1;bi,jare the control points;(u)and(v)are Bernstein polynomials,(u)=( )m i ui(1-u)m-iand

    With parameter expressions,it is natural for piecewise curves and surfaces to have parameter continuities.Given two parameter curves,s(u),u ∈[u0,u1],and t(w),w∈[w0,w1],they meet at a common point P =s(u1)=t(w0).The conditions of k-order parametric continuities(Ck)at this common point are written as

    where u1=w0and i=0,1,…,k.This equation means that the k-order derivative of s(u)with respect to uat u1is equal to the k-order derivative of t(w)with repect to wat w0and u1=w0.

    According to studies of Hoschek and Lasser[7],and Farin[8],the zero-,the first-,and the second-order geometric continuities(G0,G1,and G2)are expressed as follows,

    and

    Compared with conditions of C0,C1and C2of Eq.(3)with i =0,1,and 2,conditions of G0,G1and G2of Eqs.(4),(5)and(6)are less restricted.Because conditions of parameter continuities are more constricted,some splines curves that do not meet these conditions can meet the conditions of the corresponding geometric continuities.Curves that meet the specific-order geometric continuity can provide a special visual smoothness,which can meet most design needs.For this reason,Beta-splines[9]are used to construct curves with two more degrees of shapemanipulation freedom by changing two shape parameters,β1andβ2,than Bézier-splines and B-splines.

    1.2 Beta-splines

    In Ref.[9],the authors use three conditions of Eqs.(4),(5)and(6)to join two neighboring curve segments to form a piecewise curve that meets the geometric continuities of G0,G1and G2.This curve is called Beta-splines curve.Its benefit is of adding two more degrees of freedom to shape changes than that of changing only positions of control points.In addition,two shape parameters,β1andβ2,of each control point can be changed independently,and they have distinct effects on the curve shape.By increasingβ1of a control point,the curve can bias along the arc direction at the control point.By increasingβ2of the control point,the curve can approach the control point.These merits equip designers with more tools to manipulate the curve shapes for their design purpose.

    1.3 Composite surfaces

    Like a piecewise curve that is formed with splines in different intervals and by joining them together with geometric continuity conditions,a composite surface can be constructed by joining splines patches with the conditions of geometric continuities on the common boundaries between different patches[7-8].An example of composite surfaces is a composite bi-cubic Bézier-splines surface.Each patch of the composite bi-cubic Bézier-splines surface is a tense product of two cubic Bézier-splines curves as follows

    where 0≤u,v ≤1,and bi,jare the control vertices.

    The tense product of two splines curves can,however,lead to a large amount of multiplication operations during the computing of algorithms for surface modeling and editing.This must be noticed because the applications of algorithms for surface modeling and editing must meet the needs of practical designs,such as CAD and CAGD,which cannot tolerate a slow processing caused by a large amount of multiplication computing.

    With the merits mentioned above,Beta-splines have been used to construct piecewise curves[9].A special case of Beta-splines curves is a piecewise cubic Bézier-splines curve,which is formed by joining two cubic Bézier-splines curve segments with meeting the G2conditions on the common points between any two neighboring segments[9-11].

    In Eq.(7),two parameterizations,u and v,are involved.Intuitively,a composite bi-cubic Bézier-splines surface with Beta-constraints should involve four shape parameters,two for each parameterization.They should be βu1andβu2for u parameterization andβv1andβv2for v parameterization.

    Beta-splines are also used to construct two special cases of composite surfaces by researchers[12-13].In Ref.[12],the authors take the same shape parameters in two parameterizations for each control point.In Ref.[13],one of the shape parameters(βu2)takes one for all control points so that the computing is decreased but the control on these parameters is no use.

    To retain the control of all four shape parameters with a limited amount of computing,the PAMA is presented for surface modeling and editing[1].To make it palpable,an introduction of the construction scheme of PAMA is presented in the next section and the continuities of PAMA will be discussed in section 3.

