• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    The Finite Points Approximation to the PDE Problems in Multi-Asset Options

    2015-12-18 06:52:09VahdatiandMirzaei

    S.Vahdati and D.Mirzaei

    The Finite Points Approximation to the PDE Problems in Multi-Asset Options

    S.Vahdati1and D.Mirzaei2

    In this paper we present a meshless collocation method based on the moving least squares(MLS)approximation for numerical solution of the multiasset(d-dimensional)American option in financial mathematics.This problem is modeled by the Black-Scholes equation with moving boundary conditions.A penalty approach is applied to convert the original problem to one in a fixed domain.In finite parts,boundary conditions satisfy in associated(d?1)-dimensional Black-Scholes equations while in infinity they approach to zero.All equations are treated by the proposed meshless approximation method where the method of lines is employed for handling the time variable.Numerical examples for single-and two-asset options are illustrated.

    Meshless methods,MLS approximation,finite points method,American options,Black-Scholes equation.

    1 Introduction

    Option is one of the interesting financial instruments which is the right(but not the obligation)to buy(call option)or sell(put option)a risky asset at a prescribed fixed price(exercise or strike price)on(European option)or before(American option)a given date called expiry date.Options are mostly modeled by partial or stochastic differential equations.The price of an American option is governed by a linear complementarity problem involving the Black-Scholes differential operator and a constraint(or obstacle)on the value of the option.For details see Huang and Pang(1998);Jaillet,Lamberton,and Lapeyre(1990);Wilmott,Dewynne,and Howison(1993).

    To remove the free boundary conditions in an American option,a method whichadds a penalty term to the Black-Scholes equation can be employed.Using the penalty term is not quite new,for example,penalty method and front fixing method together with the finite difference method are discussed in Wu and Kwok(1997);Nielsen,Skavhaug,and Tveito(2002,2008);Pantazopoulos,Houstis,and Kortesis(1998).

    There are several methods for numerical solution of European and American options.A lattice method,as the first numerical method to Black-Scholes equation proposed in Cax,Ross,and Rubinstein(1979).Finite difference methods(FDM)combined with PSOR algorithm(Yves and O.Pironneau(2005))and operator splitting method in(Dronen and Toivanen(2004))are other approaches.Space-time adaptive finite difference methods for European multi-asset options are proposed in Persson and Von Sydow(2007);L?tstedt,Persson,Von Sydow,and Tysk(2007).In spite of the method of Persson and Von Sydow(2007)which uses second-order formulas in combination with adaptivity,in Linde,Persson,and Von Sydow(2009)a high accurate adaptive finite difference solver is introduced for the Black-Scholes equation.However,due to the discontinuity of the first derivative of the final condition,these discretizations yield only second-order accuracy locally.To circumvent this problem,authors use an extra(fine)grid around the discontinuity in a limited space-and time-domain.In Persson and Von Sydow(2010)a numericalmethod for pricing American options,in two cases,constant volatility and stochastic volatility,is proposed which uses a space-time adaptive finite difference method.Lee and Kim(2012),proposed a local differential quadrature(LDQ)method to solve the option-pricing models with stochastic volatilities.

    Finite volume methods are also used for pricing American/European option with constant or time-dependent volatility.For example Wang(2004);Wang,Yang,and Teo(2006)have proposed a fitted finite volume method for spatial discretization and an implicit time stepping technique for temporal discretization which is combined with power penalty method for option pricing.

    Finite elementmethodsare more flexible formesh adaptivity.See Yvesand O.Pironneau(2005);Memon(2012);Young,Sun,and Shen(2009).In this scheme the analysis is performed within the framework of the vertical method of lines,where the spatial discretization is formulated as a Galerkin method with trial space spanned by proper basis functions like piecewise polynomials.

    Recently,some papers have been published which consider the meshfree radial basis functions for solution of Black-Scholes equation for financial options.As examples see Fasshauer,Khaliq,and Voss(2004);Hon and Mao(1999);Hon(2002);Pettersson,Larsson,Marcusson,and Persson(2005).In Fasshauer,Khaliq,and Voss(2004)a penalty method is presented to handle the moving boundary in American options.This technique will be used in the present paper.It is known that RBF techniques suffer from the ill-conditioned interpolation matrix.The condition numbers are sometimes increased exponentially.To overcome this drawback some precautions like preconditioning should be applied.We refer the reader to Beatson,Cherrie,and Mouat(1999);Brown,Ling,Kansa,and Levesley(2005);Fornberg and Piret(2007);Fornberg,Larsson,and Flyer(2011);Fornberg,Lehto,and Powell(2013)for details.

    Moving least squares(MLS)approximation is another class of meshfree approximation methods which has been widely used in numerical solutions of PDEs.Some applications can be found in Belytschko,Krongauz,Organ,Fleming,and Krysl(1996);Atluri and Zhu(1998);Atluri and Shen(2002);Atluri(2005);Sladek,Sladek,and Atluri(2004).MLS is a stable numerical approximation with polynomial order of accuracy.In contrast with the global RBFs,the final approximation matrix is often well-conditioned.In this paper,we use the MLS as trial approximation to build a collocation scheme for penalized Black-Scholes equation in option pricing.This method is usually called finite points method.No background mesh is required for numerical simulation because the method uses scattered points to represent the consideration domain.

