• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First Principles Molecular Dynamics Computation on Ionic Transport Properties in Molten Salt Materials

    2015-12-18 06:52:11ChungFuChenYiChiaChengandCheWunHong
    關(guān)鍵詞:樓面承載力荷載

    Chung-Fu Chen,Yi-Chia Cheng and Che-Wun Hong,2

    First Principles Molecular Dynamics Computation on Ionic Transport Properties in Molten Salt Materials

    Chung-Fu Chen1,Yi-Chia Cheng1and Che-Wun Hong1,2

    Based on the Hellmann-Feynman theorem,which integrates the molecular dynamics simulation with computational quantum mechanics,this research simulates the ionic transport in the LiCl-KCl molten salt materials using so called “first principles molecular dynamics(FPMD)”technique without employing an empirical potential model.The main purpose of this computational FPMD focuses on the evaluation of important transport properties,such as diffusion coefficient,ionic conductivity,shear viscosity,and thermal conductivity,using the Green-Kubo relationship.All simulation results agree well with experimental data published in existing literatures within an acceptable range.FPMD calculations are proved to be a powerful tool for prediction of the molecular structure,transport properties,as well as ionic interactions from the microscopic aspect.It is expected to integrate further with a multi-scale simulation tool for future function expansion to macroscopic performance prediction.

    first principles molecular dynamics(FPMD),molten salt,diffusion coefficient,ionic conductivity,shear viscosity,thermal conductivity.

    1 Introduction

    Due to the superior stability of molten salts at both high and low temperatures,there are many engineering applications,such as stationary energy storage[Bradwell,Kim,Sirk,and Sadoway(2012)],pyro-chemical treatment of nuclear wastes[Fukasawa,Uehara,Nagai,Sato,Fujii,and Yamana(2012)],as a coolant in nuclear reaction processes[Waldrop(2012);Brun(2007)],and being electrolytes in thermally activated batteries[Guidotti and Masset(2006);Masset and Guidotti(2007);Masset,Henry,Poinso,and Poignet(2006)].Additionally,similar phase change materials can be applied to modern micro and nano technologies,such asa micro heatsinkfor the cooling of electronic components[Faraji,Mustapha,and Mostafa,(2014)],thermal doping on semiconductors[Eslamian and Saghir(2012)],and rapid accumulation of particles suspended in a thermocapillary liquid bridge[Kuhlmann,Lappa,Melnikov,Mukin,Muldoon,Pushkin,Shevtsova,and Ueno(2014)].E-specially under high temperature operating conditions,molten salt batteries can provide extremely high output power due to the high ionic conductivity achieved in molten electrolytes.They can sustain high level of mechanical and thermal stress[Masset(2006);Masset,Schoeffert,Poinso,and Poignet(2005)]with superior stability in long-time storage[Haimovich,Dekel,and Brandon(2009);Haimovich,Dekel,and Brandon(2015);Fujiwara,Inaba,and Tasaka(2011)].Due to extensive utilizations in various applications,their transport properties(diffusion coefficient,ionic onductivity,shear viscosity,and thermal conductivity etc.)become the main concern in macroscopic performance evaluations.However,measurements on high temperature molten salts can be costly and limited,computational simulation techniques provide a powerful tool for evaluating the transport properties,as well as details in molecular structures and ionic interactions,provided that a proper mathematical model can be set up[Srivastava and Atluri(2002)].

    To date,classical molecular dynamics(MD)potential models contain the physics of ionic attraction,repulsion,dispersion and polarization effects etc.,they can be used to predict many properties of molten salts and their solutes[Frenkel and Smit(1996);Lantelme and Turq(1982);Caccamo and Dixon(1980);Cheng Lee,and Hong(2007);Cheng,Chen,and Hong(2008);Chen,Li,and Hong(2015)].Fumi and Tosi(1964)developed potential functions and then tuned all parameters for all kinds of alkali halides to reproduce the properties of crystals.Galamba,Castro,and Ely(2004,2005,2007)successfully computed the shear viscosity and thermal conductivity of molten KCl and NaCl with equilibrium MD and non-equilibrium MD simulations.Nevins and Spera(2007)examined the various calculation conditions to obtain a good compromise between simulation time and viscosity output quality.Although many research reports have depicted those on typical molten alkali halides using MD simulations,it is still a troublesome matter to fit many semi-empirical potential parameters that could be time-consuming and subject to inevitable uncertainties.

    First principles molecular dynamics(FPMD)simulations are a new technique to deal with the potential functions between various atoms and ions,but still keep the methodology of the classical MD.They can be computationally intensive and therefore are limited to much smaller systems and shorter simulation time than classical MD methods[Galamba and Cabral(2007a,2007b);San,Chiu,and Hong(2011);San and Hong(2011);Bengston,Nam,Saha,Sakidja,and Morgan(2014)].The main purpose of the FPMD simulation in this paper focuses on the evaluation of important transport properties,such as diffusion coefficient,ionic conductivity,shear viscosity,and thermal conductivity of molten LiCl-KCl systems.All simulation results will be compared against experimental data or classical MD results(if no experimental results available)published in existing literatures.

    2 Methodology

    The FPMD simulation technique in this paper is based on the Hellmann-Feynman(H-F)theorem which integrates the MD simulation with computational quantum mechanics[Hong and Tsai(2010)].H-F theorem mainly describes how to calculate the total energy and its spatial gradient in the Hamiltonian system;that can be expressed by:

    where E is the total energy,ψ is the wave function,H is the Hamiltonian operator,λ is a specified nuclear position,and Fijis the inter-molecular force between atoms i and j.If λ is a given degree of freedom of the system,then the term dE/dλ given by Eq.(2)can be interpreted as the generalized inter-molecular force.The methodology of the FPMD simulation in this paper is to employ the density functional theory(DFT),which calculates the density functional instead of the wave function of a multi-electron system[Kohn and Sham(1965);Hong and Chen(2011)].For a system of n electrons,ρ(r)represents the total electron density at a particular position r in space.The electronic energy,denoted by E[ρ],is considered as a functional of the electron density.There is a single corresponding electronic energy E[ρ]for a given function ρ(r).The precise electron density and the electronic energy in the DFT are expressed by:

    where ETis the kinetic energy term arisen from the motion of the electrons;EVincludes the potential energy of the nuclear-electron attraction and the repulsion between pairs of nuclei;EJis the electron-electron repulsion term;and EXCrepresents the exchange-correlation term which includes the remaining part of the electronelectron interactions.All terms are functions of electron density function ρ(r),except for the nuclear-nuclear repulsion.Our FPMD simulations were carried out on the CASTEP(Cambridge serial total energy package)platform[Segall Lindan,Probert,Pickard,Hasnip,Clark,and Payne(2002);Clark,Segall,Pickard,Hasnip,Probert,Refson,and Payne,(2005)].The first step was to optimize the molecular structures of LiCl,KCl,and eutectic LiCl-KCl electrolytes by minimizing the total energy of the simulation system.All simulations were run with the canonical ensemble(NPT)using the Nosé-Hoover thermostat[Nosé(1984)]for 200 time steps on LiCl and KCl,and 400 time steps on eutectic LiCl-KCl to equilibrate the simulation system.Energy cutoff was set at 300 eV and periodic boundary conditions(PBCs)were employed in both classical MD and FPMD to represent a macro-size bulk material.