    2 Construction Scheme of PAMA

    Given a set of original control points P(i,j),a composite bi-cubic Bézier-splines surface can be constructed with the PAMA.The constructed mesh is composed of a set of vertices Q(l,k),which consists of four times vertices more than those of the set of P(i,j),as shown in Fig.1.Each patch is a bi-cubic Béziersplines patch with four original control points and sixteen constructed points.As shown in Fig.1,the patch of si,j(u,v)consists of four original control points[P(i,j),P(i+1,j),P(i+1,j+1),P(i,j+1)]and sixteen constructed points[Q(3i,3j),Q(3i+1,3j),Q(3i+2,3j),Q(3(i+1),3j),Q(3i,3j+1),Q(3i+1,3j+1),Q(3i+2,3j+1),Q(3(i+1),3j+1),Q(3i,3j+2),Q(3i+1,3j+2),Q(3i+2,3j+2),Q(3(i+1),3j+2),Q(3i,3(j+1)),Q(3i+1,3(j+1)),Q(3i+2,3(j+1)),Q(3(i+1),3(j+1))].

    Fig.1 A patch si,j(u,v)with original control points,P(i,j),and the constructed vertices,Q(l,k)(patches and vertices are identified at the points of the corresponding lower-left corners)

    To avoid the large computing cost of multiplication,the PAMA does not generate the constructed points Q(l,k)directly with a tense product of two Beta-splines.Instead,the PAMA generates points for each patch that is a bi-cubic Bézier-splines patch and joins these patches with constrains on their common boundaries.

    The PAMA adopts a scheme to generate different points of a patch(or mesh,say Q(l,k),as shown in Fig.1)from an original patch(say P(i,j),as shown in Fig.1)with different strategies.

    2.1 Points on common boundaries

    Common boundaries are along u or v direction,respectively,and isoparametric curves of a Bézier-splines surface,as shown in Fig.1.These curves can keep the second-order geometric continuities by setting the special conditions on their second-order partial derivatives.Along the u direction,they are

    and

    Along the v direction,they have the similar equations as Eqs.(8)-(10).With these equations,we can construct the points on the common boundaries as follows

    and

    2.2 Points on corners

    For points on corners,twists,the mixed partial derivativesare considered.Along with twists are twist vectors.Let us inspect Q(3i,3j)that is a corner point of four patches,si,j(u,v),si-1,j(u,v),si,j-1(u,v)and si-1,j-1(u,v),as shown in Fig.2.

    Fig.2 A point at the corner,Q(3i,3j),with relative patches and points

    Take si,j(u,v)as an example.According to Ref.[8],the twist vector at Q(3i,3j)is the deviation of the corner sub-quadrilateral formed with Q(3i,3j),Q(3i+1,3j),Q(3i+1,3j+1),and Q(3i,3j+1)from the tangent plane at this corner.Four adjoining patches meeting the condition of the first-order parametric continuity have the same twist at the corner[8].This condition is so restrictive to limit the shape changes around the corner.Therefore,the PAMA does not use this condition to construct the points at corners,but blends the effects of the control points along u and v directions into one equation with the linear interpolation as follows,

    where

    and

    2.3 Inside points

    As shown in Fig.1,four inside points in the patch si,j(u,v)are Q(3i+1,3j+1),Q(3i+2,3j+1),Q(3i+1,3j+2),and Q(3i+2,3j+2).To maintain the freedom of changing four shape parameters,βu1,βu2,βv1,andβv2,independently,the PAMA blends the variations of points along both uand v directions with the method presented in studies[9-11]and the bisection interpolation.The equations are written as follows

    3 Continuities of PAMA

    Through the construction process of PAMA discussed in section 2,we can summarize the continuities of PAMA.

    (1)Inside any bi-cubic Bézier-splines patch,si,j(u,v),it meets the C2conditions.

    (2)Along the common boundary curves between two neighboring patches,the C0(and G0)condition is met.

    (3)Along the u-and v-isoparametric curves in a composite surface constructed with PAMA, the G2conditions are met approximately.

    (4)The first partial derivatives agree along the common boundary curve between two neighboring patches.

    4 Conclusions

    The PAMA provides a new scheme for surface modeling and editing.It gives designers four more degrees of freedom to manipulate a 3Dobject for design purpose.In addition,the benefits from the PAMA can be listed as follows(details and more examples of applications can be referred to the thesis[1]).

    (1)Medium continuous conditions on the common boundaries are rewarded with more types of shapes.For example,a shape fold that cannot be generated under G2or G1is formed with PAMA,as shown in Fig.3.Figures 3(a)and 3(b)show the examples of G0while Figs.3(c)and 3(d)are the examples of G2.

