• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Aerodynamic Performance of Dragonfly Wing with Well-designed Corrugated Section in Gliding Flight

    2015-12-18 06:52:12ZilongZhangYajunYinZhengZhongandHongxiaoZhao

    Zilong Zhang,Yajun Yin,Zheng Zhong,3 and Hongxiao Zhao

    Aerodynamic Performance of Dragonfly Wing with Well-designed Corrugated Section in Gliding Flight

    Zilong Zhang1,Yajun Yin2,Zheng Zhong1,3and Hongxiao Zhao1

    Dragonflies possess the highly corrugated wings which distinguish from the ordinary airfoils.To unlock the secrets of the dramatic flight ability of dragonflies,it will be of great significance to investigate the aerodynamic contribution of the corrugations.In this paper,a group of corrugated airfoils were specially designed based on the geometrical characteristics of a typical dragonfly wing.The two-dimensional Navier-Stokes equations were solved using the finite volume method,and the coefficients of lift and drag of the studied airfoils were calculated and compared with those of a flat airfoil and a NACA0008 airfoil.The obtained numerical results illustrated that well-designed corrugated airfoils can enhance the lift-drag ratio in the condition of steady flow and maintain the steadiness of the flow field at low Reynolds numbers(500-12000).To approach the optimized state,corrugation amplitude could be considered as a key parameter to describe the irregularities of the corrugated wings.These results will inspire the design of MAVs.

    Dragonfly,corrugation,low Reynolds number,CFD,MAV.

    1 Introduction

    Dragonflies possess dramatic flight ability,especially the amazing maneuverability and flight endurance observed during their trans-oceanic migrations with miraculous distance[Hobson,Anderson,Soto and Wassenaar(2012)],for which their wings play an important role.Unlike ordinary engineered airfoils,dragonfly wings are highly corrugated and act as a light structure,which could enhance the spanwise stiffness,and reduce the membrane stresses in the wings[Rees(1975a)].

    The objectofourarticle isto answersuch a question:whetherthe corrugationshave a positive effect on aerodynamic performance of dragonfly wings?Moreover,can acorrugated airfoil be artificially designed to have better aerodynamic performance than a flat airfoil or NACA0008 airfoil under low Reynolds number conditions?

    The aerodynamic effect of corrugations was originally measured on pleated models or real insect wings.By testing scale models in a fluid flow channel filled with 45%aqueous sucrose solution,Rees(1975b)concluded that the corrugations have no aerodynamic significance.Similar results were also found from the model experiments in a wind tunnel by Newman et al.(1977)and Rudolph(1977).Newman et al.(1977)stated that the major contribution to the lift enhancement came from some morphological features on the surface of the wing,which are much smaller than corrugations in length scale.Rudolph(1977)conjectured that the only advantage of corrugated airfoils was the delay of flow separation and the avoidance of abrupt stalling at a big angle of attack.On the contrary,Buckholz(1986)found that the corrugations would increase the lift of dragonfly wing by testing pleated wing model(Re=1500).Thereafter,Wakeling and Ellington(1997)confirmed that the enhanced lift of dragonflies was mainly attributed to the corrugations(Re=700?2400).After making detail flow measurements(Re=34000),Hu and Tamai(2008)proposed a mechanism for the enhanced lift of a corrugated wing that the protruding corners promote the transition of separated shear-layer flow from laminar to turbulent.Okamoto et al.(1996)proved that the pleated models are better than the plate model at all angles of attack by conducting experiments on airfoils with various sections.Furthermore,Kesel(2000)pointed out that the corrugations innate to nature are finely tuned in order to achieve a good aerodynamic performance,based on his experimental measurements on pleated models whose geometric parameters were extracted from a wing of dragon fly(Aeshna cyanea).

    Recently,CFD methods provide effective numerical tools for researchers in this field.Levy and Seifert(2010)proved that the corrugated airfoil outperformed the traditional streamlined airfoil by conducting 2D numerical analysis based on the finite volume method(Re=6000).Meng and Sun(2013)obtained the conclusion that the corrugations change the lift and the drag very slightly by conducting 3D simulations(Re=200?2400).Vargas et al.(2008)found that corrugated airfoils enhance the lift at higher Reynolds number(Re=10000)and reduce the lift at lower Reynolds numbers(Re=500,1000 and 5000)based on their calculations by the immersed boundary method.

    To summarize,researchershave perceived basic aerodynamic characteristicsofcorrugated wings.Nevertheless,there is still no consensus on whether corrugated airfoils perform better than ordinary engineered airfoils.In order to comprehensively understand the inherent fluid dynamical mechanisms behind the complex phenomena of corrugated airfoils,a group of corrugated airfoils with gradually changing sections were specially designed based on the geometrical characteristics of a typi-cal dragonfly wing.The two-dimensional Navier-Stokes equations were solved by the finite volume method,and the coefficients of lift and drag of the above airfoils were calculated and compared with those of a flat airfoil and a NACA0008 airfoil.Some appealing results were obtained for corrugations with different geometric parameters.

    2 Models and Methods

    2.1 Geometric models of dragonfly wing

    It is effective to capture the flow field of dragonfly wings in gliding flight with 2D models[Levy and Seifert(2010);Vargas,Mittal and Dong(2008)]at low Reynolds numbers(Re=500?12000)since previous experimental studies[Buckholz(1986);Okamoto,Yasuda and Azuma(1996);Kesel(2000)]have found no intrinsic threedimensional effects at such low Reynolds numbers.In our calculations,2D models balance the accuracy and efficiency of the CFD simulation.