    It should be noted that Yongsik,Hyeong-Ohk,and Hyeng Keun(2014)applied a meshfree method based on diffuse approximation of derivatives to solve option pricing in the single-asset case for European,Asian and Double barrier options.The present paper is different from that of Yongsik,Hyeong-Ohk,and Hyeng Keun(2014)because it concerns multi-asset American options instead.Besides,the approximation method of this paper uses the standard derivatives of the MLS instead of diffuse derivatives.Diffuse derivatives can be obtained via a generalized moving least squares approximation as discussed in Mirzaei,Schaback,and Dehghan(2012)and can be easily applied to the problem of this paper,too.

    The rest of paper is organized as below.In Section 2 the Black-Scholes model and the penalty approach are discussed.In Section 3 the MLS approximation is reviewed and in Section 4 the finite points method is developed for multi-asset American options.Finally,in Section 5 some numerical results are given.

    2 American options and a penalty formulation

    Following Fasshauer,Khaliq,and Voss(2004),assume that there are d assets whose prices at time t are denoted by S(t)=(S1(t),...,Sd(t)).We can determine the value of f(S,t)of the American put option by solving the d-dimensional Black-Scholes equation accompanying with moving boundary conditions.An American option problem is a free boundary problem because of the possibility of early exercise at any point during its life.For more details see Wilmott(1998);Brandimarte(2006).If the moving boundary is denoted by notation S(t)=(S1(t),...,Sd(t)),the time of expiry time by T,the volatility of i-th underlying asset by σi,the risk free interest rate by r,the dividend paid by asset i by Diand the correlation between assets i and j by ρij,then the following Black-Scholes equation with moving boundary conditions and payoff function(terminal condition)

    If we assume ?={(S1,...,Sd):Si>0,i=1,...,d},by adding the penalty term to the original Black-Scholes equation we will have the following nonlinear PDE for S∈? and 0 6 t<T,

    The terminal condition in time t=T is enforced by

    and the boundary conditions are

    where q(Si)=E?αiSi.

    3 MLS for trial approximtion

    Meshlessormeshfree methodswrite everything entirely in termsof scattered points and this is an alternative to the mesh-based approximation methods like as finite element and finite volume methods.The radial basis functions(RBFs)are frequently used as meshless approximations in recent years.Another family of mostly used meshfree methods are moving least squares(MLS)and related methods,introduced by Lancaster and Salkauskas(1981).Applications of MLS for numerical solution of PDEs have come to the picture by diffuse element method(see Nyroles,Touzot,and Villon(1992)),element-free Galerkin method(see Belytschko,Lu,and Gu(1994)),meshless local Petrov-Galerkin(MLPG)methods(see Atluri and Shen(2002);Atluri and Zhu(1998);Dong,Alotaibi,Mohiuddine and Atluri(2014);Zhang,Dong,Alotaibi and Atluri(2013)),etc.

    Here we aim to apply the MLS collocation method for the nonlinear equation(2)with the terminal and boundary conditions(3)-(5).But before that we explain the MLS approximation itself.Suppose that ? is a closed subset of Rdand let

    induced by the inner product

    The inner product depends on moving point y∈?.This finally leads to a local approximation if y is chosen properly.If for x∈? we define

    then from the theory ofbestapproximation in pre-Hilbertspaces,α(y)=(α1(y),...,αQ(y))Tshould be chosen such that

    This leads to the normal system

    We noted that y should selected properly.In MLS to have a local approximation we put y:=x where x is current evaluation point,and the weight function w:?×?→R+∪{0}is defined such that it becomes smaller the further away its arguments are from each other.Ideally,w vanishes for arguments x,xj∈? with k x?xjk2greater than a certain threshold,say δ.Such a behavior can be modeled by using a translation-invariant weight function.This means that w is of the form

    where δ is the scaling parameter and ?(r)> 0 for r∈ [0,1]and ?(r)=0 for r> 1.Let I(x)is the set of active indices in x,i.e.I(x)={j:k x?xjk 6 δ}and let Xx={xj,:j∈I(x)}.If we define

    where|I(x)|denotes the size of I(x),then we clearly have A(x)=PTW P and b(x)=PTW f.According to Wendland(2005)if Xxis Pdm-unisolvent then A(x)is positive definite and the MLS approximation is well-defined at x.Solving the normal equation gives

    which leads to

    where a(x)=pT(x)(PTW P)?1PTW is called shape function vector at x.The extended form of the above equation can be written as

    The MLS approximation is known to be a stable numerical algorithm,because as it was proven in Wendland(2005)

    where CLis a small constant independent of X.This means that the Lebesgue functions are uniformly bounded by CL.The reader should compare this with the known results on polynomial interpolation.MLS is computationally attractive because it solves for every point x a locally weighted least squares problem which is turn out to be a very efficient method because it is not necessary to set up and solve a large system of equations.

    where β is a multi-index.It remains to show that how derivatives of ajcan be calculated.More details may be found in MLS literatures and specially in Belytschko,Krongauz,Organ,Fleming,and Krysl(1996).

    Here we use the C0Gaussian weight function

    where ε is a shape parameter,and/or the C2spline weight function

    4 Numerical algorithm

    If we apply the above equation at internal test points S=sk,k=1,...,NI,in a vector form we have

    where we introduced the following notations

    In a short notation,equation(7)can be rewritten as

    Note that,in the above formulation,constants C,ε and E are interpreted as constant vectors of size NI,and the division and multiplication in the third term are elementby-element operators.

    The terminal condition(3)provides the primary vector solution at t=T,i.e.