    Fig.3 A clamshell box(a-b)and ashtray(c-d)constructed with PAMA:(a)the connection side marked with the black arrow is G0in the v direction;(b)the same box as(a)viewed in a different angle;(c)the dent marked with the black arrow is G2;and(d)the same ashtray as(c)viewed in a different angle

    (2)The effects of changing four shape parameters,βu1,βu2,βv1,andβv2,are distinguishable.

    (3)They retain the effects of the corresponding Betasplines curves[9].That is,changingβu1(i,j)orβv1(i,j)can make the surface bias locally around the P(i,j)point.Changingβu2(i,j)orβv2(i,j)can make the surface approach locally to the P(i,j)point.

    (4) The effects of shape parameters keep the orientation sense.Changingβu1orβu2makes shape changing along the u direction while varyingβv1orβv2makes shape changing along the v direction.

    [1]Liu Y K.A Novel Parallel Algorithm for Surface Editing and Its FPGA Implementation[D].Luton,the UK:University of Bedfordshire,2013:135-155.

    [2]Zhang J Q,Shi Z.Triangulation of Molecular Surfaces Based on Extracting Surface Atoms[J].Computers & Graphics,2014,38:291-299.

    [3]Wedel A,Badino H,Rabe C,et al.B-Spline Modeling of Road Surfaces with an Application to Free-Space Estimation[J].IEEE Transactions on Intelligent Transportation Systems,2009,10(4):572-583.

    [4]Kim K,Lepetit V,Woo W.Real-Time Interactive Modeling and Scalable Multiple Object Tracking for AR[J].Computers&Graphics,2012,36(8):945-954.

    [5]Park Y,Lepetit V,Woo W.Handling Motion-Blur in 3D Tracking and Rendering for Augmented Reality [J].IEEE Transactions on Visualization and Computer Graphics,2012,18(9):1449-1459.

    [6]Ben-Artzi A,Egan K,Durand F,et al.A Precomputed Polynomial Representation for Interactive BRDF Editing with Global Illumination[J].Transactions on Graphics,2008,27(2):Article No.13.

    [7]Hoschek J,Lasser D.Fundamentals of Computer Aided Geometric Design [M].Wellesley, Massachusetts:A K Peters,Ltd.,1993:217-243.

    [8]Farin G.Curves and Surfaces for Computer Aided Geometric Design,a Practical Guide[M].3rd ed.New York:Academic Press Inc.,1993:201-285.

    [9]Barsky B A, DeRose T D.Geometric Continuity of Parametric Curves: Constructions of Geometrically Continuous Splines [J].IEEE Computer Graphics and Applications,1990,10(1):60-68.

    [10]Farin G.Visually C2 Cubic Splines[J].Computer Aided Design,1982,14(3):137-139.

    [11]Boehm W.Curvature Continuous Curves and Surfaces[J].Computer Aided Geometric Design,1985,2(4):313-323.

    [12]Barsky B A,DeRose T D.The Beta2-Spline:a Special Case of the Beta-Spline Curve and Surface Representation[J].IEEE Computer Graphics and Applications,1985,5(9):46-58.

    [13]Joe B.Knot Insertion for Beta-Spline Curves and Surfaces[J].ACM Transactions on Graphics,1990,9(1):41-65.