    The “Profile 2”in Kesel’s paper[Kesel(2000)]is selected as the standard section.The corrugated airfoil with standard section is named as Airfoil-1.00.The shape of Airfoil-1.00 is determined by 43 key points whose locations are defined in an orthogonal coordinate system as:

    The maximum corrugation amplitude of Airfoil-1.00 is 7.351%c(see figure 1(a)).Based on the standard section,we create new profiles with a transformation function given as:

    where λ is the amplification coefficient of the coordinate y.

    Asshown in figure 1(b),we designate 11 corrugated airfoils as Airfoil-1.50,Airfoil-1.35,Airfoil-1.20,Airfoil-1.10,Airfoil-1.00,Airfoil-0.90,Airfoil-0.75,Airfoil-0.60,Airfoil-0.45,Airfoil-0.30 and Airfoil-0.15,each having a unique λ and being of the same chord length c.For example,Airfoil-1.50 is formed by setting λ=1.5,and a flat airfoil with rounded leading and trailing edges is degenerated from the pleated profile when λ=0(denoted as Plate).The thicknesses of the flat airfoil and corrugated airfoils are all 0.02c.Besides,NACA0008 is employed for comparison since its maximum thickness(8%c)is approximate to the maximum corrugation amplitude of Airfoil-1.00(7.351%c).

    Figure 1:The profile of(a)the standard section,and(b)corrugated airfoils,a plate airfoil and a NACA0008 airfoil.

    2.2 Governing equations and solution method

    The incompressible 2D Navier-Stokes equations are nondimensionalized,as follows:

    where u and v are the nondimensionalized components of flow velocity along x and y directions;p and t are the nondimensionalized pressure and time.Re is the Reynolds number defined as:

    where ρ,μ and ν denote respectively the density,the dynamic viscosity coefficient and the kinematic viscosity coefficient of air,while U is the freestream velocity.

    The governing equations are solved using commercial solver FLUENT(based on the finite volume method)with SIMPLE algorithm.The model of laminar[Vargas,Mittal,and Dong(2008);Kunz and Kroo(2000)]is also adopted in our calculations.As shown in figure 2,the flow field is simulated by an elliptical area which has a 20c long axis and a 15c short axis to meet the far field condition.The boundary conditions of the airfoil and the flow field are wall and velocity-inlet respectively.The structured grids are applied to the solution domain.

    Figure 2:Solution area,boundary conditions and mesh.

    The lift and the drag of an airfoil are denoted as Fland Fdrespectively.Then the aerodynamic performance of an airfoil can be described by the lift coefficient Cl=Fl/(0.5ρU2c)and the drag coefficient Cd=Fd/(0.5ρU2c).

    2.3 Mesh test and validation

    We test the meshes with different resolutions,as shown in figure 3.For Airfoil-1.00,we build 4 types of meshes:100×120(element number along radial and circumference directions,the first layer thickness is 0.0167c),150×180(0.0167c)200×240(0.0125c)and 250×30(0.0125c).Each type of mesh is tested in 9 cases(with the angles of attack taken as 2?,5?and 10?and the Reynolds numbers ranging 500,1000 and 1200 respectively).

    In order to display the computational convergence and compare the computational efficiency of different meshes,we define the relative error erand the relative time cost etof each mesh,as follows:

    Figure 3:Meshes of Airfoil-1.00 with different resolutions.

    where Cliand Cdiare the lift coef ficient and the drag coef ficient calculated from a case for a mesh while Cl?iand Cd?iare corresponding results for mesh 250×300(0.0125c);t is the computational time cost using any of above four meshes and t?is the time cost for mesh 250×300(0.0125c).

    Table 1 gives the relative error and the relative time cost of these meshes.Obvious-ly,the relative error reduces as the resolution of the mesh increases,at the cost of more computational time.Considering a balance between accuracy and efficiency of the simulation,we chose 200×240(0.0125c)as the solution of meshes in the subsequent calculation.

    Then the computational results of NACA0008 are obtained based on the mesh 200×240(0.0125c)and compared with those of Kunz and Kroo(2000)and Vargas et al.(2008),as tabulated in table 2.This validates that sufficient computational accuracy can be guaranteed using the mesh 200×240(0.0125c)

    Table 2:Validation of the computational results of NACA0008 based on the mesh 200×240(0.0125c).

    3 Results and discussions

    In following calculations,we only study the steady flow for which the fluctuation of the time dependent Cland Cdare less than 10?5.The flow fields around different airfoils described in Section 2.1 are simulated for different Reynolds numbers ranging from 500 to 12000(with an interval of 500)and angles of attack changing from 0?to 10?(with an interval of 2?).

    In all figures given in this section,the thick dashed grey line represents the result of NACA0008;the thick solid black line represents that of Airfoil-1.00;the thin solid black line represents that of Plate;and other solid grey lines from thinner to thicker represent those of Airfoil-0.15,Airfoil-0.30,Airfoil-0.45,Airfoil-0.60,Airfoil-0.75,Airfoil-0.90,Airfoil-1.10,Airfoil-1.20,Airfoil-1.35 and Airfoil-1.50 respectively.