    3 Results and Discussions

    3.1 Convergence tests

    Since FPMD simulations are computationally intensive,normally we try the best to reduce the simulation time by decreasing the number of atoms involved.However,that will incur numerically unstable and divergence as well as inaccuracy.Convergence tests were carried out to check if the number of atoms in a single unit cell with 16,32,64,128,256,512,and 1024 atoms is enough during a reasonable simulation time(8 ps).Figure 1 shows that the simulation results of the system density,total energy,and diffusion coefficient tend to converge when the number of atoms is above 256 atoms per unit cell.The error bars in the diagram show that the fluctuation ranges from 7%to 10%if we choose 16 to 128 atoms.If the atom number is greater than 256,all error bars become much shorter(less than 3%).Hence,in the later cases of this paper we will set the number at 256 atoms per unit cell.

    Figure 2 shows that we tried to test how long the FPMD simulation should perform.The simulation time was set from 2 to 48 ps(time step is 2fs in each case)and the results found that after 16 ps,all error bars became very small and the results could be converged.Table 1 specially compares the predicted density of the system with those experimental data from Janz,Allen,Bansal,Murphy,and Tomkins(1979).All simulation and experimental results of molten LiCl,KCl,and eutectic LiCl-KCl salts are in good agreement.

    3.2 Molecular structure analysis

    To investigate if the molecular structure of high temperature molten salts at pseudoliquid(molten)state or not,the radial distribution function(RDF)for the system has to be examined.RDF,denoted as g(r),is a spatial parameter to investigate the molecular structure by counting the local number density divided by the system density.The mathematical definition of g(r)is expressed by

    Figure 1:Convergence tests of(a)density,(b)total energy,and(c)diffusion coefficients,with different number of 16,32,64,128,256,512,and 1024 atoms in a unit cell of LiCl-KCl system at 1123K.The error bars show the range of output data variations.

    where hi indicates the time average,N(r,?r)is the number of atoms within a spherical shell of r+?r,N is the total number of atoms in the systems,ρ is the system number density,and V(r,?r)is volume of the shell.

    Figure 3 illustrates all RDFs of ion-pairs of Li+?Cl?,Li+?Li+,Li+?K+,K+?Cl?,K+?K+,and Cl??Cl?in the LiCl-KCl system with 256 atoms in a unit cell at 1023K.The figure shows that Li+?Cl?and K+?Cl?pairs have the highest first peaks at the shortest distance.It indicates that they tend to aggregate together due to the attractive Columbic force between them.For the other ion pairs,since they have the same sign of charges,the repulsive force makes them more separation.However,all of them converge and fluctuate near g(r)=1 after a certain distance,that means they all reach molten state in equilibrium.

    Figure 2:Convergence tests of(a)density,(b)total energy,and(c)diffusion coefficient,with different simulation time(2,4,6,8,16,24,and 48 ps,respectively)at the same time step of 2 fs in the LiCl-KCl system with 256 atoms at1123K.The error bars show the range of output data variations.

    Table 2 outlines the structural parameters for LiCl,KCl,and eutectic LiCl-KCl molten salt systems in their RDF diagrams.In which rmaxis the position of the first peak;hmaxis the height of the first peak;rminis the position of the first minimum.Since it is difficult to measure such kind of structure parameters from experiments,we compare our results with some classical molecular dynamics simulation results published in existing literatures[Lantelme and Turq(1982);Caccamo and Dixon(1980)],although slightly under different simulation temperatures.The structural results are in good agreement in general,confirming the validity of the FPMD calculations.Introduction of the ionic polarization calculation in the FPMD simulation,whereby the Columbic repulsion and attraction are considered,may improve the simulation precision and accuracy.

    Table 1:Densities(g cm )of LiCl,KCl,and eutectic LiCl-KCl molten salts at various temperatures above their melting points.

    3.3 Diffusion coefficient

    The slope of the mean square displacement(MSD)versus time is related to the diffusivity of the activating ions,according to the Einstein expression:

    whereDαis the diffusion coefficient of aα-type ion,δri(t)is the displacement in timet,and the angular brackets denote ensemble average over all the ions of speciesα.To investigate the temperature effect on the ionic diffusivity,we checked the diffusion coefficients of each ion in individual LiCl,KCl and eutectic LiCl-KCl

    molten salt electrolytes at multiple temperatures.Since their melting points are different,so their operating temperature ranges are also different.Figure 4 and Figure 5 show that the FPMD simulation results predict almost linearly proportional effect of temperature on diffusion coefficients.Among all,the trend is that the higher the temperature,the greater the diffusivity.Also DLi>DClin the LiCl and DK>DClin the KCl system at the same temperature in Figure 4 and Table 3.In the eutectic LiCl-KCl system in Figure 5 and Table 3,it is DLi>DCl>DKin general.They are all due to the atomic mass effect,where Li< Cl< K,that the lighter the ion,the greater the diffusivity.

    Table 2:Comparison of structural parameters for LiCl,KCl,and eutectic LiCl-KCl molten salts in their RDF diagrams.

    Figure 3:Radial distribution functions,g(r),of all ion-pairs in the LiCl-KCl system with 256 atoms in a unit cell at 1023K.

    3.4 Ionic conductivity

    Using the Green-Kubo(G-K)relation(Frenkel and Smit,1996),the ionic conductivity λ can be calculated from the time integral of the charge flux autocorrelation function through the FPMD method:

    where V is the simulation cell volume,kBis the Boltzmann constant,T is temperature,and the charge flux vector JZ(t)is defined by in which zie is the charge of the ion,and viis the velocity of atom i.Each of the charge flux vector has three independent components(i.e.,JxZ,JyZ,JzZ),which provide an independent estimate of ionic conductivity in each direction.The averaged value(divided by 3)is taken as the overall ionic conductivity.

    Figure 4:Comparison of FPMD simulation results with experiments on diffusion coefficients of(a)Li in LiCl,(b)Cl in LiCl,(c)K in KCl and(d)Cl in KCl at multiple temperatures.Black squares represent FPMD simulation results,and red circles are experimental results from Janz et al.(1979).The error bars show the uncertainties from the experiment,in which Li±20%,Cl±20%in the LiCl system and K±20%,Cl±20%in the KCl system.