    猜你喜歡
    劉玉
    基于隨機過程的三維粗糙表面接觸剛度研究
    表面技術(2022年9期)2022-09-27 12:43:28
    怎樣借助圖形來分析函數與不等式問題
    劉玉 李康楠作品
    大眾文藝(2022年10期)2022-06-08 02:33:28
    Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
    選修2—2期中考試預測卷(B卷)
    Influence of sulfur doping on the molecular fluorophore and synergistic effect for citric acid carbon dots?
    主持人按語
    劉玉坤:“三鐵公主”的奧運情
    小小微信幫大忙
    精彩從平凡中綻放
    ——首批全國崗位學雷鋒標兵劉玉的故事
    化工管理(2015年13期)2015-10-19 08:20:58
    精品久久久精品久久久| 国产精品久久电影中文字幕 | 99精品久久久久人妻精品| 亚洲成av片中文字幕在线观看| 精品一区二区三区视频在线观看免费 | 免费黄频网站在线观看国产| 国产精品麻豆人妻色哟哟久久| 精品欧美一区二区三区在线| 国产伦人伦偷精品视频| 国产不卡av网站在线观看| 极品少妇高潮喷水抽搐| 国产一区二区三区视频了| 色综合婷婷激情| 久久九九热精品免费| 免费在线观看完整版高清| 久久天堂一区二区三区四区| 日韩欧美一区视频在线观看| 国产又爽黄色视频| 午夜两性在线视频| 亚洲 欧美一区二区三区| 国产片内射在线| 国产精品 欧美亚洲| 久久久久视频综合| 欧美日韩成人在线一区二区| 天天躁狠狠躁夜夜躁狠狠躁| 国产精品熟女久久久久浪| 日日摸夜夜添夜夜添小说| 啦啦啦中文免费视频观看日本| 人人澡人人妻人| 操美女的视频在线观看| 狠狠狠狠99中文字幕| 人妻 亚洲 视频| 亚洲av成人不卡在线观看播放网| 又紧又爽又黄一区二区| 国产亚洲一区二区精品| 国产亚洲一区二区精品| 999精品在线视频| 九色亚洲精品在线播放| 成人精品一区二区免费| 欧美国产精品va在线观看不卡| 欧美国产精品va在线观看不卡| 怎么达到女性高潮| 色视频在线一区二区三区| 制服人妻中文乱码| 我的亚洲天堂| 制服人妻中文乱码| 天天躁日日躁夜夜躁夜夜| 欧美日韩亚洲国产一区二区在线观看 | 人人妻人人添人人爽欧美一区卜| 黄色a级毛片大全视频| 色视频在线一区二区三区| 国产免费视频播放在线视频| 黄色片一级片一级黄色片| 90打野战视频偷拍视频| 久久亚洲精品不卡| 自线自在国产av| 老司机深夜福利视频在线观看| 人人妻人人添人人爽欧美一区卜| 精品欧美一区二区三区在线| 这个男人来自地球电影免费观看| 99国产精品一区二区蜜桃av | 男女午夜视频在线观看| av免费在线观看网站| 亚洲精品久久午夜乱码| 夜夜夜夜夜久久久久| 久久人妻福利社区极品人妻图片| 久久精品国产亚洲av香蕉五月 | xxxhd国产人妻xxx| 国产成人免费观看mmmm| 免费看十八禁软件| 99国产精品免费福利视频| 久久国产精品男人的天堂亚洲| 另类精品久久| 国产在视频线精品| 精品国产乱子伦一区二区三区| 色综合欧美亚洲国产小说| 在线观看免费午夜福利视频| 满18在线观看网站| 人人妻人人澡人人爽人人夜夜| 男女无遮挡免费网站观看| 日韩制服丝袜自拍偷拍| 999久久久精品免费观看国产| 999精品在线视频| 日韩中文字幕欧美一区二区| 国产高清国产精品国产三级| 一级片'在线观看视频| 久久这里只有精品19| 自拍欧美九色日韩亚洲蝌蚪91| 黑人猛操日本美女一级片| 久久午夜综合久久蜜桃| 多毛熟女@视频| 