    To enforce the boundary conditions,we should solve some one dimensional problems(d=1).In this case fε(0,t)=E and fε(S∞,t)=0.If MLS is applied,we have

    In vector form,

    Equations(8)-(10)form a system of Differential Algebraic Equations(DAE).For a d-dimensional problem,due to(4),the corresponding(d?1)-dimensional problem should be solved to provide the values at half part of the boundary,say Γ1.The boundary conditions at the remaining parts(say Γ2)are zero due to(5).Thus the subroutines of lower dimensional problems should be called,inductively.Let g(t)be the vectorsolution ofcorresponding(d?1)-dimensionalproblem overboundary Γ1.Then

    5 Numerical results

    Here some numerical experiments are given for single and multi-asset options.To compare the results with the results of finite difference and RBF interpolation methods of Fasshauer,Khaliq,and Voss(2004)we consider only the case ε=0.01.The effect of this penalty parameter are extensively studied in Nielsen,Skavhaug,and Tveito(2008,2002).The Gaussian and spline weight functions for MLS approximation and different values for degree of polynomial basis functions(m)are considered.In all cases regular node distributions with mesh-sizehare used,although the method can always work for scattered data.The size supportδof weight functionwshould be large enough to ensure the regularity of matrixA(x)in MLS approximation.Indeedδshould depend on the density of nodes and the degree of polynomial basis functions.Hereδ=2mhis used.The shape parameterεin Gaussian weight function effects the numerical results,and unfortunately there is no optimal value available for that.Experiments show thatm6ε6 3mproduce accurate results.Hereε=2mis used.

    Table 1:Comparing finite difference,RBF and finite points solutions

    Figure 1:Initial(t=T=1),and final(t=0)profiles for two values of σ.

    Figure 2:Initial(t=T=1),and final(t=0)profiles for two values of D.

    Figure 3:Initial(t=T=1),and final(t=0)profiles for correlated(ρ12=0.5)case.

    For the single-asset option we setr=0.1,σ=0.2,D=0,E=1,T=1,S0=0,S∞=2 and use the Crank-Nicolson scheme in time with ?t=0.01.Results are presented in the last two columns of Table 1 and compared with the finite difference(with many points as a reference solution)and the radial basis function(RBF)solutions of Fasshauer,Khaliq,and Voss(2004).Numbers in the first row of Table 1 represent the number of points used in numerical simulation for each method.

    For a two-asset problem we user=0.1,σ1=0.2,σ2=0.3,α1=0.6,α2=0.4,D1=0.05,D2=0.01,E=1,T=1 and b?=[0,4]×[0,4].The time difference method withθ=0.5 is again employed.In Figure 3 the terminal profile and the profile att=0 are plotted in the case of correlated assets(σ12=0.5).Results are in excellent agreement with those given in Fasshauer,Khaliq,and Voss(2004).

    In Figure 1 the profiles att=0 are plotted for different values ofσ.Other parameters remain unchanged.In Figure 2 the profiles forD=0 andD=0.1 are compared.

    Atluri,S.;Zhu,T.-L.(1998): A new meshless local Petrov-Galerkin(MLPG)approach in computational mechanics.Computational Mechanics,vol.22,pp.117–127.

    Atluri,S.N.(2005):The meshless method(MLPG)for domain and BIE discretizations.Tech Science Press,Encino,CA.

    Atluri,S.N.;Shen,S.(2002):The Meshless Local Petrov-Galerkin(MLPG)Method.Tech Science Press,Encino,CA.

    Beatson,R.K.;Cherrie,J.B.;Mouat,C.T.(1999): Fast fitting of radial basis functions:Methods based on preconditioned GMRES iteration.Advances in Compuational Mathematics,vol.11,pp.253–270.

    Belytschko,T.;Krongauz,Y.;Organ,D.;Fleming,M.;Krysl,P.(1996):Meshlessmethods:an overview and recentdevelopments.ComputerMethodsinApplied Mechanics and Engineering,special issue,vol.139,pp.3–47.

    Belytschko,T.;Lu,Y.;Gu,L.(1994):Element-Free Galerkin methods.International Journal for Numerical Methods in Engineering,vol.37,pp.229–256.

    Brandimarte,P.(2006):Numerical Methods in Finance and Economics,A MATLAB-Based Introduction.2nd edition.Wiley.

    Brown,D.;Ling,L.;Kansa,E.J.;Levesley,J.(2005):On approximate cardinal preconditioning methods for solving PDEs with radial basis functions.Engineering Analysis with Boundary Elements,vol.19,pp.343–353.

    Cax,J.C.;Ross,S.A.;Rubinstein,M.(1979): Option pricing:a simplified approach.Journal of Financial Economics,vol.7,pp.229–263.

    Dong,L.;Alotaibi,A.;Mohiuddine,S.A.;Atluri,S.N.(2014):Computational methods in engineering:a variety of primal&mixed methods,with global&local interpolations,for well-posed or ill-posed BCs.CMES:Computer Modeling in Engineering&Sciences,vol.99,no.1,pp.1–85.

    Dronen,S.;Toivanen,J.(2004):Toivanen,operator splitting methods for American option pricing.Applied Mathematics Letters,vol.11,pp.809–814.

    Fasshauer,G.E.;Khaliq,A.Q.M.;Voss,D.A.(2004): Using meshfree approximation for multi-asset American option problems.Journal of the Chinese Institute of Engineers,vol.27,pp.563–571.

