• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Eff ects of total saponins of Panax notoginseng on immature neuroblasts in the adult olfactory bulb following global cerebral ischemia/reperfusion

    2015-12-15 11:23:38XuHeFengjunDengJinwenGeXiaoxinYanAihuaPanZhiyuanLi

    Xu He, Feng-jun Deng, Jin-wen Ge, Xiao-xin Yan Ai-hua Pan, Zhi-yuan Li

    1 Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China

    2 Department of Anatomy, Yiyang Medical College, Yiyang, Hunan Province, China

    3 Department of Pharmacy, Yiyang Medical College, Yiyang, Hunan Province, China

    4 Department of Integrated Traditional and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province, China

    Eff ects of total saponins of Panax notoginseng on immature neuroblasts in the adult olfactory bulb following global cerebral ischemia/reperfusion

    Xu He1,2,#, Feng-jun Deng3,#, Jin-wen Ge4, Xiao-xin Yan1, Ai-hua Pan1,*, Zhi-yuan Li1,*

    1 Department of Anatomy and Neurobiology, School of Basic Medical Sciences, Central South University, Changsha, Hunan Province, China

    2 Department of Anatomy, Yiyang Medical College, Yiyang, Hunan Province, China

    3 Department of Pharmacy, Yiyang Medical College, Yiyang, Hunan Province, China

    4 Department of Integrated Traditional and Western Medicine, Hunan University of Traditional Chinese Medicine, Changsha, Hunan Province, China

    The main active components extracted from Panax notoginseng are total saponins. They have been shown to inhibit platelet aggregation, increase cerebral blood fl ow, improve neurological behavior, decrease infarct volume and promote proliferation and diff erentiation of neural stem cells in the hippocampus and lateral ventricles. However, there is a lack of studies on whether total saponins of Panax notoginseng have potential benefi ts on immature neuroblasts in the olfactory bulb following ischemia and reperfusion. This study established a rat model of global cerebral ischemia and reperfusion using four-vessel occlusion. Rats were administered total saponins of Panax notoginseng at 75 mg/kg intraperitoneally 30 minutes after ischemia then once a day, for either 7 or 14 days. Total saponins of Panax notoginseng enhanced the number of doublecortin (DCX)+neural progenitor cells and increased co-localization of DCX with neuronal nuclei and phosphorylated cAMP response element-binding/DCX+neural progenitor cells in the olfactory bulb at 7 and 14 days post ischemia. These fi ndings indicate that following global brain ischemia/reperfusion, total saponins of Panax notoginseng promote diff erentiation of DCX+cells expressing immature neuroblasts in the olfactory bulb and the underlying mechanism is related to the activation of the signaling pathway of cyclic adenosine monophosphate response element binding protein.

    nerve regeneration; total saponins of Panax notoginseng; cerebral ischemia/reperfusion; immature neurons; neurogenesis; doublecortin; olfactory bulb; neural regeneration

    Funding: This study was supported by the Hunan Provincial Innovation Foundation for Postgraduate in China, No. CX2014B099 (to XH); the Science Foundation of Hunan Provincial Education Department of China, No. 11C1264 (to FJD), 13C958(to XH).

    He X, Deng FJ, Ge JW, Yan XX, Pan AH, Li ZY (2015) Eff ects of total saponins of Panax notoginseng on immature neuroblasts in the adult olfactory bulb following global cerebral ischemia/reperfusion. Neural Regen Res 10(9):1450-1456.