午夜成年电影在线免费观看| 99热网站在线观看| 麻豆国产av国片精品| 国产成人精品久久二区二区91| 国产精品一区二区在线观看99| 自线自在国产av| 亚洲全国av大片| 麻豆乱淫一区二区| 久久婷婷成人综合色麻豆| 国产在线一区二区三区精| 老司机靠b影院| 丝袜美足系列| 成人国产av品久久久| 亚洲国产av新网站| 精品一区二区三区四区五区乱码| av片东京热男人的天堂| av又黄又爽大尺度在线免费看| 久久香蕉激情| 操出白浆在线播放| 日韩有码中文字幕| 汤姆久久久久久久影院中文字幕| 欧美日韩视频精品一区| 三级毛片av免费| 亚洲成a人片在线一区二区| 99久久国产精品久久久| 午夜福利在线观看吧| 狠狠婷婷综合久久久久久88av| 免费观看人在逋| 大型av网站在线播放| 高清毛片免费观看视频网站 | 纵有疾风起免费观看全集完整版| 国产成人精品在线电影| 国产在线免费精品| 国产欧美日韩精品亚洲av| 宅男免费午夜| 久久毛片免费看一区二区三区| 久久亚洲精品不卡| 一区二区日韩欧美中文字幕| 日本精品一区二区三区蜜桃| 国产精品免费一区二区三区在线 | 久久久久久久久免费视频了| 久久久久国产一级毛片高清牌| 无人区码免费观看不卡 | 国产精品1区2区在线观看. | 视频区图区小说| 欧美乱妇无乱码| 午夜福利在线观看吧| 亚洲黑人精品在线| 在线看a的网站| 日韩视频一区二区在线观看| 成年人免费黄色播放视频| 久久国产精品男人的天堂亚洲| 国产成人系列免费观看| 国产亚洲av高清不卡| 色婷婷久久久亚洲欧美| 97人妻天天添夜夜摸| 亚洲国产欧美日韩在线播放| 女人被躁到高潮嗷嗷叫费观| 不卡av一区二区三区| 久久国产亚洲av麻豆专区| 国精品久久久久久国模美| 老司机深夜福利视频在线观看| 一级a爱视频在线免费观看| 国产亚洲av高清不卡| 9热在线视频观看99| 国产精品99久久99久久久不卡| 侵犯人妻中文字幕一二三四区| 亚洲三区欧美一区| 水蜜桃什么品种好| 天堂8中文在线网| 天堂8中文在线网| 人妻久久中文字幕网| 搡老乐熟女国产| 又大又爽又粗| 人人妻人人澡人人看| 国产精品 欧美亚洲| 亚洲国产欧美网| 亚洲精品一卡2卡三卡4卡5卡| 日韩欧美国产一区二区入口| 久久久欧美国产精品| 日韩视频一区二区在线观看| 桃红色精品国产亚洲av| 天天操日日干夜夜撸| 国产欧美日韩一区二区精品| 国产97色在线日韩免费| 正在播放国产对白刺激| 99国产精品一区二区三区| 丝瓜视频免费看黄片| 每晚都被弄得嗷嗷叫到高潮| www.自偷自拍.com| 亚洲av美国av| 久久精品国产亚洲av高清一级| 久久午夜亚洲精品久久| 精品久久蜜臀av无| 丁香六月欧美| 亚洲精品国产区一区二| 精品一品国产午夜福利视频| 好男人电影高清在线观看| 精品人妻在线不人妻| 日韩欧美免费精品| 69精品国产乱码久久久| 正在播放国产对白刺激| 免费日韩欧美在线观看| 婷婷成人精品国产| 久久久欧美国产精品| 午夜福利在线观看吧| 亚洲国产中文字幕在线视频| 亚洲专区字幕在线| 亚洲色图av天堂| 韩国精品一区二区三区| 一进一出好大好爽视频| 丝袜美腿诱惑在线| 欧美日韩视频精品一区| 极品人妻少妇av视频| 一本—道久久a久久精品蜜桃钙片| 人人澡人人妻人| 777久久人妻少妇嫩草av网站| 日韩一区二区三区影片| 极品少妇高潮喷水抽搐| 人人妻人人爽人人添夜夜欢视频| 亚洲精华国产精华精| √禁漫天堂资源中文www| av电影中文网址| 91字幕亚洲| avwww免费| 狠狠婷婷综合久久久久久88av| 亚洲av欧美aⅴ国产| 三级毛片av免费| 婷婷丁香在线五月| 丝袜美足系列| 成人特级黄色片久久久久久久 | 18禁观看日本| 久久中文看片网| 国产成人精品久久二区二区91| 