    3.1 The lift coefficients

    As shown in figure 4,the lift coefficients are strongly dependent on the angle of attack and the Reynolds number.For example,at small angle of attack(from 0? to 4?),the curve for Airfoil-1.00 is higher than that of Plate at very low Reynolds numbers.However,it declines rapidly with the increase of the Reynolds number and soon becomes lower than that of Plate.At larger angle of attack(from 6?to 10?),the lift coefficient curve of Airfoil-1.00 is always lower than that of Plate.

    Meanwhile,we notice that the lift coefficient curves of different corrugated airfoils vary rather widely.This implies that the lift is influenced distinctively by the amplitudes of corrugations.The airfoils with relatively lower corrugation amplitudes(from Airfoil-0.15 to Airfoil-0.60)have obvious advantages in enhancing the lift.A detailed analysis of the flow field structure is given in Section 3.5.

    3.2 The drag coefficients

    As shown in figure 5,the drag coefficient curves of all the airfoils drop rapidly when the Reynolds number increases from 500 to 2000.Then they decline slowly.The drag coefficient is not influenced distinctly by the amplitudes of corrugations as much as the lift coefficient.As the drag of each airfoil cannot be distinguished from Cd~Re curves,we define the relative drag coefficient C?das

    where CdNACA0008 is the corresponding drag coefficient of NACA0008.

    As shown in figure 6,the relative drag coefficient curves increase monotonously with the Reynolds number.Comparing to Plate,Airfoil-1.00 possesses higher C?d.Nevertheless the C?dof airfoils with lower corrugation amplitudes(Airfoil-0.15 and Airfoil-0.30)are lower than or nearly the same as that of Plate.

    Figure 4:The lift coefficient vs.the Reynolds number at the angle of attack:(a)α=0 ?,(b)α =2?,(c)α =4?,(d)α =6?,(e)α =8?,(f)α =10?.

    3.3 lift-drag ratio

    The aerodynamic performance of airfoils is evaluated synthetically through the liftdrag ratio Cl/Cd.

    Figure 5:The drag coefficient vs.the Reynolds number at the angle of attack α=0?.

    Based on detailed calculations,Meng et al.(2013)and Vargas et al.(2008)demonstrated that comparing to the flat plate,the corrugations may have a negative effect on aerodynamic performance at low Reynolds numbers(Re=500 or 1000).As shown in figure 7,the similar results are also observed from the present calculation of Airfoil-1.00(the same airfoil studied by Vargas et al.(2008)).

    However the above predication is not universally valid for other pleated airfoils.In our calculations,the airfoils with smaller corrugation amplitudes with lower corrugation amplitudes enhance Cl/Cd.Comparing to Plate,the increment generated by corrugations is shown as the shadow bands in figure 7;particularly,the average Cl/Cdof Airfoil-0.45 increases about 9%.These observations reveal that the corrugations with well-designed section demonstrate a better aerodynamic performance than that of Plate.

    3.4 Steadiness of flow

    The flow field around each airfoil varies from steady to unsteady gradually with the increase of the angle of attack and the Reynolds number.We regard the beginning of transition as the shedding(or vibration)of laminar separation bubble which changes the aerodynamic force remarkably.In figures 4 to 7,the thick dashed grey curves are always the longest(the unsteady data are not shown).This indicates that NACA0008 is a better airfoil in maintaining the steadiness of the flow field than Plate and the corrugated airfoils.

    Figure 6:The relative drag coefficient vs.the Reynolds number at the angle of attack:(a)α =0?,(b)α =2?,(c)α =4?,(d)α =6?,(e)α =8?,(f)α =10?.

    The influence of corrugations on steadiness of flow is nonlinear.In detail,the flow tends to be steady when the airfoil changes from flat to corrugated gradually.After the maximum corrugation amplitude of the airfoil exceeds a critical value,the flow tends to be unsteady.

    Airfoil-0.45 and NACA0008 possessidenticalcapabilitiesin maintaining the steadiness of flow field for the Reynolds numbers ranging between 500 and 12000.

    Figure 7:The lift-drag ratio vs.the angle of attack at(a)Re=500;(b)Re=1000.

    3.5 Analyses of flow field structures

    To reveal the underlying mechanisms of aerodynamic performances described in sections 3.1 to 3.4,the pressure contour and streamline are given here to display the flow field structures.

    Figure 8 shows the static pressure contours(numbers in the figure represent the levels of pressure)of the airfoils with different corrugation amplitudes(Plate,Airfoil-0.45 and Airfoil-1.00)at the angle of attack α =6?and the Reynolds number Re=1000.For Plate(see figure 8(a)),the pressure contours are smooth both on the upper and the lower surfaces;while for Airfoil-0.45(see figure 8(b))with light but distinct corrugations,the pressure of each pleat on the lower surface rises on the windward side but only slightly declines on the leeward so that a larger upward thrust is produced.Thus,the lift is enhanced by the corrugations of airfoils with relative lower corrugation amplitudes.However,this is not true for Airfoil-1.00(see figure 8(c)).For this airfoil with the higher corrugation amplitude,the pressure changes sharply and simultaneously both on the upper and lower surfaces,cancelling out each other and yielding almost no lift enhancement.In short,the different geometries of a corrugated airfoils change the detail structure of pressure field around the airfoil so that the in fluence of the lift is not monotonous.