    Figure 6 compares the predicted ionic conductivity results of LiCl,KCl,and LiCl-KCl melts with published experimental data from Janz,Allen,Bansal,Murphy,and Tomkins(1979).Our FPMD approach slightly overestimates the experiments.However,the errors are more or less within the uncertainties of experiments indi-cated by the experimental report.Advanced investigation including the polarization effect should be able to improve the accuracy of the calculated results.Our FPMD calculations show that the ionic conductivities of molten salt electrolytes increase with increasing temperatures,same as the increasing diffusion coefficient accompanied by the rising of temperature.

    Figure 5:Comparison of FPMD simulation results with other classical MD results on diffusion coefficients of ions of(a)Li,(b)Cl,and(c)K in the eutectic LiCl-KCl molten salt at multiple temperatures.Black square represent FPMD simulation results,cyan triangles are from classical MD-1[Lantelme and Turq(1982)],and purple stars are from another classical MD-2[Caccamo and Dixon(1980)].

    3.5 Shear viscosity

    Table 3:Densities and diffusion coefficients of LiCl,KCl,and eutectic LiCl-KCl molten salts at multiple temperatures.

    wherekBis the Boltzmann constant,Tis temperature,Vis the cell volume,andSxyis thexy-component of the stress tensor.Sxyis defined as

    wheremiis the mass of ioni,vxiandvyiare thex-component andy-component ofvi(the velocity of ioni),xijis thex-component of distancerij=ri?rj,andfy(rij)is they-component of the forcefijon ionidue to ionj.Each of the independent offdiagonal components of the stress tensor(i.e.,Sxy,Syx,Sxz,Szx,SyzandSzy)gives an independent evaluation of the shear viscosity,and there are six off-diagonal terms,so the statistical precision can be improved by averaging over six that result from the stress tensor.

    Figure 6:Comparison of FPMD simulation results with experiments on Ionic conductivities of(a)LiCl,(b)KCl,and(c)eutectic LiCl-KCl molten salts at multiple temperatures.Black squares represent FPMD simulation results,red circles are experimental results from Janz et al.(1979).The error bars show the uncertainties from the experiment,in which LiCl±2.5%,KCl±1.0%,and LiCl-KCl±2.5%when T<1050K and LiCl-KCl±4.0%when T>1050K.

    The correlation function has been averaged over 1,000 time steps to ensure excellent statistics that repeated runs give the same platform value adequately.Shear viscosities of LiCl,KCl and LiCl-KCl molten salts have been calculated at multiple temperatures,above the melting point with an interval of 100 K.Figure 7 shows that they are in close agreement with experimental results form Janz,Allen,Bansal,Murphy,and Tomkins(1979).For LiCl and KCl systems,the predictions are under-estimated,but the errors are within the experimental uncertainties of±10%and±3%,respectively.For the eutectic LiCl-KCl,the calculation result-s are under-estimated below 900K and over-estimated when above 900K,but still within the experimental uncertainty of±15%.For LiCl,KCl,and LiCl-KCl molten salt systems,the shear viscosities decrease as the temperature increases,in contrast to the proportional trend of diffusion coefficients and ionic conductivities on temperature.

    Figure 7:Comparison of FPMD simulation results with experimental fit on shear viscosities of(a)LiCl,(b)KCl,and(c)eutectic LiCl-KCl molten salts at multiple temperatures.Shear viscosities of(a)LiCl,(b)KCl,and(c)eutectic LiCl-KCl molten salt at multiple temperatures.Black squares are simulation results and red empty circles as well as their dashed dot lines are experimental fit from Janz et al.(1979).The error bars show the uncertainties from the experiment,in which LiCl±10.0%,KCl±3.0%,and LiCl-KCl±15.0%.

    Figure 8:Comparison of FPMD simulation results with experiments on thermal conductivities of(a)LiCl,(b)KCl,and(c)eutectic LiCl-KCl molten salts at multiple temperatures.Black squares are simulation results,green triangles are experimental results from Nagasaka et al.(1992),and blue diamonds are from experiments carried out by Williams(2006).The error bars show the uncertainties from the experiment,in which LiCl±11.0%,KCl±5.0%,and LiCl-KCl±20.0%.

    3.6 Thermal conductivity

    The thermal conductivity κ can be calculated from the time integral of the energy flux autocorrelation function,based on the G-K formula

    where kBis the Boltzmann constant,T is temperature,V is the simulation cell volume,JEis the energy flux,and JxEis the x-component of the energy flux vector.

    Table 4:Ionic conductivities,shear viscosities,and thermal conductivities of LiCl,KCl,and eutectic LiCl-KCl molten salts at various temperatures.

    The energy flux vectorJEis defined as

    and the energy per particleEiis defined as

    (4)對于梁的加固,原有梁的混凝土強度不足,而且樓面又改為鋼筋混凝土疊合層樓面,增大了梁的荷載,導(dǎo)致梁的承載力不足,因此對梁采用加大截面的方法進行加固。

    wheremiis the mass of ioni,viis the velocity of the ioni,Uij(rij)is the pair potential between particlesiandj,rijis the position vector between particlesiandj,andfijis the force on ionidue to ionj.

    Thermal conductivities of those molten salts have been calculated at multiple temperatures,above their melting points with an interval of 100 K.The calculation results are listed in Table 4 in detail.Figure 8 compares the simulated thermal conductivity values with those obtained from experimental data[Nagasaka Nakazawa,and Nagashima(1992);Williams(2006)]for single LiCl,KCl,and etuctic LiCl-KCl systems.All calculation results are within the uncertainties of experimental results,in which±10%for LiCl,±3%for KCl,and±15%for LiCl-KCl,respectively.The inversely proportional trend between the thermal conductivity and temperature is in accordance with experimental results.Table 4 also summarizes all the calculation results of transport properties,including ionic conductivities,shear viscosities,and thermal conductivities of LiCl,KCl,and LiCl-KCl molten salt electrolytes,which will be used to input to a commercial computational fluid dynamics(CFD)software to evaluate the macroscopic performance of a thermally activated battery.

    4 Conclusions

    An advanced first principles molecular dynamics(FPMD)simulation approach,based on the Hellmann-Feynman(HF)theorem,integrates the molecular dynamics simulation with the density functionaltheory(DFT)ofmulti-electron systems.This paperstudies the ionic structure and transportproperties(diffusion coefficient,ionic conductivity,shear viscosity,and thermal conductivity)in LiCl,KCl,and LiCl-KCl molten salts.In the preliminary convergence test,it has been proved that a unit cell of 216 atoms and simulation time of 16 ps are sufficient to achieve adequately converged results with acceptable accuracy.