    Introduction

    The subventricular zone of the lateral ventricle is a neurogenic niche because it can maintain neurogenesis throughout life (Luskin, 1993; Alvarez-Buylla and Garc??a-Verdugo, 2002; Ponti et al., 2013). Precursors from the subventricular zone migrate toward the olfactory bulb following the rostral migratory stream pathway where they are functionally integrated into circularity networks (Winner et al., 2002; Ma et al., 2009; Nissant et al., 2009; Macklis, 2012). Doublecortin (DCX) is an endogenous microtubule-associated protein with an immature phenotype and is a good marker of neuroblasts (Francis et al., 1999; Brown et al., 2003; Couillard-Despres et al., 2005; Saaltink et al., 2012). Transient cerebral ischemia or brain trauma can stimulate endogenous neurogenesis in certain areas of the brain including the olfactory bulb, and this contributes to neuronal recovery to varying degrees (Zhang et al., 2001; Iwai et al., 2003; Choi et al., 2010; Pan et al., 2013). However, the capacity of endogenous self-repair is limited, so it is imperative to fi nd either candidate drugs or other strategies to induce and amplify endogenous adult precursors following global cerebral ischemia.

    Panax notoginseng is a traditional Chinese medicine widely used in China to remove blood stasis. Total saponins of Panax notoginseng (TSPN) are the bioactive constituents of Panax notoginseng (Ng, 2006), and are responsible for inhibiting apoptosis and caspase activation (Li et al., 2009), enhancing endogenous brain-derived neurotrophic factor expression, reducing cytokines and blood-brain barrier permeability, and stimulating neural stem cell proliferation and diff erentiation in the hippocampus (Si et al., 2011). Although the olfactory bulb is an area that displays neurogenesis and is an important part of the rostral migratory stream, there are no reports on

    whether TSPN could enhance neurogenesis in the olfactory bulb following global cerebral ischemia/reperfusion (I/R). This study evaluated the eff ects of TSPN on immature neuroblasts in the olfactory bulb of a rat model of transient global cerebral I/R induced by four-vessel occlusion.

    Materials and Methods

    Establishment of transient global cerebral I/R models

    A total of 80 specifi c-pathogen-free male Sprague-Dawley rats weighing 250–290 g and aged 8 weeks were obtained from the Animal Center of Xiangya School of Medicine, Central South University, China (license No. SCXK (Xiang) 2009-0012). All animal procedures conformed to the National Institutes of Health Guide for the care and use of laboratory animals, and all procedures were approved by the Ethics Committee of Central South University, China. All efforts were made to minimize animal discomfort and reduce the number of animals used.

    Four-vessel occlusion was used to induce cerebral ischemia (Pulsinelli and Brierley, 1979). Briefl y, all rats were anesthetized with 1% sodium pentobarbital diluted in distilled water (50 mg/kg, intraperitoneally) in a sterile room. The rats were positioned in Kopf stereotaxic apparatus (David KOPF Instruments, Tujunga, CA, USA) and the vertebral arteries were irreversibly occluded by electrocoagulation. A non-absorbable suture was looped around the carotid arteries. On the following day, rats were re-anesthetized and carotid arteries were disconnected carefully to avoid damage to the vagus nerve, and then occluded with micro-arterial clamps for 30 minutes. Rats lost their righting refl ex during I/R and this was achieved by de-clamping the arteries. During the surgery, rectal temperature was monitored and maintained at 37 ± 0.5°C with a rectal probe and a heat lamp was used to ensure the body temperature at 37°C. Eight rats died, so the remaining 72 animals were equally and randomly divided into the TSPN group and vehicle group.

    TSPN administration

    The rats in the TSPN group were administered TSPN (reagent No. M004538, high-performance liquid chromatography ≥ 98%, Chengdu Maikaxi Chemical Co., Ltd., Chengdu, China) intraperitoneally 30 minutes after brain ischemia. The dose of TSPN was 75 mg/kg suspended in 0.9% sodium salt 10 g/L, once per day for 1, 7 and 14 days after reperfusion. Rats in the vehicle group were treated with an equal volume of sodium salt, one injection per day until the rats were sacrifi ced at either 1, 7 or 14 days post ischemia.

    Tissue preparation

    Rats in both groups were intraperitoneally anesthetized with a high dose of sodium pentobarbital (400 mg/kg) and then perfused transcardially with saline followed by 4% paraformaldehyde. The brains were post-fi xed at 4°C overnight, and were treated in gradual concentrations of sucrose (15% and 30%) until they sank. Coronal sections were prepared across the olfactory bulb (Paxinos and Watson, 2005) in a cryostat (Thermo Shandon Limited, UK). Twelve sets of 30-μm sections were cut and collected for western blot assay. For double immunofl uorescence, 12 sets of 8-μm sections were also collected by thaw-mounting on positively charged microslides.