    Fornberg,B.;Larsson,E.;Flyer,N.(2011):Stable computations with gaussian radial basis functions.SIAM Journal on Scientific Computing,vol.33,pp.869–892.

    Fornberg,B.;Lehto,E.E.;Powell,C.(2013): Stable calculation of gaussianbased rbf-fd stencils.Computers&Mathematics with Applications,vol.65,pp.627–637.

    Fornberg,B.;Piret,C.(2007): A stable algorithm for at radial basis functions on a sphere.SIAM Journal on Scientific Computing,vol.30,pp.60–80.

    Hon,Y.C.(2002): A quasi-radial basis functions method for American options pricing.Computer Mathematics with Applications,vol.43,pp.513–524.

    Hon,Y.C.;Mao,X.Z.(1999):A radial basis function method for solving options pricing model.Financial Engineering,vol.8,pp.31–49.

    Huang,J.;Pang,S.(1998):Option pricing and linear complementarity.Journal of Computational Finance,vol.2,pp.31–60.

    Jaillet,P.;Lamberton,D.;Lapeyre,B.(1990): Variational inequalities and the pricing of American options.Acta Applicandae Mathematicae,vol.21,pp.263–289.

    Lancaster,P.;Salkauskas,K.(1981): Surfaces generated by moving least squares methods.Mathematics of Computation,vol.37,pp.141–158.

    Lee,J.E.;Kim,S.J.(2012): Simulation of multi-option pricing on distributed computing.CMES:Computer Modeling in Engineering&Sciences,vol.86,pp.93–112.

    Linde,G.;Persson,J.;Von Sydow,L.(2009): A highly accurate adaptive finite difference solver for the black-scholes equation.International Journal of Computer Mathematics,vol.86,pp.2104–2121.

    L?tstedt,P.;Persson,J.;Von Sydow,L.;Tysk,J.(2007):Space-time adaptive finite difference method for european multi-asset options.Computers and Mathematics with Applications,vol.53,pp.1159–1180.

    Memon,S.(2012):Finite element method for American option pricing:a penalty approach.International Journal of Numerical Analysis and Modeling,Series B,vol.3,no.3,pp.345–370.

    Mirzaei,D.;Schaback,R.;Dehghan,M.(2012):On generalized moving least squares and diffuse derivatives.IMA Journal of Numerical Analysis,vol.32,pp.983–1000.

    Nielsen,B.F.;Skavhaug,O.;Tveito,A.(2002):Penalty and front-fixing methods for the numerical solution of American option problems.Journal of Computational Finance,vol.5,pp.69–97.

    Nielsen,B.F.;Skavhaug,O.;Tveito,A.(2008):Penalty methods for the numerical solution of American multi-asset option problems.Journal of Computational and Applied Mathematics,vol.222,pp.3–16.

    Nyroles,B.;Touzot,G.;Villon,P.(1992): Generalizing the finite element method:Diffuse approximation and diffuse elements.Computational Mechanics,vol.10,pp.307–318.

    Pantazopoulos,K.N.;Houstis,E.N.;Kortesis,S.(1998): Front-tracking f inite difference methods for the valuation of American options.Computational Economics,pp.255–273.

    Persson,J.;Von Sydow,L.(2007):Pricing european multi-asset options using a space-time adaptive fd-method.Computing and Visualization in Science,vol.10,pp.173–183.

    Persson,J.;Von Sydow,L.(2010):Pricing american options using a space-time adaptive finite difference method.Mathematics and Computers in Simulation,vol.80,pp.1922–1935.

    Pettersson,U.;Larsson,E.;Marcusson,G.;Persson,J.(2005):Option pricing using radial basis functions.In Leitao,V.;Alves,C.;Duarte,C.(Eds):ECCOMAS Thematic Conference on Meshless Methods.

    Sladek,J.;Sladek,V.;Atluri,S.(2004):Meshless local Petrov-Galerkin method for heat conduction problem in an anisotropic medium.CMES:Computer Modeling in Engineering&Sciences,vol.6,pp.309–318.

    Wang,S.(2004):A novel fitted finite-volume method for the black-scholes equation governing option pricing.IMA Journel of Numerical Analysis,vol.24,pp.699–720.

    Wang,S.;Yang,X.Q.;Teo,K.L.(2006): Power penalty method for a linear complementarity problem arising from american option valuation.Journal of Optimization Theory and Applications,vol.129,pp.227–254.

    Wendland,H.(2005):Scattered Data Approximation.Cambridge University Press.

    Wilmott,P.(1998):Derivatives,The Theory and Practice of Financial Engineering.Wiley,New York.

    Wilmott,P.;Dewynne,J.;Howison,S.(1993):Option pricing:Mathematical models and computation.Oxford Financial Press.

    Wu,L.;Kwok,Y.(1997):A front-fixing finite difference method for the valuation of American options.Journal of Financial Engineering,pp.83–97.

    Yongsik,K.;Hyeong-Ohk,B.;Hyeng Keun,K.(2014): Option pricing and greeks via a moving least square meshfree method.Quantitative Finance,vol.14,pp.1753–1764.

    Young,D.L.;Sun,C.P.;Shen,L.H.(2009): Pricing options with stochastic volatilities by the local differential quadrature method.CMES:Computer Modeling in Engineering&Sciences,vol.86,pp.129–150.