日本一区二区免费在线视频| 黑人欧美特级aaaaaa片| 一本久久精品| 18禁观看日本| 亚洲成人国产一区在线观看| 51午夜福利影视在线观看| 国产成人精品久久二区二区91| 91av网站免费观看| 亚洲人成电影观看| 亚洲成a人片在线一区二区| 在线播放国产精品三级| 国精品久久久久久国模美| 高清欧美精品videossex| 黑人巨大精品欧美一区二区mp4| 自线自在国产av| 新久久久久国产一级毛片| 性高湖久久久久久久久免费观看| 最近最新免费中文字幕在线| 制服诱惑二区| 在线观看免费午夜福利视频| 狂野欧美激情性xxxx| 多毛熟女@视频| 777米奇影视久久| 成人18禁高潮啪啪吃奶动态图| 午夜日韩欧美国产| 国产精品99久久99久久久不卡| 老熟女久久久| 丝袜美腿诱惑在线| 老司机午夜十八禁免费视频| 黄色毛片三级朝国网站| 免费在线观看影片大全网站| 岛国在线观看网站| 国产精品99久久99久久久不卡| 999精品在线视频| 免费少妇av软件| 国产一区二区三区在线臀色熟女 | 在线十欧美十亚洲十日本专区| 黑人巨大精品欧美一区二区mp4| 久久中文看片网| 欧美日韩成人在线一区二区| 最新美女视频免费是黄的| 水蜜桃什么品种好| 99re在线观看精品视频| 国产亚洲精品久久久久5区| 精品久久久久久电影网| 久久ye,这里只有精品| 久久热在线av| 亚洲欧洲精品一区二区精品久久久| 成人精品一区二区免费| 国产亚洲一区二区精品| 999精品在线视频| 国产免费av片在线观看野外av| 一夜夜www| 国产成人欧美在线观看 | 大香蕉久久成人网| 午夜精品久久久久久毛片777| www.熟女人妻精品国产| 色综合婷婷激情| 亚洲全国av大片| 热99久久久久精品小说推荐| 性色av乱码一区二区三区2| 高清av免费在线| 亚洲专区字幕在线| 免费看a级黄色片| 亚洲七黄色美女视频| 狂野欧美激情性xxxx| 国产av国产精品国产| 国产亚洲一区二区精品| 久久久欧美国产精品| 后天国语完整版免费观看| 久久久久国产一级毛片高清牌| 国产精品电影一区二区三区 | 国产日韩欧美视频二区| 91麻豆精品激情在线观看国产 | 国产亚洲av高清不卡| 久久人人97超碰香蕉20202| 国产亚洲精品第一综合不卡| 国产一卡二卡三卡精品| 久久香蕉激情| 国产亚洲精品一区二区www | 99国产极品粉嫩在线观看| videosex国产| 色94色欧美一区二区| 国产三级黄色录像| av网站免费在线观看视频| 日本撒尿小便嘘嘘汇集6| 久久午夜综合久久蜜桃| 成年版毛片免费区| 精品亚洲成a人片在线观看| 老汉色av国产亚洲站长工具| 久久中文字幕一级| 亚洲人成电影免费在线| 国产高清国产精品国产三级| 亚洲三区欧美一区| 国产欧美亚洲国产| 久久九九热精品免费| av片东京热男人的天堂| 国产高清国产精品国产三级| 成人永久免费在线观看视频 | 少妇裸体淫交视频免费看高清 | 亚洲成人国产一区在线观看| 精品免费久久久久久久清纯 | 青草久久国产| 777米奇影视久久| xxxhd国产人妻xxx| 啦啦啦中文免费视频观看日本| 高清欧美精品videossex| 中文亚洲av片在线观看爽 | 午夜福利一区二区在线看| 国产精品久久久久久人妻精品电影 | 如日韩欧美国产精品一区二区三区| 成人国产av品久久久| 欧美在线黄色| 夜夜爽天天搞| 黄色怎么调成土黄色| av线在线观看网站| 免费观看av网站的网址| 欧美成人免费av一区二区三区 | 最近最新免费中文字幕在线| 丰满人妻熟妇乱又伦精品不卡| 国产视频一区二区在线看| 宅男免费午夜| 国产精品偷伦视频观看了| 热re99久久国产66热| 色在线成人网| 人人妻人人澡人人爽人人夜夜| 久久精品91无色码中文字幕| 香蕉国产在线看| 亚洲欧洲精品一区二区精品久久久| 