    Immunohistochemistry and immunofl uorescent labeling Immunohistochemistry was carried out using the avidin-biotin complex method. Sections were treated with 3% H2O2for 30 minutes at 24 ± 1°C, and pre-incubated for 1 hour, followed by incubation with goat anti-DCX (1:2,000; Santa Cruz Biotechnology, Dallas, TX, USA) overnight at 4°C. Sections were further reacted with rabbit anti-goat IgGs (Boster, Wuhan, Hubei Province, China) at 1:400 for 2 hours at 24 ± 1°C and subsequently with avidin-biotin complex reagents for an additional 2 hours. Immunoreactivity was visualized using 0.003% hydrogen peroxide and 0.05% 3,3′-diaminobenzidine.

    Immunofl uorescent labeling was carried out as follows: sections were immersed in PBS containing 5% donkey serum and 0.1% Triton X-100 for 1 hour, treated with goat anti-DCX (1:2,000), mouse anti-neuronal nuclei (NeuN) (1:4,000; Merck Millipore, Darmstadt, Germany), rabbit anti-phosphorylated cyclic adenosine monophosphate response element binding protein (p-CREB) (1:2,000; Cell Signaling, Boston, MA, USA) overnight at 4°C, followed by a 2-hour reaction with Alexa-Fluor 488 and Alexa-Fluor 594-donkey anti-goat, anti-mouse, anti-rabbit IgGs (1:200, Invitrogen, Carlsbad, CA, USA). Sections were counterstained with bisbenzimide (1:50,000; Hoechst 33342).

    Immunostained sections were examined and imaged on a microscope equipped with a digital camera and imaging system (BX40, Olympus, Tokyo, Japan). The sections of the olfactory bulb used for comparison were on the same horizontal plane. Because the DCX+cells in the olfactory bulb were in a cluster, the mean optical density of images was captured using an identical photographic setting and compared using NIH Image J (NIH, MD, USA). Images at 40× magnification were taken for morphological analyses of positive cells. Co-localization of cells in the olfactory bulb was calculated in a set of sections. In each section, fi ve fi elds were captured with a 20× objective lens. The total DCX+cells and co-localized cells were added together for each section, brain, and group. The formula for co-localization rate was: co-localized DCX+cells/total DCX+cells × 100%.

    Western blot assay

    The olfactory bulb was snap-frozen in liquid nitrogen. Frozen tissues were homogenized in a cocktail buff er, including phosphatase inhibitors and protease inhibitors (Roche Applied Science, Mannheim, Germany). The samples were then centrifuged at 1,200 × g for 15 minutes at 4°C. Bicinchoninic acid assay was used to measure the protein concentrations from supernatants. A total of 20 μg protein was loaded in each lane and separated by 12% Bis-Tris sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Subsequently, the blotted proteins were transferred to nitrocellulose membrane. The membrane was blocked using 10% nonfat milk for 2 hours at 24 ± 1°C, then incubated overnight with goat anti-DCX

    (1:1,000, Santa Cruz Biotechnology) and mouse anti-GAPDH (1:10,000; Boster). The membrane was washed and incubated with horseradish peroxidase-conjugate rabbit anti-goat or anti-mouse (1:5,000; Merck Millipore, Merck KGaA, Germany) for 2 hours at 24 ± 1°C, followed by exposure to photographic fi lms for 1 to 5 minutes. Western blot band intensity (integrated optical density) was measured using NIH Image J. GAPDH was used as an internal reference.

    Figure 1 Eff ects of TSPN on DCX immunoreactivity in the olfactory bulb of adult rats following global cerebral ischemia/reperfusion.

    Figure 2 Representative western blot assay (A) and quantifi cation of DCX protein levels (B) in the olfactory bulb after global cerebral ischemia/reperfusion.