    Yves,A.;O.Pironneau,O.(2005):Computational methods for option pricing,vol.30 ofFrontiers in Applied Mathematics.SIAM,Philadelphia,PA.

    Zhang,T.;Dong,L.;Alotaibi,A.;Atluri,S.N.(2013): Application of the MLPG mixed collocation method for solving inverse problems of linear isotropic/anisotropic elasticity with simply/multiply-connected domains.CMES:Computer Modeling in Engineering&Sciences,vol.94(1),pp.1–28.

    1Department of Mathematics,Faculty of Mathematics and Computer Science(Khansar),University of Isfahan,81746-73441 Isfahan,Iran.E-mail:s.vahdati@khn.ui.ac.ir

    2Department of Mathematics,University of Isfahan,81746-73441 Isfahan,Iran. E-mail:d.mirzaei@sci.ui.ac.ir

    欧美日韩综合久久久久久| 伊人久久国产一区二区| 宅男免费午夜| 男女下面插进去视频免费观看 | 欧美日韩国产mv在线观看视频| 国产精品99久久99久久久不卡 | 校园人妻丝袜中文字幕| 丰满少妇做爰视频| 亚洲伊人色综图| 亚洲性久久影院| 亚洲av国产av综合av卡| 亚洲国产精品一区三区| 欧美成人午夜精品| av视频免费观看在线观看| 成人毛片60女人毛片免费| 成人国产麻豆网| 看免费av毛片| 自线自在国产av| 久久亚洲国产成人精品v| 久久久久久久久久久久大奶| www.熟女人妻精品国产 | 亚洲天堂av无毛| 黑人猛操日本美女一级片| 五月天丁香电影| 日本91视频免费播放| 国产精品一区二区在线观看99| 看非洲黑人一级黄片| 天美传媒精品一区二区| 熟妇人妻不卡中文字幕| 最近中文字幕2019免费版| 一区二区av电影网| 午夜老司机福利剧场| 日韩制服丝袜自拍偷拍| 全区人妻精品视频| 99久久中文字幕三级久久日本| 美女内射精品一级片tv| 国产色爽女视频免费观看| 99视频精品全部免费 在线| 亚洲av成人精品一二三区| 亚洲色图综合在线观看| 亚洲精品一区蜜桃| 欧美xxⅹ黑人| 欧美另类一区| 欧美3d第一页| 伦理电影大哥的女人| 美女主播在线视频| 久久 成人 亚洲| 麻豆精品久久久久久蜜桃| 欧美丝袜亚洲另类| 在线亚洲精品国产二区图片欧美| 欧美变态另类bdsm刘玥| 久久久久久久久久久免费av| 久久精品人人爽人人爽视色| 国产高清不卡午夜福利| a级毛片在线看网站| 国产一区二区在线观看日韩| 亚洲av日韩在线播放| 亚洲精品日韩在线中文字幕| 大片电影免费在线观看免费| 亚洲精品第二区| 国产午夜精品一二区理论片| 日本av免费视频播放| 视频中文字幕在线观看| 国产一级毛片在线| 国产一区二区三区综合在线观看 | 亚洲精品国产av成人精品| 老熟女久久久| 国产女主播在线喷水免费视频网站| 69精品国产乱码久久久| 免费av中文字幕在线| 亚洲精品日本国产第一区| 日韩一区二区三区影片| 捣出白浆h1v1| 99久久中文字幕三级久久日本| 亚洲精品国产av成人精品| 午夜影院在线不卡| 男女下面插进去视频免费观看 | 亚洲国产日韩一区二区| 视频区图区小说| 亚洲成人手机| 成人综合一区亚洲| 超色免费av| 青青草视频在线视频观看| 妹子高潮喷水视频| 成年人免费黄色播放视频| 国产熟女午夜一区二区三区| 久久97久久精品| 熟妇人妻不卡中文字幕| 国产免费一级a男人的天堂| 一边亲一边摸免费视频| 啦啦啦啦在线视频资源| 国产免费现黄频在线看| 中国三级夫妇交换| 国产黄色视频一区二区在线观看| 少妇被粗大的猛进出69影院 | 五月天丁香电影| 一区二区日韩欧美中文字幕 | 老司机影院成人| 青春草视频在线免费观看| 伊人亚洲综合成人网| 国产精品欧美亚洲77777| 亚洲精品成人av观看孕妇| 欧美激情 高清一区二区三区| 国产 一区精品| 亚洲色图综合在线观看| 极品少妇高潮喷水抽搐| 欧美xxⅹ黑人| 黄片播放在线免费| 九九爱精品视频在线观看| 少妇高潮的动态图| 国产一区二区在线观看av| 高清欧美精品videossex| 精品一区二区三卡| 大香蕉久久成人网| 好男人视频免费观看在线| 老女人水多毛片| 高清黄色对白视频在线免费看| 国产男女内射视频| 久久久精品区二区三区| 97精品久久久久久久久久精品| 亚洲,欧美精品.