    The major advantage of the FPMD calculation technique is that it predicts the ionic interaction and transport properties without employing an empirical potential model,which is the major bottleneck of classical MD techniques.The calculation results can provide a well guidance when experimental measurements are difficult and costly to conduct.The predicted transport properties of LiCl,KCl,and LiCl-KCl molten salts are in good agreement with experimental results from published literatures.Diffusion coefficients and ionic conductivities are proportional to the operating temperature.However,shear viscosities and thermal conductivities of molten salts are proved to be inversely proportional to the rising temperature.

    In summary,the single molten salt LiCl has a better ionic diffusivity,fluidity,and ionic conductivity than KCl.It is possible to improve the performance through addition of LiCl on the KCl.The eutectic LiCl-KCl has a much lower melting point than both LiCl and KCl,and the ionic conductivity is between them.All FPMD calculation results for LiCl,KCl and LiCl-KCl electrolytes are in close agreement with experiments in this paper.In the future,it is expected to develop a multi-scale simulation tool,including quantum mechanics,molecular dynamics,and computational fluid dynamics,to design a thermally activated battery from materials to the device.This is able to replace the costive trial-and-error experiments and to optimize the system design.

    Acknowledgement:We thank the Ministry of Science and Technology in Taiwan and the National Chung-Shan Institute of Science and Technology for their support under the grant numbers MOST 103-2623-E-007-005-D.We are also grateful to the National Center for High-Performance Computing for the facilities made available to us.

    Bengston,A.;Nam,H.O.;Saha,S.;Sakidja,R.;Morgan,D.(2014):Firstprinciples molecular dynamics modeling of the LiCl-KCl molten salt system.Computational Materials Science,vol.83,pp.362370.

    Bradwell,D.J.;Kim,H.;Sirk,A.H.C.;Sadoway,D.R.(2012):Magnesiumantimony liquid metal battery for stationary energy storage.Journal of the American Chemical Society,vol.134,pp.1895-1897.

    Brun,C.L.(2007):Molten salts and nuclear energy production.Journal of Nuclear Materials,vol.360,pp.1-5.

    Caccamo,C.;Dixon,M.(1980):Molten alkali-halide mixtures:a moleculardynamics study of Li/KCl mixtures.Journal of Physics C:Solid State Physics,vol.13,pp.1887-1990.

    Chen,C.F.;Li,H.Y.;Hong,C.W.(2015):Molecular dynamics analysis of hightemperature molten-salt electrolytes in thermal batteries.CMC-Computer,Materials,&Continua,vol.46,no.3,pp.145-163.

    Cheng,C.H.;Lee,S.F.;Hong,C.W.(2007):Ionic dynamics of an intermediatetemperature Yttria-doped-Ceria electrolyte.Journal of The Electrochemical Society,vol.154,no.10,pp.E158-E163.

    Cheng,C.H.;Chen,P.Y.;Hong,C.W.(2008):Atomistic analysis of hydration and thermal effects on proton dynamics in the Nafion membrane.Journal of The Electrochemical Society,vol.155,no.4,pp.B435-.B442.

    Clark,S.J.;Segall,M.D.;Pickard,C.J.;Hasnip,P.J.;Probert,M.J;Refson,K.;Payne,M.C.(2005):First principles methods using CASTEP.Zeitschrift für Kristallographie,vol.220,pp.567570.

    Eslamian,M.;Saghir,M.Z.(2012):Thermodiffusion applications in MEMS,NEMS and solar cell fabrication by thermal metal doping of semiconductors.FDMP:Fluid Dynamics&Material Processing,vol.8,no.4,pp.353-380.

    Faraji,M.;Mustapha,E.A.;Mostafa,N.(2014):Numerical study of melting coupled natural convection around localized heat sources.FDMP:Fluid Dynamics&Material Processing,vol.10,no.2,pp.279-298.

    Frenkel,D.;Smit,B.(1996):Understanding Molecular Simulation-From Algorithms to Applications,Academic Press,New York

    Fujiwara,S.;Inaba,M.;Tasaka,A.(2011):New molten salt systems for high temperature molten salt batteries:ternary and quaternary molten salt systems based on LiF–LiCl,LiF–LiBr,and LiCl–LiBr.Journal of Power Sources,vol.196,pp.4012-4018.

    Fukasawa,K.;Uehara,A.;Nagai,T.;Sato,N.;Fujii,T.;Yamana,H.(2012):Thermodynamic properties of trivalent lanthanide and actinide ions in molten mixtures of LiCl and KCl.Journal of Nuclear Materials,vol.424,pp.17-22.

    Fumi,F.G.;Tosi,M.P.(1964):Ionic sizes and born repulsive parameters in the NaCl-types alkali halides-I the Huggins-Mayer and Pauling forms.Journal of Physics and Chemistry of Solids,vol.25,pp.31-43.

    Galamba,N.;Costa Cabral,B.J.(2007a):First principles molecular dynamics of molten NaCl.The Journal of Chemical Physics,vol.126,pp.124502.

    Galamba,N.;Costa Cabral,B.J.(2007b):First principles molecular dynamics of molten NaI:structure,self-diffusion,polarization effects,and charge transfer.The Journal of Chemical Physics,vol.127,pp.94506.

    Galamba,N.;Nieto de Castro,C.A.;Ely,J.F.(2004):Thermal conductivity of molten alkali halides from equilibrium molecular dynamics simulations.The Journal of Chemical Physics,vol.120,pp.8676-8682

    Galamba,N.;Nieto de Castro,C.A.;Ely,J.F.(2005):Shear viscosity of molten alkalihalidesfrom equilibrium and nonequilibrium moleculardynamicssimulations.The Journal of Chemical Physics,vol.122,pp.224501.

    Galamba,N.;Nieto de Castro,C.A.;Ely,J.F.(2007):Equilibrium and nonequilibrium molecular dynamics simulations of the thermal conductivity of molten alkali halides.The Journal of Chemical Physics,vol.126,pp.204511

    Guidotti,R.A.;Masset,P.(2006):Thermally activated(thermal)battery technology part I an overview.Journal of Power Sources,vol.161,pp.1443-1449.

    Haimovich,N.;Dekel,D.R.;Brandon,S.(2009):A simulator for system-level analysis of heat transfer and phase change in thermal batteries I.computational approach and single-cell calculations.Journal of The Electrochemical Society,vol.156,no.6,pp.A442-A453.