    Figures 9 to 11 depict the streamlines of NACA0008,Airfoil-0.45 and Airfoil-1.00 at the angle of attack α =2?,with the Reynolds number Re=2000,4000 and 6000.As seen from figure 9,the flow sticks to the surface of NACA0008,with different Reynolds number(2000,4000 and 6000),which is obvious for a streamlined body.And as shown in figure 10,the first separation of flow occurs in the first concave region on the upper surface of Airfoil-0.45 with Re=2000 or 4000,and in the first convex domain on the lower surface with Re=6000.There are 3 to 5 stable separation bubbles filled in the corrugations in the fore part of the airfoil and no separation occurs in the rear part.As a result,such an airfoil as Airfoil-0.45 with relatively lower corrugation amplitudes keeps the flow sticking to a virtual surface as if a streamlined body behaves.

    Figure 8:The static pressure contour of(a)Plate,(b)Airfoil-0.45 and(c)Airfoil-1.00 at the angle of attack α =6?and the Reynolds number Re=1000.

    However,for Airfoil-1.00 with higher corrugation amplitude,there are 7 to 9 separation bubbles distributing along the airfoil(see figure 11).Moreover,the bubbles in the rear part of the airfoil spread so quickly that the outer flow departs from the surface of the airfoil.This phenomenon tend to be more obvious with the increase of the Reynolds number.Apparently,the flow field around the airfoil with higher corrugation amplitude possesses quite different structures from those of streamlined body like NACA0008.

    In short,the geometry of a corrugated airfoil can be specially designed to tune its flow field as that of a streamlined body.

    Figure 9:The streamline of NACA0008 at α =2?with(a)Re=2000,(b)Re=4000 and(c)Re=6000.

    Figure 10:The streamline of Airfoil-0.45 at α =2?with(a)Re=2000,(b)Re=4000 and(c)Re=6000.

    4 Conclusions

    Under the low Reynolds number condition of dragonfly flight(500 to 12000),the aerodynamic performance of corrugated airfoil Airfoil-1.00(with the section of the Profile 2 in Kesel’s experiment[Kesel(2000)],τ=7.531%)is not superior to that of a flat plate.However,after amending the amplitude of the corrugations,Airfoil-0.45(with a well designed section,τ=3.389%)shows a remarkable superiority.Comparing to the flat plate in the condition of steady flow,Airfoil-0.45 enhances the lift,reduces the drag(at larger angle of attack)so that it could enhance the average Cl/Cdabout 9%.Meanwhile,it maintains the steadiness of flow as well as the streamline body NACA0008.

    In conclusion,a corrugated airfoil with well-designed section can perform better than the plate.To approach an optimized state,the corrugation amplitude could be considered as a key parameter to describe the irregularities of the corrugated wings in steady flow.This result can be a potential inspiration to bionics design for MAVs(micro air vehicles).

    Figure 11:The streamline of Airfoil-1.00 at α =2?with(a)Re=2000,(b)Re=4000 and(c)Re=6000.

    Acknowledgement:This work is supported by the National Science Foundation of China(Grant No.11272175)and the Fundamental Research Funds for the Central Universities.

    Reference

    Buckholz,R.(1986):The functional role of wing corrugations in living systems.Journal of fluids engineering,vol.108,no.1,pp.93-97.

    Hobson,K.A.;Anderson,R.C.;Soto,D.X.;Wassenaar,L.I.(2012):Isotopic evidence thatdragonflies(Pantala flavescens)migrating through the Maldivescome from the northern Indian subcontinent.PLoS One,vol.7,no.12 e52594.

    Hu,H.;Tamai,M.(2008):Bioinspired Corrugated Airfoil at Low Reynolds Numbers.Journal of Aircraft,vol.45,no.6,pp.2068-2077.

    Kesel,A.B.(2000):Aerodynamic characteristics of dragonfly wing sections compared with technical aerofoils.J.Exp.Biol.,vol.203,Pt.20,pp.3125-3135.

    Kunz,P.;Kroo,I.(2000):Analysis,design,and testing of airfoils for use at ultralow Reynolds numbers.in Proceedings of a Workshop on Fixed and Flapping Flight at Low Reynolds Numbers,Notre Dame.

    Levy,D.E.;Seifert,A.(2010):Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000.J.Theor.Biol.,vol.266,no.4,pp.691-702.

    Meng,X.G.;Sun,M.(2013):Aerodynamic effects of wing corrugation at gliding flight at low Reynolds numbers.Physics of Fluids,vol.25,no.7,071905.

    Newman,B.;Savage,S.;Schouella,D.(1977):Model tests on a wing section of an Aeschna dragonfly.Scale Effects in Animal Locomotion,pp.445-477.

    Okamoto,M.;Yasuda,K.;Azuma,A.(1996):Aerodynamic characteristics of

    the wings and body of a dragonfly.J.Exp.Biol.,vol.199,Pt.2,pp.281-294.

    Rees,C.J.C.(1975):Form and Function in Corrugated Insect Wings.Nature,vol.256,no.5514,pp.200-203.

    Rees,C.J.C.(1975):Aerodynamic properties of an insect wing section and a smooth aerofoil compared.Nature,vol.258,no.5531,pp.141-142.

    Rudolph,R.(1977):Aerodynamic properties ofLibellula quadrimaculata L.(Anisoptera:Libelludidea),and the flow around smooth and corrugated wing section models during gliding flight.Odonatologica,vol.7pp.49-58.

    Vargas,A.;Mittal,R.;Dong,H.(2008):A computational study of the aerody-namic performance of a dragonfly wing section in gliding flight.Bioinspir Biomim,vol.3,no.2,026004.

    Wakeling,J.;Ellington,C.(1997):Dragonfly flight.I.Gliding flight and steadystate aerodynamic forces.J.Exp.Biol.,vol.200,Pt.3,pp.543-556.