| 一区在线观看完整版| 免费观看性生交大片5| 成年人午夜在线观看视频| 亚洲国产欧美日韩在线播放| 国产深夜福利视频在线观看| 国产精品久久久av美女十八| 午夜免费男女啪啪视频观看| 久久久久久久久久成人| 日本-黄色视频高清免费观看| 91aial.com中文字幕在线观看| 中文精品一卡2卡3卡4更新| xxxhd国产人妻xxx| 97人妻天天添夜夜摸| 纯流量卡能插随身wifi吗| 在线观看免费视频网站a站| 九九在线视频观看精品| 如日韩欧美国产精品一区二区三区| 午夜激情久久久久久久| 黄色毛片三级朝国网站| a级毛色黄片| 男女无遮挡免费网站观看| 男女啪啪激烈高潮av片| 免费大片18禁| 国产深夜福利视频在线观看| 亚洲av国产av综合av卡| 美国免费a级毛片| 久久婷婷青草| 免费播放大片免费观看视频在线观看| 亚洲精品日本国产第一区| 宅男免费午夜| 成人国产av品久久久| 精品久久久久久电影网| 老司机亚洲免费影院| 考比视频在线观看| 亚洲国产av新网站| 亚洲精品第二区| 国产成人精品福利久久| 一本色道久久久久久精品综合| 9热在线视频观看99| 亚洲,欧美精品.| 亚洲av成人精品一二三区| 亚洲av免费高清在线观看| 18禁国产床啪视频网站| 男人操女人黄网站| 久久久久网色| 国产在线免费精品| 男女边吃奶边做爰视频| 亚洲伊人色综图| 一级片免费观看大全| 天堂8中文在线网| 久久精品国产亚洲av天美| 在线看a的网站| 两个人看的免费小视频| 国产色婷婷99| 又大又黄又爽视频免费| 美国免费a级毛片| 国产不卡av网站在线观看| 午夜av观看不卡| 午夜91福利影院| 一区二区日韩欧美中文字幕 | 99热全是精品| 亚洲第一区二区三区不卡| 青春草亚洲视频在线观看| 国产爽快片一区二区三区| 高清黄色对白视频在线免费看| 欧美精品av麻豆av| 国产高清三级在线| 91国产中文字幕| 丰满乱子伦码专区| 亚洲图色成人| 国产精品无大码| 人妻人人澡人人爽人人| 不卡视频在线观看欧美| √禁漫天堂资源中文www| 国产精品久久久久久久久免| 22中文网久久字幕| 丰满少妇做爰视频| 国产探花极品一区二区| 国产激情久久老熟女| 久久久久久久大尺度免费视频| 免费观看在线日韩| 91精品国产国语对白视频| 精品一区二区三卡| 久久久久久伊人网av| 少妇 在线观看| 久久久国产精品麻豆| 午夜激情久久久久久久| 在线亚洲精品国产二区图片欧美| 日产精品乱码卡一卡2卡三| 亚洲婷婷狠狠爱综合网| 热99久久久久精品小说推荐| 爱豆传媒免费全集在线观看| 天天躁夜夜躁狠狠躁躁| av在线观看视频网站免费| 午夜91福利影院| 熟女av电影| 18禁裸乳无遮挡动漫免费视频| 在线观看www视频免费| 熟女电影av网| 看免费av毛片| 久久亚洲国产成人精品v| 中国三级夫妇交换| 女人被躁到高潮嗷嗷叫费观| 亚洲av中文av极速乱| 一级毛片我不卡| 中国美白少妇内射xxxbb| 日日撸夜夜添| 如何舔出高潮| 日产精品乱码卡一卡2卡三| av电影中文网址| 99re6热这里在线精品视频| 在线观看三级黄色| 91成人精品电影| 日本与韩国留学比较| 国产精品久久久久成人av| 伦精品一区二区三区| 五月玫瑰六月丁香| 国产日韩欧美亚洲二区| 最新中文字幕久久久久| 超碰97精品在线观看| 午夜福利网站1000一区二区三区| 热re99久久国产66热| 中国美白少妇内射xxxbb| 五月玫瑰六月丁香| 国产亚洲精品第一综合不卡 | 国产高清三级在线| 免费在线观看黄色视频的| 最近2019中文字幕mv第一页| 在线看a的网站| 毛片一级片免费看久久久久| 国产一区二区三区综合在线观看 | 国产欧美亚洲国产| 国产日韩一区二区三区精品不卡| 在线观看免费视频网站a站| 亚洲伊人久久精品综合| 国产日韩欧美视频二区| 欧美精品人与动牲交sv欧美| 午夜老司机福利剧场| 国产探花极品一区二区| 欧美另类一区| 亚洲丝袜综合中文字幕| av又黄又爽大尺度在线免费看| 久久久久久人人人人人| 日韩av在线免费看完整版不卡| 9191精品国产免费久久| www.av在线官网国产| 日本欧美国产在线视频| 岛国毛片在线播放| 激情五月婷婷亚洲| 在线观看免费视频网站a站| 亚洲av.av天堂| 亚洲精品中文字幕在线视频| 亚洲精品乱码久久久久久按摩| 一区二区三区乱码不卡18| 不卡视频在线观看欧美| 观看美女的网站| 日韩电影二区| 又粗又硬又长又爽又黄的视频| 天天躁夜夜躁狠狠躁躁| 