    Haimovich,N.;Dekel,D.R.;Brandon,S.(2015):A simulator for system-level analysis of heat transfer and phase-change in thermal batteries II.multiple-cell simulations.Journal of The Electrochemical Society,vol.162,no.3,A350-A362.

    Hong,C.W.;Tsai,C.Y.(2010):Computational quantum mechanics simulation on the photonic properties of group-III Nitride clusters.CMES:Computer Modeling in Engineering&Sciences,vol.67,no.2,pp.79-94.

    Hong,C.W.;Chen,W.H.(2011):Computational quantum chemistry on the photoelectric characteristics of semiconductor quantum dots and biological pigments.CMES:Computer Modeling in Engineering&Sciences,vol.72,no.3,pp.211-228.

    Janz,G.J.;Allen,C.B.;Bansal,R.M.;Murphy,R.M.;Tomkins,R.P.T.(1979):Physical properties data compilations relevant to energy storage.II.molten salts data on single and multicomponent salt systems,National Bureau of Standards,U.S.Department of Commerce,New York.

    Kohn,W.;Sham,L.J.(1965):Self-consistent equations including exchange and correlation Effect.Physical Review,vol.140,pp.11331138.

    Kuhlmann,H.C.;Lappa,M.;Melnikov,D.;Mukin,R.;Muldoon,F.H.;Pushkin,D.;Shevtsova,V.;Ueno,I.(2014):The JEREMI-project on thermocapillary convection in liquid bridges.part A:overview of particle accumulation structures.FDMP:Fluid Dynamics&Material Processing,vol.10,no.1,pp.1-36.

    Lantelme,F.;Turq,P.(1982):Ionic dynamics in the LiCl-KCl system at liquid state.The Journal of Chemical Physics,vol.77,no.6,pp.3177-3187

    Masset,P.;Guidotti,R.A.(2007):Thermal activated(thermal)battery technology Part II.molten salt electrolytes.Journal of Power Sources,vol.164,pp.397-414.

    Masset,P.;Henry,A.;Poinso,J.-Y.;Poignet,J.-C.(2006):Ionic conductivity measurements of molten iodide-based electrolytes.Journal of Power Sources,vol.160,pp.752-757.

    Masset,P.(2006):Iodide-based electrolytes:a promising alternative for thermal batteries.Journal of Power Sources,vol.160,pp.688-697.

    Masset,P.;Schoeffert,S.;Poinso,J.-Y.;Poignet,J.-C.(2005):LiF-LiCl-LiI vs.LiF-LiBr-KBr as molten salt electrolyte in thermal batteries.Journal of The Electrochemical Society,vol.152,no.2,pp.A405-A410.

    Nagasaka,Y.;Nakazawa,N.;Nagashima,A.(1992):Experimental determination of the thermal diffusivity of molten alkali halides by the forced Rayleigh scattering method.I.molten LiCl,NaCl,KCl,RbCl,and CsCl.International Journal of Thermophysics,vol.13,no.4,pp.555-574.

    Nevins,D.;Spera,F.J.(2007):Accurate computation of shear viscosity from equilibrium molecular dynamics simulations.Molecular Simulation,vol.33,no.15,pp.1261-1266.

    Nosé,S.(1984):A unified formulation of the constant temperature molecular dynamics methods.The Journal of Chemical Physics,vol.81,pp.511-519.

    San,C.H.;Chiu,C.P.;Hong,C.W.(2011):First principles computations of the Oxygen reduction reaction on solid metal clusters.CMC:Computers,Materials&Continua,Vol.26,no.3,pp.167-186.

    San,C.H.;Hong,C.W.(2011):Molecular design of the solid copolymer electrolyte-poly(styrene-b-ethylene oxide)for Lithium ion batteries.CMC:Computers,Materials&Continua,vol.23,no.2,pp.101-118.

    Srivastava,D.;Atluri,S.N.(2002):Computational nanotechnology:a current perspective.CMES:Computer Modeling in Engineering&Science,vol.3,pp.531-538.

    Segall,M.D.;Lindan,Philip J.D.;Probert,M.J.;Pickard,C.J.;Hasnip,P.J.;Clark,S.J.;Payne,M.C(2002):First-principles simulation:ideas,illustrations and the CASTEP code.Journal of Physics:Condensed Matter,vol.14,pp.2717-2744.

    Waldrop,M.M.(2012):Radical reactors.Nature,vol.492,pp.26-29.

    Williams,D.F.(2006):Assessment of candidate molten salt coolants for the NGNP/NHI heat-transfer loop,ORNL/TM-2006/69,Oak Ridge National Laboratory,Oak Ridge,TN.

    1Department of Power Mechanical Engineering National Tsing Hua University,Taiwan.

    2Corresponding author.Tel:+886 3 5742591;Fax:+886 3 5722840;