    1Tongji University,Shanghai,China.

    2Tsinghua University,Beijing,China.

    3Corresponding author.E-mail:zhongk@#edu.cn

    精品人妻1区二区| 久久天躁狠狠躁夜夜2o2o| 久久久水蜜桃国产精品网| 日本 av在线| 人人妻,人人澡人人爽秒播| 成人三级黄色视频| 亚洲,欧美精品.| 成人午夜高清在线视频| 成年女人毛片免费观看观看9| 99国产精品99久久久久| 天天一区二区日本电影三级| 午夜免费成人在线视频| 久久久精品欧美日韩精品| 久久久久久久精品吃奶| 欧美日韩亚洲国产一区二区在线观看| 亚洲一区中文字幕在线| 一级a爱片免费观看的视频| 一个人免费在线观看的高清视频| av福利片在线| 精品日产1卡2卡| 制服人妻中文乱码| 亚洲专区国产一区二区| 男女下面进入的视频免费午夜| 久久中文字幕人妻熟女| 亚洲欧美激情综合另类| 亚洲一区二区三区不卡视频| 亚洲真实伦在线观看| av有码第一页| 欧美黑人巨大hd| 久久精品国产99精品国产亚洲性色| 国产成人精品久久二区二区免费| 少妇粗大呻吟视频| АⅤ资源中文在线天堂| 黄色片一级片一级黄色片| 窝窝影院91人妻| 亚洲成人久久性| 中文字幕人妻丝袜一区二区| 91国产中文字幕| 级片在线观看| 久热爱精品视频在线9| 日本 av在线| 亚洲国产欧美一区二区综合| 日本三级黄在线观看| 亚洲午夜精品一区,二区,三区| 国产在线观看jvid| 免费搜索国产男女视频| 蜜桃久久精品国产亚洲av| 国产精品一区二区三区四区免费观看 | 久99久视频精品免费| 国产成人av激情在线播放| 亚洲中文字幕日韩| 99在线人妻在线中文字幕| 制服诱惑二区| 亚洲中文日韩欧美视频| 97人妻精品一区二区三区麻豆| 99国产综合亚洲精品| x7x7x7水蜜桃| 十八禁网站免费在线| 在线观看午夜福利视频| www.熟女人妻精品国产| 三级国产精品欧美在线观看 | 亚洲五月婷婷丁香| 久久久久久久久免费视频了| 日韩中文字幕欧美一区二区| 香蕉av资源在线| 美女高潮喷水抽搐中文字幕| 极品教师在线免费播放| www.www免费av| 首页视频小说图片口味搜索| 超碰成人久久| 五月伊人婷婷丁香| 亚洲一码二码三码区别大吗| √禁漫天堂资源中文www| 亚洲精品一卡2卡三卡4卡5卡| 亚洲美女视频黄频| 国产av又大| 欧美一级a爱片免费观看看 | 国产v大片淫在线免费观看| 老司机深夜福利视频在线观看| 亚洲欧美日韩无卡精品| 成在线人永久免费视频| 啪啪无遮挡十八禁网站| 又大又爽又粗| 久9热在线精品视频| 色综合欧美亚洲国产小说| 亚洲国产精品合色在线| 亚洲,欧美精品.| tocl精华| netflix在线观看网站| 亚洲真实伦在线观看| 久久人妻福利社区极品人妻图片| 可以免费在线观看a视频的电影网站| 欧美性长视频在线观看| 亚洲国产看品久久| 亚洲中文av在线| 亚洲18禁久久av| 欧美成人午夜精品| 夜夜看夜夜爽夜夜摸| 美女大奶头视频| 19禁男女啪啪无遮挡网站| 嫁个100分男人电影在线观看| 亚洲男人的天堂狠狠| 韩国av一区二区三区四区| 国产99白浆流出| 精品国产美女av久久久久小说| 国产高清有码在线观看视频 | 国产精品av视频在线免费观看| 九色成人免费人妻av| 制服丝袜大香蕉在线| 99在线视频只有这里精品首页| www国产在线视频色| 国内精品久久久久精免费| 国产精品一区二区精品视频观看| 午夜影院日韩av| 国产精品免费一区二区三区在线| 久久久精品欧美日韩精品| 国产日本99.免费观看| 精品国产乱子伦一区二区三区| 人人妻人人看人人澡| 亚洲欧美精品综合一区二区三区| 亚洲精品在线美女| 他把我摸到了高潮在线观看| 麻豆av在线久日| 久久久久久亚洲精品国产蜜桃av| 黄色a级毛片大全视频| 国内精品一区二区在线观看| 两个人的视频大全免费| 99久久精品热视频| 99国产精品一区二区蜜桃av| 桃色一区二区三区在线观看| 国产精品永久免费网站| 国产免费男女视频| 999久久久国产精品视频| 黄片小视频在线播放| 亚洲欧美一区二区三区黑人| 三级毛片av免费| 欧美中文综合在线视频| 亚洲av成人一区二区三| 人妻夜夜爽99麻豆av| 亚洲真实伦在线观看| 亚洲精品粉嫩美女一区| 日韩大码丰满熟妇| 精品无人区乱码1区二区| 日韩欧美国产在线观看| 国产亚洲精品一区二区www| 