中文字幕人妻熟女乱码| 亚洲av综合色区一区| 国产永久视频网站| 久久久久网色| 国产福利在线免费观看视频| 欧美人与性动交α欧美软件 | 国产精品久久久久久精品电影小说| 90打野战视频偷拍视频| 卡戴珊不雅视频在线播放| 亚洲精华国产精华液的使用体验| 黑人高潮一二区| 九九爱精品视频在线观看| 亚洲美女黄色视频免费看| 欧美精品亚洲一区二区| 中文天堂在线官网| 丝袜脚勾引网站| 最近中文字幕2019免费版| 成人18禁高潮啪啪吃奶动态图| 国产日韩欧美视频二区| 18禁国产床啪视频网站| 最近最新中文字幕大全免费视频 | 美女福利国产在线| 日韩制服丝袜自拍偷拍| 老司机影院毛片| 日本猛色少妇xxxxx猛交久久| 黄网站色视频无遮挡免费观看| 日韩,欧美,国产一区二区三区| 桃花免费在线播放| 日韩 亚洲 欧美在线| 黄色一级大片看看| 少妇的丰满在线观看| 亚洲五月色婷婷综合| 国产欧美亚洲国产| 日韩三级伦理在线观看| 另类精品久久| 黑丝袜美女国产一区| 有码 亚洲区| 欧美日韩亚洲高清精品| 久久人妻熟女aⅴ| 亚洲国产精品一区三区| 精品亚洲乱码少妇综合久久| 日韩av在线免费看完整版不卡| 美女福利国产在线| 伦理电影大哥的女人| 久久久久久久精品精品| 亚洲国产日韩一区二区| 免费观看无遮挡的男女| 女性生殖器流出的白浆| 大片免费播放器 马上看| 精品人妻熟女毛片av久久网站| 狂野欧美激情性xxxx在线观看| 成年女人在线观看亚洲视频| 日本猛色少妇xxxxx猛交久久| 天天影视国产精品| 免费不卡的大黄色大毛片视频在线观看| 久久精品国产a三级三级三级| 26uuu在线亚洲综合色| 丝袜在线中文字幕| 99香蕉大伊视频| 久热久热在线精品观看| 26uuu在线亚洲综合色| 国产一级毛片在线| 久久精品久久久久久噜噜老黄| 欧美 日韩 精品 国产| 如日韩欧美国产精品一区二区三区| 麻豆精品久久久久久蜜桃| 国产黄色免费在线视频| 久久人人爽人人片av| 精品人妻偷拍中文字幕| 下体分泌物呈黄色| 1024视频免费在线观看| 侵犯人妻中文字幕一二三四区| 你懂的网址亚洲精品在线观看| 搡老乐熟女国产| 国产又爽黄色视频| 久久久国产一区二区| 婷婷成人精品国产| a级毛片在线看网站| 熟女人妻精品中文字幕| 国产精品国产三级专区第一集| 亚洲欧美中文字幕日韩二区| 捣出白浆h1v1| 欧美精品一区二区免费开放| 久久这里有精品视频免费| 99热网站在线观看| 欧美日韩亚洲高清精品| 只有这里有精品99| 老司机亚洲免费影院| 熟女电影av网| 久久97久久精品| 久久久欧美国产精品| 日韩大片免费观看网站| 久久久精品区二区三区| 亚洲av欧美aⅴ国产| 一本久久精品| 久久久久久久久久人人人人人人| 午夜免费鲁丝| 考比视频在线观看| 黑人高潮一二区| 久久精品久久久久久久性| 亚洲av中文av极速乱| 五月天丁香电影| 精品少妇黑人巨大在线播放| 爱豆传媒免费全集在线观看| 最后的刺客免费高清国语| a级片在线免费高清观看视频| 中文精品一卡2卡3卡4更新| 男女无遮挡免费网站观看| 夫妻午夜视频| 尾随美女入室| 免费观看无遮挡的男女| 九九在线视频观看精品| 美女国产高潮福利片在线看| 亚洲精品自拍成人| 亚洲成人一二三区av| 美女主播在线视频| 高清在线视频一区二区三区| 日韩中文字幕视频在线看片| h视频一区二区三区| 国国产精品蜜臀av免费| 伦精品一区二区三区| 啦啦啦中文免费视频观看日本| 免费大片黄手机在线观看| 高清不卡的av网站| 人体艺术视频欧美日本| 中文乱码字字幕精品一区二区三区| 最近最新中文字幕大全免费视频 | 精品熟女少妇av免费看| 狂野欧美激情性bbbbbb| 国产 一区精品| 成年av动漫网址| 亚洲国产av新网站| 国产xxxxx性猛交| 多毛熟女@视频| 亚洲精品一二三| 国产成人av激情在线播放| 国产欧美亚洲国产| 午夜福利影视在线免费观看| 久久久久久久久久久久大奶| 在线观看www视频免费| 日韩中字成人| av在线app专区| 国产精品人妻久久久影院| 午夜免费观看性视频| 亚洲精品国产色婷婷电影| 高清视频免费观看一区二区| 大片免费播放器 马上看| 日本免费在线观看一区| 丝袜脚勾引网站| 欧美日韩成人在线一区二区| 午夜精品国产一区二区电影| 少妇的丰满在线观看| 午夜免费观看性视频| 成人漫画全彩无遮挡| 成年人免费黄色播放视频| 99九九在线精品视频| 在线看a的网站| 亚洲精品成人av观看孕妇| 男人操女人黄网站| 丁香六月天网| 男女国产视频网站| www.av在线官网国产| 精品久久久精品久久久| 一级片免费观看大全| 在线观看www视频免费| 免费播放大片免费观看视频在线观看| 欧美精品高潮呻吟av久久| 国产男女内射视频| 亚洲欧美成人精品一区二区| 免费观看无遮挡的男女| 狠狠婷婷综合久久久久久88av| 美女国产高潮福利片在线看| 亚洲美女黄色视频免费看| 日韩制服丝袜自拍偷拍| 一边亲一边摸免费视频| 国产探花极品一区二区| 婷婷色综合www| 一级片免费观看大全| 婷婷成人精品国产| 成人国语在线视频| 国产成人午夜福利电影在线观看| 91精品国产国语对白视频| 精品熟女少妇av免费看| 建设人人有责人人尽责人人享有的| 日本午夜av视频| 91成人精品电影| 欧美另类一区| 国产精品.