    E-mail:cwhong@pme.nthu.edu.tw

    猜你喜歡
    樓面承載力荷載
    活荷載
    北方建筑(2022年2期)2022-11-21 14:57:16
    240億!30家房企爭搶!廣州土拍火了! 越秀75億斬獲番禺宅地,樓面價超3萬/m2
    工業(yè)建筑提高樓面活載與工程造價的關(guān)系
    Impact of Phase Noise on TDMS Based Calibration for Spaceborne Multi-Beam Antennas
    樓面價超香港
    CFRP-PCP板加固混凝土梁的抗彎承載力研究
    耐火鋼圓鋼管混凝土柱耐火極限和承載力
    樁土滑移對樁基臨界荷載影響
    潛艇極限承載力計算與分析
    基于荷載傳遞法的載體樁荷載沉降分析
    河南科技(2014年15期)2014-02-27 14:12:30
    国产精品偷伦视频观看了| 99久久国产精品久久久| 欧美久久黑人一区二区| 欧美日韩瑟瑟在线播放| 18禁观看日本| 国产成人精品在线电影| 欧美日韩一级在线毛片| 怎么达到女性高潮| 免费在线观看影片大全网站| 99热只有精品国产| 亚洲黑人精品在线| 亚洲男人的天堂狠狠| 搡老熟女国产l中国老女人| 国产高清视频在线播放一区| 亚洲精品美女久久久久99蜜臀| 久久久久国内视频| 国产片内射在线| 曰老女人黄片| 日本 av在线| 高清黄色对白视频在线免费看| aaaaa片日本免费| 久久久久精品国产欧美久久久| 欧美成人免费av一区二区三区| 伊人久久大香线蕉亚洲五| 夜夜看夜夜爽夜夜摸 | 国产精品电影一区二区三区| 一级毛片精品| 久久久久久久久中文| av电影中文网址| 美女国产高潮福利片在线看| 亚洲欧美精品综合一区二区三区| 亚洲 欧美 日韩 在线 免费| 国产欧美日韩一区二区三区在线| 嫩草影视91久久| 无遮挡黄片免费观看| 亚洲国产看品久久| 18禁国产床啪视频网站| 久久九九热精品免费| 久久午夜综合久久蜜桃| 午夜两性在线视频| 老汉色av国产亚洲站长工具| 波多野结衣一区麻豆| 久久人妻av系列| 国产乱人伦免费视频| 啦啦啦免费观看视频1| 国内毛片毛片毛片毛片毛片| 女人精品久久久久毛片| 9热在线视频观看99| 午夜影院日韩av| 极品教师在线免费播放| 国产单亲对白刺激| 精品福利观看| 黄片小视频在线播放| 久久精品成人免费网站| 久久人人爽av亚洲精品天堂| 妹子高潮喷水视频| 天堂动漫精品| 一级作爱视频免费观看| 好看av亚洲va欧美ⅴa在| 神马国产精品三级电影在线观看 | 欧美性长视频在线观看| 在线永久观看黄色视频| 久久精品亚洲av国产电影网| 50天的宝宝边吃奶边哭怎么回事| 欧美日韩黄片免| 日本精品一区二区三区蜜桃| 国产欧美日韩一区二区精品| 可以在线观看毛片的网站| 丝袜在线中文字幕| 女生性感内裤真人,穿戴方法视频| 在线观看日韩欧美| 午夜91福利影院| 精品人妻1区二区| 丝袜美腿诱惑在线| 法律面前人人平等表现在哪些方面| 国产精品99久久99久久久不卡| 婷婷六月久久综合丁香| 真人一进一出gif抽搐免费| 淫妇啪啪啪对白视频| 妹子高潮喷水视频| 国产亚洲欧美在线一区二区| 国产精品美女特级片免费视频播放器 | 在线观看日韩欧美| 韩国av一区二区三区四区| 国产男靠女视频免费网站| 国产精品自产拍在线观看55亚洲| 91麻豆av在线| 一级黄色大片毛片| 国产精品九九99| 国产精品秋霞免费鲁丝片| 亚洲avbb在线观看| 国产精品一区二区精品视频观看| 国产一区在线观看成人免费| 日韩av在线大香蕉| 午夜免费鲁丝| 日本五十路高清| 少妇裸体淫交视频免费看高清 | av天堂在线播放| 欧美日韩亚洲综合一区二区三区_| 女人被狂操c到高潮| 一本大道久久a久久精品| 国产成人系列免费观看| 99riav亚洲国产免费| 午夜免费鲁丝| 日韩成人在线观看一区二区三区| 免费人成视频x8x8入口观看| 天堂影院成人在线观看| 男人舔女人的私密视频| 亚洲七黄色美女视频| 欧美日韩亚洲国产一区二区在线观看| 国产无遮挡羞羞视频在线观看| 国产午夜精品久久久久久| 精品无人区乱码1区二区| 欧美乱码精品一区二区三区| 一a级毛片在线观看| 又大又爽又粗| 精品国产国语对白av| 男女午夜视频在线观看| 国产精品久久视频播放| 精品久久久久久久久久免费视频 | 99riav亚洲国产免费| 免费在线观看日本一区| 啦啦啦免费观看视频1| 麻豆av在线久日| 50天的宝宝边吃奶边哭怎么回事| 韩国精品一区二区三区| 电影成人av| 精品久久久久久久久久免费视频 | 欧美成狂野欧美在线观看| 欧美最黄视频在线播放免费 | 国产欧美日韩一区二区精品| 国产成+人综合+亚洲专区| 美女午夜性视频免费| 亚洲精华国产精华精| 国产日韩一区二区三区精品不卡| 亚洲精品中文字幕在线视频| 久久中文字幕人妻熟女| 国内久久婷婷六月综合欲色啪| 国产99白浆流出| 女生性感内裤真人,穿戴方法视频| 日本撒尿小便嘘嘘汇集6| 久久精品亚洲熟妇少妇任你| 亚洲片人在线观看| 日韩有码中文字幕| 好看av亚洲va欧美ⅴa在| 91字幕亚洲| 精品电影一区二区在线| 亚洲少妇的诱惑av| 久久久久亚洲av毛片大全| 国产精品一区二区三区四区久久 | 曰老女人黄片| 啦啦啦免费观看视频1| 久久中文字幕一级| 免费在线观看黄色视频的| 国产精品一区二区免费欧美| av免费在线观看网站| 国产真人三级小视频在线观看| 精品久久久久久久毛片微露脸| 亚洲色图 男人天堂 中文字幕| 级片在线观看| 成年版毛片免费区| 在线观看免费视频网站a站| 久久精品国产亚洲av高清一级| 久久精品国产99精品国产亚洲性色 | 色精品久久人妻99蜜桃| 99精品在免费线老司机午夜| 最好的美女福利视频网| 久久久久久久午夜电影 | 国产精品自产拍在线观看55亚洲| 日本wwww免费看| 欧美日韩国产mv在线观看视频| 成人国产一区最新在线观看| 久久精品人人爽人人爽视色| aaaaa片日本免费| 亚洲va日本ⅴa欧美va伊人久久| 美女大奶头视频| 久久久国产精品麻豆| 真人一进一出gif抽搐免费| 亚洲国产中文字幕在线视频| 变态另类成人亚洲欧美熟女 | 黄色视频不卡| 在线观看免费午夜福利视频| 黄片播放在线免费| 欧美日韩黄片免| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲美女黄片视频| 久久精品人人爽人人爽视色| 老司机午夜福利在线观看视频| 欧美激情久久久久久爽电影 | 在线免费观看的www视频| 国产精华一区二区三区| 国产av一区在线观看免费| 精品福利观看| 久久中文看片网| 国产欧美日韩综合在线一区二区| 欧美日韩国产mv在线观看视频| 国产高清视频在线播放一区| www.999成人在线观看| 久久亚洲真实| 国产97色在线日韩免费| 日日爽夜夜爽网站| 亚洲成人久久性| 日韩三级视频一区二区三区| 男人操女人黄网站| 精品国内亚洲2022精品成人| 老司机靠b影院| 在线天堂中文资源库| 久久久国产成人免费| 日韩大尺度精品在线看网址 | 亚洲精品在线观看二区| 波多野结衣一区麻豆| 高清在线国产一区| 亚洲成人免费电影在线观看| 日韩欧美三级三区| 1024视频免费在线观看| 国产激情久久老熟女| 一边摸一边抽搐一进一出视频| 欧美在线黄色| 国产精品久久久久久人妻精品电影| 精品日产1卡2卡| 亚洲欧美精品综合一区二区三区| 午夜福利在线免费观看网站| 国产成人av激情在线播放| 国产精品久久久av美女十八| 精品熟女少妇八av免费久了| 黄色成人免费大全| 国产伦人伦偷精品视频| 国产激情欧美一区二区| 亚洲视频免费观看视频| 一级片'在线观看视频| 午夜精品国产一区二区电影| 超色免费av| 久久精品亚洲精品国产色婷小说| 亚洲av成人av| 国产高清国产精品国产三级| 久久国产乱子伦精品免费另类| 久久久久九九精品影院| 曰老女人黄片| 一夜夜www| 一级毛片精品| 亚洲成av片中文字幕在线观看| 精品欧美一区二区三区在线| 成人国产一区最新在线观看| 久久九九热精品免费| 岛国在线观看网站| 国产有黄有色有爽视频| 亚洲av成人一区二区三| 久久久水蜜桃国产精品网| 精品久久久久久成人av| 久久久国产欧美日韩av| 99久久国产精品久久久| 黄色 视频免费看| 国产成人精品无人区| 久久久久久久久中文| 久久中文看片网| 大码成人一级视频| 最好的美女福利视频网| 热99re8久久精品国产| 一级黄色大片毛片| 一个人观看的视频www高清免费观看 | 成人三级做爰电影| 国产野战对白在线观看| 在线观看免费午夜福利视频| 在线观看www视频免费| 天堂中文最新版在线下载| 久久青草综合色| 少妇被粗大的猛进出69影院| 色综合欧美亚洲国产小说| 韩国精品一区二区三区| 99热国产这里只有精品6| 一级黄色大片毛片| 精品福利永久在线观看| 99国产精品一区二区三区| 国产黄a三级三级三级人| 精品午夜福利视频在线观看一区| 午夜激情av网站| 天天影视国产精品| 亚洲国产欧美日韩在线播放| 亚洲精品美女久久av网站| 很黄的视频免费| av国产精品久久久久影院| 成人av一区二区三区在线看| 色综合站精品国产| 成人国语在线视频| 亚洲精品一卡2卡三卡4卡5卡| 一进一出好大好爽视频| 欧美成狂野欧美在线观看| 日日夜夜操网爽| 黑人巨大精品欧美一区二区蜜桃| 丝袜美腿诱惑在线| 夫妻午夜视频| 久久婷婷成人综合色麻豆| 91成年电影在线观看| 色综合欧美亚洲国产小说| 亚洲人成网站在线播放欧美日韩| 亚洲熟妇中文字幕五十中出 | 久久香蕉精品热| 国产亚洲欧美在线一区二区| 自拍欧美九色日韩亚洲蝌蚪91| 妹子高潮喷水视频| 一区二区三区精品91| 老司机在亚洲福利影院| cao死你这个sao货| 老司机亚洲免费影院| 极品教师在线免费播放| 久久精品国产综合久久久| 长腿黑丝高跟| 国产成人av激情在线播放| 一进一出好大好爽视频| 国产片内射在线| 一a级毛片在线观看| 国产97色在线日韩免费| 亚洲成人免费av在线播放| 国产极品粉嫩免费观看在线| 国产一区二区三区视频了| 日韩大码丰满熟妇| 亚洲熟女毛片儿| 一级,二级,三级黄色视频| 免费日韩欧美在线观看| 亚洲精品中文字幕一二三四区| 欧美日韩国产mv在线观看视频| 亚洲中文av在线| 怎么达到女性高潮| 久久久水蜜桃国产精品网| 级片在线观看| 国产精品免费一区二区三区在线| 丰满迷人的少妇在线观看| 久久国产乱子伦精品免费另类| 中亚洲国语对白在线视频| 91九色精品人成在线观看| 国产成年人精品一区二区 | 久久人人精品亚洲av| 国产国语露脸激情在线看| 老司机靠b影院| 久久九九热精品免费| 中文亚洲av片在线观看爽| 国产精品久久视频播放| 国产亚洲av高清不卡| 色精品久久人妻99蜜桃| 97人妻天天添夜夜摸| 欧美在线一区亚洲| 9热在线视频观看99| cao死你这个sao货| 国产精品98久久久久久宅男小说| 亚洲精华国产精华精| 欧美日韩av久久| 亚洲欧美一区二区三区黑人| 亚洲午夜精品一区,二区,三区| 香蕉丝袜av| 国产亚洲精品一区二区www| 亚洲av电影在线进入| 啦啦啦在线免费观看视频4| 欧美日本中文国产一区发布| 日日爽夜夜爽网站| 国产成人精品在线电影| av电影中文网址| 久久中文字幕人妻熟女| 两性午夜刺激爽爽歪歪视频在线观看 | 9色porny在线观看| 亚洲成av片中文字幕在线观看| 久久热在线av| 国产精品二区激情视频| 窝窝影院91人妻| 老汉色av国产亚洲站长工具| 在线观看免费高清a一片| 亚洲熟妇熟女久久| 一级毛片高清免费大全| 露出奶头的视频| 可以在线观看毛片的网站| 黄色视频不卡| 亚洲午夜理论影院| 日本免费a在线| 两性午夜刺激爽爽歪歪视频在线观看 | 怎么达到女性高潮| 啦啦啦 在线观看视频| 窝窝影院91人妻| 国产三级黄色录像| 中文字幕高清在线视频| 叶爱在线成人免费视频播放| 国产精品久久久久成人av| 免费观看人在逋| 老司机深夜福利视频在线观看| 一夜夜www| 亚洲国产精品合色在线| 麻豆av在线久日| 在线观看免费视频日本深夜| 黄片大片在线免费观看| 亚洲成人久久性| 操出白浆在线播放| 男女午夜视频在线观看| 成人三级做爰电影| 国产欧美日韩一区二区三| 久久久久精品国产欧美久久久| 国产欧美日韩一区二区三| 久久影院123| 男女床上黄色一级片免费看| 99精品在免费线老司机午夜| 免费高清在线观看日韩| 