    Statistical analysis

    All data are expressed as the mean ± SD, and were analyzed using Prism GraphPad5.0 (GraphPad Software Inc., La Jolla, CA, USA). Comparisons were conducted using one-way analysis of variance followed by Bonferroni post hoc tests. A value of P ≤ 0.05 was considered statistically signifi cant.

    Results

    TSPN up-regulated the number of DCX+cells in the olfactory bulb following global cerebral I/R

    Figure 3 Double immunofl uorescence staining for DCX and NeuN (A) and quantitative data (B) in the olfactory bulb of adult rats at 14 days post ischemia.

    Figure 4 Double immunofl uorescence staining for DCX and p-CREB (A) and quantitative data (B) in the olfactory bulb of adult rats at 14 days post ischemia.

    DCX has been used as a marker for immature neurons, and DCX+cells populate in the piriform cortex and olfactory bulb of rabbits, cats, rats, guinea pigs and non-human primates

    (Xiong et al., 2008; Cai et al., 2009; Zhang et al., 2009; Klempin et al., 2011; He et al., 2014; Zeng et al., 2014). In the present study, global cerebral I/R aff ected DCX labeling, with varied shapes and sizes of cells detectable mainly around the granule cell layer, internal plexiform layer, and mitral cell layer. Dendrite-like processes chained in a cluster in the granule cell layer (Figure 1A3, B3). There was no signifi cant diff erence in the mean optical density of DCX in the granule cell layer in vehicle or TSPN groups 1 day post ischemia (P> 0.05). In comparison with the vehicle group, TSPN signifi cantly increased the mean optical density of DCX+cells in the granule cell layer at 7 and 14 days post ischemia (day 7: P < 0.05; day 14: P < 0.001; Figure 1C). Furthermore, the mean optical density of DCX+cells was signifi cantly higher in the TSPN group than in the vehicle group in the internal plexiform layer and mitral cell layer (P < 0.0001, F = 16.8, degrees of freedom (df) = 5,24; P < 0.0001, F = 10.7, df = 5,24). However, there was no signifi cant diff erence in the internal plexiform layer and mitral cell layer between the TSPN and vehicle groups 1 day post ischemia (P > 0.05). At 7 and 14 days after ischemia, the mean optical density of DCX+cells in the internal plexiform layer was signifi cantly higher in the TSPN group than in the vehicle group (day 7: P< 0.05; day 14: P < 0.01). The mean optical density of DCX+cells in the mitral cell layer was signifi cantly higher in the TSPN group than in the vehicle group at 14 days post ischemia (P < 0.05; Figure 1D and E).

    TSPN elevated DCX protein levels in the olfactory bulb following global cerebral I/R

    DCX protein levels in the olfactory bulb formation were determined by western blot assay. Immunoblotted DCX signal increased in the TSPN group compared with the vehicle group at 7 and 14 days post ischemia (Figure 2A). The mean optical density of DCX protein level at 7 and 14 days post ischemia was signifi cantly higher in the TSPN group than in the vehicle group (day 7: P < 0.001; day 14: P < 0.001), but not at 1 day post ischemia (P > 0.05; Figure 2B).

    TSPN enhanced co-localization of DCX with NeuN in the olfactory bulb following global cerebral I/R

    There were a higher number of DCX+cells in the granule cell layer than in any other layer between the vehicle and TSPN groups (Figure 1). We therefore focused on the granule cell layer. DCX+cells expressing NeuN were detected in the olfactory bulb at all time points post ischemia (Figure 3A), and the ratios of DCX+cells co-expressing NeuN to the total DCX-labeled cells were higher in the TSPN group than in the vehicle group at both 7 and 14 days post ischemia (day 7: P < 0.01; day 14: P < 0.001), but not at 1 day (P > 0.05; Figure 3B).