9热在线视频观看99| 人人妻人人爽人人添夜夜欢视频| 亚洲一卡2卡3卡4卡5卡精品中文| 啦啦啦视频在线资源免费观看| 精品人妻1区二区| 国产有黄有色有爽视频| 操出白浆在线播放| 亚洲欧洲精品一区二区精品久久久| 侵犯人妻中文字幕一二三四区| 国产精品香港三级国产av潘金莲| 久久99一区二区三区| 欧美国产精品一级二级三级| 亚洲五月色婷婷综合| 老汉色av国产亚洲站长工具| 精品国产一区二区久久| 不卡av一区二区三区| 国产不卡av网站在线观看| 制服诱惑二区| 日日爽夜夜爽网站| 亚洲精品在线美女| 一个人免费在线观看的高清视频| 精品午夜福利视频在线观看一区 | 亚洲精品中文字幕在线视频| 国产av精品麻豆| 欧美另类亚洲清纯唯美| 曰老女人黄片| 91成人精品电影| 在线观看一区二区三区激情| 国产免费福利视频在线观看| 久久99热这里只频精品6学生| 大型黄色视频在线免费观看| 大型av网站在线播放| 国产aⅴ精品一区二区三区波| 女同久久另类99精品国产91| 国产精品免费一区二区三区在线 | 欧美av亚洲av综合av国产av| 啪啪无遮挡十八禁网站| 人人澡人人妻人| 丝瓜视频免费看黄片| 狠狠狠狠99中文字幕| 在线av久久热| 欧美国产精品va在线观看不卡| 国产真人三级小视频在线观看| 男女下面插进去视频免费观看| 午夜久久久在线观看| 一级黄色大片毛片| 久久中文看片网| 波多野结衣一区麻豆| 中文字幕av电影在线播放| 午夜免费成人在线视频| 国产成人精品在线电影| 亚洲伊人久久精品综合| 99国产精品99久久久久| 久久久国产欧美日韩av| av超薄肉色丝袜交足视频| 一级毛片女人18水好多| 亚洲第一青青草原| 最新的欧美精品一区二区| 久久人妻av系列| 飞空精品影院首页| 欧美黄色片欧美黄色片| 1024视频免费在线观看| 国产精品一区二区在线不卡| 热re99久久精品国产66热6| 十八禁网站免费在线| 最黄视频免费看| 欧美乱码精品一区二区三区| 国产精品影院久久| 国产精品自产拍在线观看55亚洲 | 成人国语在线视频| 亚洲专区国产一区二区| 美女高潮到喷水免费观看| 国产麻豆69| 午夜福利影视在线免费观看| 国产又爽黄色视频| 国产精品成人在线| 一区二区三区乱码不卡18| 国产精品久久久人人做人人爽| 热99re8久久精品国产| 亚洲欧美日韩另类电影网站| 叶爱在线成人免费视频播放| 天堂8中文在线网| 搡老岳熟女国产| 午夜老司机福利片| 国产精品一区二区精品视频观看| 欧美黄色片欧美黄色片| 国产黄频视频在线观看| 又黄又粗又硬又大视频| 精品亚洲乱码少妇综合久久| 欧美黄色淫秽网站| 中文亚洲av片在线观看爽 | 99久久人妻综合| 免费女性裸体啪啪无遮挡网站| 成人18禁高潮啪啪吃奶动态图| av线在线观看网站| 丝袜人妻中文字幕| 午夜久久久在线观看| av免费在线观看网站| 宅男免费午夜| av网站免费在线观看视频| 夫妻午夜视频| 亚洲av成人不卡在线观看播放网| 日本a在线网址| 最新在线观看一区二区三区| 亚洲一区中文字幕在线| 亚洲成av片中文字幕在线观看| 欧美另类亚洲清纯唯美| 999久久久精品免费观看国产| 色94色欧美一区二区| 精品一区二区三区av网在线观看 | 五月开心婷婷网| 操美女的视频在线观看| 欧美激情久久久久久爽电影 | 丁香欧美五月| 久久精品91无色码中文字幕| 啦啦啦在线免费观看视频4| 三上悠亚av全集在线观看| 国产av精品麻豆| 国产精品久久电影中文字幕 | 午夜成年电影在线免费观看| 丝袜在线中文字幕| 一夜夜www| 天堂8中文在线网| 国产又爽黄色视频| 亚洲色图 男人天堂 中文字幕| 男男h啪啪无遮挡| 成年动漫av网址| tocl精华| 男男h啪啪无遮挡| 丝袜喷水一区| 免费看十八禁软件| 香蕉久久夜色| 亚洲久久久国产精品| 国产一区二区在线观看av| 香蕉久久夜色| 欧美黄色片欧美黄色片| aaaaa片日本免费| 国产精品1区2区在线观看. | 王馨瑶露胸无遮挡在线观看| 久久狼人影院| 99香蕉大伊视频| 欧美人与性动交α欧美软件| 欧美老熟妇乱子伦牲交| aaaaa片日本免费| 成人特级黄色片久久久久久久 | 国产精品成人在线| 一本大道久久a久久精品| 亚洲,欧美精品.