一本综合久久免费| 日韩av在线大香蕉| 中文亚洲av片在线观看爽| 久久九九热精品免费| 国产成人欧美| 免费在线观看亚洲国产| 国产又爽黄色视频| 亚洲欧洲精品一区二区精品久久久| 他把我摸到了高潮在线观看| 怎么达到女性高潮| 精品久久久久久久毛片微露脸| 好看av亚洲va欧美ⅴa在| 51午夜福利影视在线观看| 岛国在线观看网站| a在线观看视频网站| 国产99白浆流出| 在线观看日韩欧美| 欧美日本亚洲视频在线播放| 亚洲男人的天堂狠狠| 亚洲激情在线av| 精品久久久久久久久久免费视频 | 最近最新中文字幕大全电影3 | 三上悠亚av全集在线观看| 人人妻人人澡人人看| 国产亚洲精品第一综合不卡| 免费久久久久久久精品成人欧美视频| 欧美激情 高清一区二区三区| 久久青草综合色| 91成年电影在线观看| 成人永久免费在线观看视频| 亚洲aⅴ乱码一区二区在线播放 | 免费在线观看亚洲国产| 国产xxxxx性猛交| 男女高潮啪啪啪动态图| 免费高清视频大片| 9191精品国产免费久久| 69av精品久久久久久| 日日夜夜操网爽| 国产精品1区2区在线观看.| 久久中文字幕一级| 美女福利国产在线| 久久精品影院6| 欧美大码av| 亚洲精品久久成人aⅴ小说| 女人被狂操c到高潮| 婷婷精品国产亚洲av在线| 一级作爱视频免费观看| 精品国产亚洲在线| 久久天躁狠狠躁夜夜2o2o| 久久久久国产精品人妻aⅴ院| 国产精品av久久久久免费| 在线观看免费高清a一片| 日本黄色日本黄色录像| 中文字幕最新亚洲高清| 日韩精品免费视频一区二区三区| 最新在线观看一区二区三区| 神马国产精品三级电影在线观看 | 美女大奶头视频| 国内久久婷婷六月综合欲色啪| 深夜精品福利| 亚洲中文日韩欧美视频| 大型av网站在线播放| 亚洲三区欧美一区| bbb黄色大片| 搡老岳熟女国产| 国产人伦9x9x在线观看| 色综合站精品国产| 欧美激情久久久久久爽电影 | 高清在线国产一区| 在线观看免费视频网站a站| 亚洲精品国产一区二区精华液| 欧美另类亚洲清纯唯美| 黄色丝袜av网址大全| 欧美午夜高清在线| 精品欧美一区二区三区在线| 亚洲自拍偷在线| av片东京热男人的天堂| 嫩草影视91久久| 一级作爱视频免费观看| 国产精品99久久99久久久不卡| 亚洲av熟女| 激情在线观看视频在线高清| 大型av网站在线播放| 在线观看66精品国产| 久久精品成人免费网站| 一级黄色大片毛片| www.www免费av| 老司机午夜十八禁免费视频| www.自偷自拍.com| 69精品国产乱码久久久| 亚洲欧美日韩另类电影网站| 久久亚洲真实| 咕卡用的链子| 久久精品人人爽人人爽视色| av天堂久久9| 日韩精品免费视频一区二区三区| 国产单亲对白刺激| 在线视频色国产色| 久久这里只有精品19| 欧美亚洲日本最大视频资源| 男女之事视频高清在线观看| 久久久久久久久中文| 女生性感内裤真人,穿戴方法视频| 精品久久久久久久久久免费视频 | 国产精品日韩av在线免费观看 | 在线观看舔阴道视频| 岛国视频午夜一区免费看| 久久伊人香网站| 国产一区在线观看成人免费| 久久久国产一区二区| 搡老岳熟女国产| 操美女的视频在线观看| av天堂在线播放| 色婷婷av一区二区三区视频| 最好的美女福利视频网| 少妇的丰满在线观看| 国产亚洲精品第一综合不卡| 色婷婷av一区二区三区视频| 国产三级在线视频| 两人在一起打扑克的视频| 午夜影院日韩av| 中文字幕色久视频| 在线视频色国产色| 久久久久国产一级毛片高清牌| 一级a爱片免费观看的视频| 一区二区三区精品91| 久久久久久人人人人人| 性少妇av在线| 亚洲精品在线观看二区| 日本vs欧美在线观看视频| 精品一区二区三卡| av天堂久久9| 18禁国产床啪视频网站| 成人18禁高潮啪啪吃奶动态图| 欧美激情 高清一区二区三区| 人妻丰满熟妇av一区二区三区| 国产精品一区二区三区四区久久 | 一进一出好大好爽视频| 人人澡人人妻人| 亚洲久久久国产精品| 高清在线国产一区| 亚洲av成人av| 午夜福利影视在线免费观看| 性色av乱码一区二区三区2| 久久久久国产精品人妻aⅴ院| 中国美女看黄片| 久久精品91蜜桃| 18美女黄网站色大片免费观看| 妹子高潮喷水视频| 精品无人区乱码1区二区| 国产无遮挡羞羞视频在线观看| 久9热在线精品视频| 91字幕亚洲| 狂野欧美激情性xxxx| 婷婷六月久久综合丁香| 精品一区二区三区av网在线观看| 琪琪午夜伦伦电影理论片6080| 在线国产一区二区在线| 亚洲九九香蕉| av电影中文网址| 亚洲欧美一区二区三区黑人| 亚洲成人免费电影在线观看| 成人黄色视频免费在线看| 纯流量卡能插随身wifi吗| 亚洲人成电影免费在线| 亚洲 国产 在线| 亚洲欧美激情综合另类| 日韩成人在线观看一区二区三区| 成人18禁在线播放| 日韩欧美三级三区| 成人精品一区二区免费| 亚洲成av片中文字幕在线观看| 精品国产国语对白av| 亚洲欧美一区二区三区黑人| 又紧又爽又黄一区二区| 久久久国产成人免费| 亚洲伊人色综图| 欧美日韩亚洲国产一区二区在线观看| 两个人免费观看高清视频| 久久午夜综合久久蜜桃| 日韩三级视频一区二区三区| 91九色精品人成在线观看| 69av精品久久久久久| 丰满饥渴人妻一区二区三| 精品一区二区三区四区五区乱码| 国产男靠女视频免费网站| 人妻久久中文字幕网| 1024香蕉在线观看| 99久久99久久久精品蜜桃| 久久久国产精品麻豆| 久久精品亚洲精品国产色婷小说| 国产精品久久视频播放| 亚洲欧美激情在线| 精品免费久久久久久久清纯| 国产视频一区二区在线看| 18禁黄网站禁片午夜丰满| 一级a爱片免费观看的视频| 国产高清国产精品国产三级| 国产一区二区激情短视频| 亚洲一区二区三区不卡视频| 人成视频在线观看免费观看| 亚洲精品国产区一区二| 视频区图区小说| 丁香欧美五月| 黄色a级毛片大全视频| 99精国产麻豆久久婷婷| 亚洲欧美精品综合一区二区三区| 一进一出抽搐动态| 久久久国产欧美日韩av| 亚洲avbb在线观看| 亚洲成av片中文字幕在线观看| 日日摸夜夜添夜夜添小说| 日日干狠狠操夜夜爽| 麻豆成人av在线观看| 成人手机av| 国产精品久久久av美女十八| 高潮久久久久久久久久久不卡|