    TSPN induced immature neuroblasts in the olfactory bulb through phosphorylation of cyclic adenosine

    monophosphate response element binding protein (CREB) following global cerebral I/R

    To further understand the underlying mechanism by which TSPN regulated immature neurons in the olfactory bulb, we tested the activation of p-CREB in the olfactory bulb following global cerebral ischemia using immunohistochemistry. A number of p-CREB/DCX double-labeled cells were found in both groups at various time points (Figure 4A). Moreover, the percentage of p-CREB/DCX double-labeled cells signifi -cantly increased in the TSPN group compared with the vehicle group at 7 days (P < 0.01) and at 14 days (P < 0.001), but not at 1 day post ischemia (P > 0.05; Figure 4B).

    Discussion

    We examined TSPN eff ects on immature neuroblasts in an animal model of global cerebral I/R. TSPN evidently enhanced DCX-expressing immature neurons in the olfactory bulb. Moreover, TSPN noticeably increased DCX/NeuN co-expression and p-CREB/DCX+cells, which suggests that TSPN can promote neurochemical diff erentiation of immature neural cells in the olfactory bulb following global ischemia by up-regulating the p-CREB signaling pathway.

    Neurogenesis is a process whereby precursor cells divide into immature neurons and then diff erentiate into neurons with a mature phenotype (Lazarini et al., 2014). Immature neurons expressing DCX are of great signifi cance to brain plasticity and development (Nacher et al., 2001; Bloch et al., 2011) and are involved in cytoskeletal changes (Kutsuna et al., 2014) and structural plasticity, and are thought to occur at synaptic and neuritic levels under physiological conditions (Luo, 2002; He et al., 2014). Neurogenesis can be accelerated after brain ischemia in the adult rat, monkey, human cerebrum including the olfactory bulb (Jin et al., 2001b; Tonchev et al., 2003; Gould, 2007; Kutsuna et al., 2014). In our study, the increased numerical density of immature DCX-expressing neurons indicates an increased population of newborn immature neurons and dendritic processes. To further confi rm the immunohistochemistry result, western blots were carried out to detect DCX protein levels. Densitometry was consistent with the immunofl uorescence, suggesting that TSPN increased the population of immature neurons in the olfactory bulb following global cerebral I/R.

    It is well known that when newly generated precursor cells in the adult brain begin developing and maturing biochemically and morphologically (Brown et al., 2003), newly generated neurons in the olfactory bulb are crucial for olfactory function (Gheusi et al., 2000; Lledo and Saghatelyan, 2005; Kermen et al., 2010). NeuN is a mature neuronal marker (Mullen et al., 1992; Sarnat et al., 1998) and is both apparent and increased during hippocampal neurogenesis. Therefore, the extent of DCX/NeuN co-expression may implicate the neurochemical maturity of immature olfactory DCX-expressing neurons. Results from this study showed a signifi cant increase in NeuN co-expression among the DCX+neurons in the olfactory bulb of global cerebral ischemia rats following intraperitoneally injecting TSPN at 7 and 14 days. These fi ndings suggest that TSPN could enhance and drive the neurochemical diff erentiation of immature neurons in the olfactory bulb toward the phenotype of maturation.

    CREB is an important nuclear transcription factor, and

    experiments in vivo and vitro demonstrated that CREB signaling pathways play a vital role in the neurogenesis and survival of immature neuroblasts in the olfactory bulb (Giachino et al., 2005), subventricular zone (Gampe et al., 2011; Herold et al., 2011) and hippocampus (Jagasia et al., 2009; Kim et al., 2010). Activated CREB is involved in many biological functions such as enhancement of neuronal regeneration, synapse formation and spatial learning (Walton et al., 1996; O’Connell et al., 2000; Rajan et al., 2015). In transient ischemic adult rodents, high levels of p-CREB existed (Walton et al., 1996; Tanaka et al., 2000; Jin et al., 2001a) in immature DCX-expressing neurons in the dentate gyrus (Nakagawa et al., 2002). Cell counting showed that there were a large number of p-CREB/DCX+neural progenitor cells in the olfactory bulb of the two groups at diff erent time points, which suggested engagement of the CREB signaling pathway in adult neurogenesis and recruitment of immature DCX-expressing neurons for brain repair following global cerebral ischemia. Furthermore, TSPN apparently increased the number of the DCX+cells expressing p-CREB in the olfactory bulb of rats surviving 7 and 14 days, implying that TSPN could modulate the newborn immature neuroblasts by up-regulating the p-CREB signaling pathway.