亚洲中文字幕日韩| 久久这里只有精品中国| a级毛片a级免费在线| 黄片大片在线免费观看| 日本在线视频免费播放| 亚洲av片天天在线观看| 一区二区三区高清视频在线| 午夜免费观看网址| 91成年电影在线观看| 国产伦人伦偷精品视频| 国产精品美女特级片免费视频播放器 | 亚洲熟妇熟女久久| 免费看美女性在线毛片视频| 久久久久久久精品吃奶| 性欧美人与动物交配| 超碰成人久久| 欧美又色又爽又黄视频| 欧美在线黄色| 天天添夜夜摸| 欧美3d第一页| 亚洲中文日韩欧美视频| 成人国产一区最新在线观看| 午夜a级毛片| 大型av网站在线播放| 精品无人区乱码1区二区| 窝窝影院91人妻| 一区二区三区高清视频在线| 亚洲美女视频黄频| 少妇裸体淫交视频免费看高清 | 国产熟女xx| 三级国产精品欧美在线观看 | 天堂√8在线中文| 一个人观看的视频www高清免费观看 | 日韩精品免费视频一区二区三区| 男女之事视频高清在线观看| 久久草成人影院| 日韩国内少妇激情av| 黄色 视频免费看| 久久精品国产清高在天天线| 亚洲国产欧美一区二区综合| 婷婷丁香在线五月| 国内精品一区二区在线观看| 无遮挡黄片免费观看| 久久中文字幕一级| 国产精华一区二区三区| 狂野欧美白嫩少妇大欣赏| 国产又黄又爽又无遮挡在线| 曰老女人黄片| 一区福利在线观看| 一级片免费观看大全| 国产69精品久久久久777片 | 老司机深夜福利视频在线观看| 亚洲av成人不卡在线观看播放网| 老汉色av国产亚洲站长工具| 好男人在线观看高清免费视频| 精品第一国产精品| 亚洲熟女毛片儿| 精品国产美女av久久久久小说| 最近最新免费中文字幕在线| 法律面前人人平等表现在哪些方面| 亚洲欧美日韩东京热| 久久婷婷人人爽人人干人人爱| 亚洲七黄色美女视频| 国产69精品久久久久777片 | 国产精品乱码一区二三区的特点| 日本五十路高清| 黄色视频,在线免费观看| x7x7x7水蜜桃| 久久久久免费精品人妻一区二区| 91字幕亚洲| 欧美日韩亚洲综合一区二区三区_| 女警被强在线播放| 欧美高清成人免费视频www| 波多野结衣高清无吗| 91成年电影在线观看| 欧美色欧美亚洲另类二区| 欧美乱色亚洲激情| 午夜影院日韩av| 女生性感内裤真人,穿戴方法视频| 亚洲精品久久国产高清桃花| 成年免费大片在线观看| 久久久久免费精品人妻一区二区| 亚洲av成人不卡在线观看播放网| 国产一区二区三区在线臀色熟女| 成熟少妇高潮喷水视频| 日本成人三级电影网站| 欧美黑人欧美精品刺激| 国产av又大| 亚洲国产欧美网| 无遮挡黄片免费观看| 欧美zozozo另类| 校园春色视频在线观看| 久久精品国产综合久久久| 99国产极品粉嫩在线观看| 国产高清有码在线观看视频 | 国产精品亚洲一级av第二区| 久久精品国产清高在天天线| 成人av在线播放网站| 啦啦啦观看免费观看视频高清| 欧美日韩黄片免| 色综合亚洲欧美另类图片| 中亚洲国语对白在线视频| 国产人伦9x9x在线观看| 欧美成人午夜精品| 18禁国产床啪视频网站| 亚洲五月婷婷丁香| 亚洲精品av麻豆狂野| 不卡一级毛片| 久久久久久大精品| 熟女少妇亚洲综合色aaa.| 老司机在亚洲福利影院| 亚洲国产看品久久| 国产亚洲av嫩草精品影院| 中文字幕高清在线视频| 精品久久久久久,| 一夜夜www| 欧美极品一区二区三区四区| 国产乱人伦免费视频| 美女高潮喷水抽搐中文字幕| 免费在线观看亚洲国产| 成人高潮视频无遮挡免费网站| 国产三级中文精品| 日本免费a在线| 国产区一区二久久| 757午夜福利合集在线观看| 亚洲激情在线av| 国产熟女午夜一区二区三区| 搡老熟女国产l中国老女人| 色综合亚洲欧美另类图片| 国产真实乱freesex| 在线观看舔阴道视频| 色综合亚洲欧美另类图片| 亚洲一卡2卡3卡4卡5卡精品中文| 精品一区二区三区av网在线观看| 亚洲人成网站在线播放欧美日韩| 国产精品一及| 国产成人av教育| 757午夜福利合集在线观看| 国产又色又爽无遮挡免费看| 母亲3免费完整高清在线观看| 天堂影院成人在线观看| 免费在线观看影片大全网站| 国产亚洲欧美在线一区二区| 国产精品亚洲av一区麻豆| 成人高潮视频无遮挡免费网站| 国产精品免费一区二区三区在线| 给我免费播放毛片高清在线观看| 精品国产乱子伦一区二区三区| 老汉色∧v一级毛片| 露出奶头的视频| 久久久久国产一级毛片高清牌| 三级男女做爰猛烈吃奶摸视频| 久久久久久久久久黄片| 国产麻豆成人av免费视频| 两性午夜刺激爽爽歪歪视频在线观看 | 国产精品九九99| xxxwww97欧美| 国产精品久久久久久人妻精品电影| 国产视频内射| 国产伦在线观看视频一区| 男女做爰动态图高潮gif福利片| 久9热在线精品视频| 波多野结衣巨乳人妻| 国产三级在线视频| 成人午夜高清在线视频| 中文字幕最新亚洲高清| 99久久久亚洲精品蜜臀av| av在线天堂中文字幕| 国产激情久久老熟女| 亚洲一区二区三区色噜噜| 亚洲国产欧美人成| 日本撒尿小便嘘嘘汇集6| 欧美日韩瑟瑟在线播放| 久久久久久久久久黄片| 久久久精品国产亚洲av高清涩受| 搞女人的毛片| 岛国视频午夜一区免费看| 最新在线观看一区二区三区| 大型黄色视频在线免费观看| 午夜精品久久久久久毛片777| 全区人妻精品视频| 高清毛片免费观看视频网站| 国产视频一区二区在线看| 老鸭窝网址在线观看| 天天一区二区日本电影三级| 国产精品av久久久久免费| 国产av麻豆久久久久久久| 亚洲18禁久久av| 久久人妻av系列| 婷婷六月久久综合丁香| 国产久久久一区二区三区| 五月伊人婷婷丁香| 美女扒开内裤让男人捅视频| 18禁黄网站禁片免费观看直播| 两人在一起打扑克的视频| 伊人久久大香线蕉亚洲五| 欧美日韩一级在线毛片| 亚洲精品在线美女| 国产欧美日韩一区二区精品| 久久婷婷成人综合色麻豆| 久久九九热精品免费| 成人特级黄色片久久久久久久| 久久精品成人免费网站| 亚洲人成网站在线播放欧美日韩| 久久久久九九精品影院| 欧美日韩黄片免| 亚洲成av人片免费观看| 亚洲精品中文字幕在线视频| 国产熟女午夜一区二区三区| 天天躁夜夜躁狠狠躁躁| aaaaa片日本免费| 午夜福利在线在线| 国产区一区二久久| 巨乳人妻的诱惑在线观看| 少妇的丰满在线观看| 欧美av亚洲av综合av国产av| 老司机福利观看| 成人三级黄色视频| 亚洲男人的天堂狠狠| 国产精品香港三级国产av潘金莲| 国产精品久久电影中文字幕| 在线永久观看黄色视频| 国产精品一区二区免费欧美| 天堂动漫精品| 一级毛片精品| 国产精品自产拍在线观看55亚洲| 黑人操中国人逼视频| 久久久精品欧美日韩精品| 9191精品国产免费久久| 国产黄色小视频在线观看| 欧美 亚洲 国产 日韩一| 久久人妻福利社区极品人妻图片| 超碰成人久久| 老鸭窝网址在线观看| av免费在线观看网站| 亚洲国产欧美一区二区综合| 中文亚洲av片在线观看爽| 男人的好看免费观看在线视频 | 热99re8久久精品国产| 伊人久久大香线蕉亚洲五| 午夜激情福利司机影院| 国产野战对白在线观看| 成人亚洲精品av一区二区| 啦啦啦免费观看视频1| 色综合欧美亚洲国产小说| 午夜福利欧美成人| 黄色丝袜av网址大全| 免费电影在线观看免费观看| 精品国内亚洲2022精品成人| 久久久国产精品麻豆| 亚洲国产欧美网| 舔av片在线| 国产精品亚洲美女久久久| 精品国产乱码久久久久久男人| 亚洲国产欧美网| 国内毛片毛片毛片毛片毛片| 又黄又粗又硬又大视频| 免费人成视频x8x8入口观看| 亚洲中文字幕日韩| 欧美日韩福利视频一区二区| 国产av在哪里看| www国产在线视频色| 亚洲国产看品久久| 91大片在线观看| 国产高清视频在线观看网站| 看黄色毛片网站| 91成年电影在线观看| 国产午夜精品论理片| 黄频高清免费视频| 国产精品98久久久久久宅男小说| 国产精华一区二区三区| 男人舔女人的私密视频| 欧美中文日本在线观看视频| 男女做爰动态图高潮gif福利片| 中文在线观看免费www的网站 | 欧美日本视频| 亚洲av熟女| 国产黄片美女视频| 又大又爽又粗| 国内少妇人妻偷人精品xxx网站 | 亚洲va日本ⅴa欧美va伊人久久| 大型av网站在线播放| 又紧又爽又黄一区二区| 国产真实乱freesex| 久久久久亚洲av毛片大全| www国产在线视频色| 国产高清激情床上av| 亚洲天堂国产精品一区在线| 亚洲精品粉嫩美女一区| 久久精品亚洲精品国产色婷小说| 一级片免费观看大全| 亚洲电影在线观看av| 日韩有码中文字幕| 亚洲自拍偷在线| 91麻豆av在线| 久久精品国产清高在天天线| 日日摸夜夜添夜夜添小说| 国产激情偷乱视频一区二区| 国产精品九九99| 久久久久久久久中文| 亚洲狠狠婷婷综合久久图片| 手机成人av网站| 午夜免费激情av| 国内少妇人妻偷人精品xxx网站 | 欧美乱色亚洲激情| 久久精品91无色码中文字幕| 国产亚洲av高清不卡| 麻豆成人午夜福利视频| 人人妻人人澡欧美一区二区| 日本三级黄在线观看| 宅男免费午夜| 