| 少妇的丰满在线观看| 亚洲三区欧美一区| 极品教师在线免费播放| 两个人看的免费小视频| 精品亚洲成国产av| 久久九九热精品免费| 一本大道久久a久久精品| 国产伦理片在线播放av一区| 十分钟在线观看高清视频www| 亚洲欧美激情在线| 午夜福利免费观看在线| 免费av中文字幕在线| www.自偷自拍.com| 麻豆av在线久日| 黄色毛片三级朝国网站| 国产精品久久久人人做人人爽| 日本wwww免费看| 国产视频一区二区在线看| 国产伦人伦偷精品视频| 精品少妇久久久久久888优播| 在线观看一区二区三区激情| 99香蕉大伊视频| 国产精品秋霞免费鲁丝片| 精品国产乱子伦一区二区三区| 免费少妇av软件| 国产国语露脸激情在线看| 成人av一区二区三区在线看| 亚洲精品自拍成人| 午夜福利影视在线免费观看| 午夜福利免费观看在线| 久久久精品94久久精品| 另类精品久久| 国产成人精品久久二区二区91| 亚洲国产中文字幕在线视频| 国产深夜福利视频在线观看| 青草久久国产| 水蜜桃什么品种好| 男女下面插进去视频免费观看| 我要看黄色一级片免费的| 国产av精品麻豆| 黑人操中国人逼视频| 极品教师在线免费播放| 香蕉久久夜色| 日韩欧美免费精品| 香蕉久久夜色| 狠狠婷婷综合久久久久久88av| 色综合婷婷激情| 热99久久久久精品小说推荐| 久久久国产一区二区| 久久狼人影院| 亚洲综合色网址| 国产日韩欧美在线精品| 极品人妻少妇av视频| 自线自在国产av| 无人区码免费观看不卡 | 亚洲中文av在线| 久久久久久久久免费视频了| 久久精品熟女亚洲av麻豆精品| 久久香蕉激情| 在线观看免费视频日本深夜| 午夜福利免费观看在线| 成人18禁在线播放| 在线观看一区二区三区激情| 成人国产av品久久久| 国产精品自产拍在线观看55亚洲 | 真人做人爱边吃奶动态| 国产精品国产av在线观看| av又黄又爽大尺度在线免费看| 免费看a级黄色片| 久久久精品国产亚洲av高清涩受| 亚洲国产欧美日韩在线播放| 欧美日韩视频精品一区| 又紧又爽又黄一区二区| 又大又爽又粗| 色老头精品视频在线观看| 亚洲人成77777在线视频| 亚洲午夜理论影院| 女人久久www免费人成看片| 黄色毛片三级朝国网站| 成人亚洲精品一区在线观看| 美女福利国产在线| 大陆偷拍与自拍| 亚洲专区字幕在线| 日韩视频一区二区在线观看| 亚洲色图综合在线观看| 亚洲男人天堂网一区| 最近最新中文字幕大全电影3 | 久久久国产成人免费| 丝袜在线中文字幕| 最黄视频免费看| 亚洲伊人色综图| e午夜精品久久久久久久| 手机成人av网站| 日韩人妻精品一区2区三区| 一级黄色大片毛片| 欧美亚洲 丝袜 人妻 在线| 欧美日韩亚洲高清精品| 欧美人与性动交α欧美精品济南到| 日本五十路高清| 少妇的丰满在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 别揉我奶头~嗯~啊~动态视频| 国产无遮挡羞羞视频在线观看| 免费女性裸体啪啪无遮挡网站| 久久精品亚洲精品国产色婷小说| 叶爱在线成人免费视频播放| 亚洲自偷自拍图片 自拍| 中文字幕另类日韩欧美亚洲嫩草| 超碰成人久久| 欧美精品一区二区大全| 97人妻天天添夜夜摸| 欧美亚洲 丝袜 人妻 在线| 中文亚洲av片在线观看爽 |