久久久| 欧美国产精品va在线观看不卡| 2022亚洲国产成人精品| 三上悠亚av全集在线观看| 爱豆传媒免费全集在线观看| 宅男免费午夜| 午夜91福利影院| 精品人妻偷拍中文字幕| 久久久久久久大尺度免费视频| 中国三级夫妇交换| 熟女av电影| 大片免费播放器 马上看| 久久久久久久精品精品| 欧美变态另类bdsm刘玥| 久久韩国三级中文字幕| av网站免费在线观看视频| 国产无遮挡羞羞视频在线观看| 精品一区二区免费观看| 少妇的逼水好多| 久久 成人 亚洲| 最近最新中文字幕大全免费视频 | 日韩大片免费观看网站| 亚洲精品一二三| 亚洲,一卡二卡三卡| 九草在线视频观看| 九色成人免费人妻av| 久久精品久久精品一区二区三区| 国产日韩欧美亚洲二区| 少妇人妻久久综合中文| 成人二区视频| 香蕉国产在线看| 国产日韩欧美视频二区| 亚洲精品日韩在线中文字幕| 成年人午夜在线观看视频| 国产av码专区亚洲av| 午夜福利视频精品| 国产成人精品福利久久| 看免费av毛片| 亚洲人成网站在线观看播放| av一本久久久久| 日韩精品免费视频一区二区三区 | 中文字幕av电影在线播放| 亚洲,欧美,日韩| 在线观看美女被高潮喷水网站| 久久久精品免费免费高清| 精品久久国产蜜桃| h视频一区二区三区| 多毛熟女@视频| 国产精品人妻久久久久久| 91久久精品国产一区二区三区| 国产精品国产av在线观看| av一本久久久久| 欧美激情 高清一区二区三区| 美女xxoo啪啪120秒动态图| 人妻一区二区av| 久久99热这里只频精品6学生| 欧美激情极品国产一区二区三区 | 久久鲁丝午夜福利片| 中国国产av一级| 国产精品一区二区在线观看99| 亚洲人与动物交配视频| 日本色播在线视频| 中文字幕免费在线视频6| 亚洲av成人精品一二三区| 久久精品熟女亚洲av麻豆精品| 亚洲,一卡二卡三卡| 久久女婷五月综合色啪小说| 美国免费a级毛片| 永久免费av网站大全| 亚洲国产欧美日韩在线播放| 一级片'在线观看视频| 免费大片黄手机在线观看| 曰老女人黄片| 日韩精品有码人妻一区| 国产午夜精品一二区理论片| 久久精品国产综合久久久 | 老熟女久久久| 久久午夜综合久久蜜桃| 肉色欧美久久久久久久蜜桃| 成人二区视频| 国产国拍精品亚洲av在线观看| 九草在线视频观看| 狂野欧美激情性bbbbbb| 美女国产视频在线观看| 日韩成人伦理影院| av不卡在线播放| 欧美日韩精品成人综合77777| 日韩精品免费视频一区二区三区 | 91精品三级在线观看| 五月天丁香电影| 久久久久精品久久久久真实原创| 亚洲人成网站在线观看播放| 国语对白做爰xxxⅹ性视频网站| 只有这里有精品99| 亚洲第一av免费看| 啦啦啦视频在线资源免费观看| a级毛片在线看网站| 97在线人人人人妻| 国产成人av激情在线播放| 满18在线观看网站| 久久久久久人妻| 搡老乐熟女国产| 久久人妻熟女aⅴ| 中文字幕制服av| 欧美另类一区| 国产精品久久久久久久电影| 亚洲成人一二三区av| 2018国产大陆天天弄谢| 国产成人精品在线电影| a级毛色黄片| 自拍欧美九色日韩亚洲蝌蚪91| 精品酒店卫生间| 在线免费观看不下载黄p国产| 少妇人妻久久综合中文| 久久久久久久久久成人| 丝袜脚勾引网站| 美女国产视频在线观看| 国产探花极品一区二区| 九色亚洲精品在线播放| 十分钟在线观看高清视频www| 十八禁网站网址无遮挡| 国产黄色视频一区二区在线观看| 十分钟在线观看高清视频www| 国产在线视频一区二区| 久久精品夜色国产| 18禁裸乳无遮挡动漫免费视频| 久久久久国产网址| 少妇熟女欧美另类| 精品久久蜜臀av无| 色94色欧美一区二区| 欧美丝袜亚洲另类| 亚洲欧洲日产国产| 熟女电影av网| 国产欧美日韩一区二区三区在线| 男女国产视频网站| 国产免费福利视频在线观看| 久久人人97超碰香蕉20202| 久久久久人妻精品一区果冻| 日本-黄色视频高清免费观看| 天天躁夜夜躁狠狠躁躁| 欧美性感艳星| 边亲边吃奶的免费视频| 精品亚洲成a人片在线观看| 日本av手机在线免费观看| 91午夜精品亚洲一区二区三区| 91成人精品电影| 卡戴珊不雅视频在线播放| 日本与韩国留学比较|