99精品在免费线老司机午夜| 制服丝袜大香蕉在线| 亚洲欧美精品综合一区二区三区| 欧美人与性动交α欧美精品济南到| 午夜免费成人在线视频| √禁漫天堂资源中文www| 五月玫瑰六月丁香| 亚洲成av人片在线播放无| 国产成人精品久久二区二区91| 亚洲人成网站在线播放欧美日韩| 狂野欧美白嫩少妇大欣赏| 欧美av亚洲av综合av国产av| 一本精品99久久精品77| 91成年电影在线观看| 国产精品乱码一区二三区的特点| 夜夜爽天天搞| 欧美三级亚洲精品| 一进一出抽搐动态| 丁香欧美五月| 久久久久久久久免费视频了| 中文字幕熟女人妻在线| 亚洲色图av天堂| 真人一进一出gif抽搐免费| av中文乱码字幕在线| 成人亚洲精品av一区二区| 丰满人妻一区二区三区视频av | 精品欧美国产一区二区三| 嫩草影视91久久| 免费看日本二区| 欧美午夜高清在线| 色综合婷婷激情| 人成视频在线观看免费观看| 妹子高潮喷水视频| 亚洲人与动物交配视频| 亚洲国产看品久久| 看免费av毛片| 亚洲七黄色美女视频| 日本黄色视频三级网站网址| 久久久久性生活片| 久久精品国产亚洲av香蕉五月| 亚洲在线自拍视频| 叶爱在线成人免费视频播放| 一边摸一边做爽爽视频免费| 老司机午夜十八禁免费视频| 国产精品久久久久久精品电影| 看片在线看免费视频| 两个人视频免费观看高清| 亚洲精品在线美女| 国产精品亚洲av一区麻豆| 国产91精品成人一区二区三区| 久久久久久久久中文| 久久亚洲真实| 男人舔女人的私密视频| 蜜桃久久精品国产亚洲av| 日韩三级视频一区二区三区| 国内精品一区二区在线观看| 国产欧美日韩一区二区精品| 精华霜和精华液先用哪个| 淫妇啪啪啪对白视频| 久久人妻福利社区极品人妻图片| 夜夜看夜夜爽夜夜摸| av片东京热男人的天堂| 亚洲成人国产一区在线观看| 搡老熟女国产l中国老女人| 一边摸一边抽搐一进一小说| www.自偷自拍.com| 婷婷丁香在线五月| 亚洲熟妇熟女久久| 婷婷亚洲欧美| 国产精品美女特级片免费视频播放器 | 丰满的人妻完整版| 99久久99久久久精品蜜桃| 中亚洲国语对白在线视频| 嫩草影视91久久| 成人18禁在线播放| 舔av片在线| 亚洲人成网站在线播放欧美日韩| av片东京热男人的天堂| 日韩欧美三级三区| 亚洲自偷自拍图片 自拍| 成年人黄色毛片网站| 欧美av亚洲av综合av国产av| 高潮久久久久久久久久久不卡| 欧美日韩乱码在线| 身体一侧抽搐| 欧美成人免费av一区二区三区| 免费高清视频大片| 国产精品一区二区三区四区免费观看 | 床上黄色一级片| 激情在线观看视频在线高清| 一进一出抽搐动态| 他把我摸到了高潮在线观看| 韩国av一区二区三区四区| 午夜免费激情av| 日韩欧美精品v在线| 久久热在线av| 久久中文字幕人妻熟女| 婷婷亚洲欧美| a在线观看视频网站| 嫩草影视91久久| 天堂影院成人在线观看| 国产一区二区激情短视频| 91九色精品人成在线观看| 午夜亚洲福利在线播放| 黄色 视频免费看| 亚洲精品国产一区二区精华液| 色综合站精品国产| 国产亚洲av高清不卡| 欧美3d第一页| 天堂√8在线中文| 老司机在亚洲福利影院| 很黄的视频免费| 99热只有精品国产| 欧美日韩瑟瑟在线播放| 日本一区二区免费在线视频| 欧美午夜高清在线| 欧美乱色亚洲激情| 别揉我奶头~嗯~啊~动态视频| 久久亚洲精品不卡| 国产亚洲精品av在线| 青草久久国产| 亚洲国产看品久久| 色综合婷婷激情| 男插女下体视频免费在线播放| 国产成人系列免费观看| 黄色毛片三级朝国网站| 亚洲精品久久国产高清桃花| 亚洲欧美日韩无卡精品| 亚洲精品av麻豆狂野| 1024视频免费在线观看| 日韩欧美精品v在线| 成人一区二区视频在线观看| 午夜福利在线观看吧| 亚洲美女黄片视频| 欧美一级a爱片免费观看看 | 少妇粗大呻吟视频| www.熟女人妻精品国产| 香蕉丝袜av| 久久久久久人人人人人| 国产高清videossex| 一夜夜www| 好男人电影高清在线观看| 久久人妻av系列| 69av精品久久久久久| 婷婷精品国产亚洲av在线| 久久久精品大字幕| 欧美黑人巨大hd| 无遮挡黄片免费观看| 国产精品野战在线观看| 久久久久九九精品影院| 日韩 欧美 亚洲 中文字幕| 日韩欧美在线乱码| 午夜精品在线福利| 国产主播在线观看一区二区| 欧美乱码精品一区二区三区| 亚洲一卡2卡3卡4卡5卡精品中文| 一进一出好大好爽视频| 在线十欧美十亚洲十日本专区| 久久久精品国产亚洲av高清涩受|