    In summary, TSPN could enhance regeneration and maturation of DCX+cells expressing immature neuroblasts in the olfactory bulb of adult rats through activating the CREB signaling pathway following global cerebral I/R.

    Author contributions: ZYL and AHP designed the study. XH, FJD, and JWG implemented the experiments. XH wrote and revised the paper. XXY analyzed the data and supervised the whole research. All authors approved the fi nal version of the paper.

    Confl icts of interest: None declared.

    Alvarez-Buylla A, Garc??a-Verdugo JM (2002) Neurogenesis in adult subventricular zone. J Neurosci 22:629-634.

    Bloch J, Kaeser M, Sadeghi Y, Rouiller EM, Redmond DE, Brunet JF (2011) Doublecortin-positive cells in the adult primate cerebral cortex and possible role in brain plasticity and development. J Comp Neurol 519:775-789.

    Brown JP, Couillard-Després S, Cooper-Kuhn CM, Winkler J, Aigner L, Kuhn HG (2003) Transient expression of doublecortin during adult neurogenesis. J Comp Neurol 467:1-10.

    Cai Y, Xiong K, Chu Y, Luo DW, Luo XG, Yuan XY, Struble RG, Clough RW, Spencer DD, Williamson A, Kordower JH, Patrylo PR, Yan XX (2009) Doublecortin expression in adult cat and primate cerebral cortex relates to immature neurons that develop into GABAergic subgroups. Exp Neurol 216:342-356.

    Choi JH, Yoo KY, Park OK, Lee CH, Kim SK, Hwang IK, Lee YL, Shin HC, Won MH (2010) Relation among neuronal death, cell proliferation and neuronal diff erentiation in the gerbil main olfactory bulb after transient cerebral ischemia. Cell Mol Neurobiol 30:929-938.

    Couillard-Despres S, Winner B, Schaubeck S, Aigner R, Vroemen M, Weidner N, Bogdahn U, Winkler J, Kuhn HG, Aigner L (2005) Doublecortin expression levels in adult brain refl ect neurogenesis. Eur J Neurosci 21:1-14.

    Francis F, Koulakoff A, Boucher D, Chafey P, Schaar B, Vinet MC, Friocourt G, McDonnell N, Reiner O, Kahn A, McConnell SK, Berwald-Netter Y, Denoulet P, Chelly J (1999) Doublecortin is a developmentally regulated, microtubule-associated protein expressed in migrating and diff erentiating neurons. Neuron 23:247-256.

    Gampe K, Brill MS, Momma S, G?tz M, Zimmermann H (2011) EGF induces CREB and ERK activation at the wall of the mouse lateral ventricles. Brain Res 1376:31-41.

    Gheusi G, Cremer H, McLean H, Chazal G, Vincent JD, Lledo PM (2000) Importance of newly generated neurons in the adult olfactory bulb for odor discrimination. Proc Natl Acad Sci U S A 97:1823-1828.

    Giachino C, De Marchis S, Giampietro C, Parlato R, Perroteau I, Schütz G, Fasolo A, Peretto P (2005) cAMP response element-binding protein regulates diff erentiation and survival of newborn neurons in the olfactory bulb. J Neurosci 25:10105-10118.

    Gould E (2007) How widespread is adult neurogenesis in mammals? Nat Rev Neurosci 8:481-488.

    He X, Zhang XM, Wu J, Fu J, Mou L, Lu DH, Cai Y, Luo XG, Pan A, Yan XX (2014) Olfactory experience modulates immature neuron development in postnatal and adult guinea pig piriform cortex. Neuroscience 259:101-112.

    Herold S, Jagasia R, Merz K, Wassmer K, Lie DC (2011) CREB signalling regulates early survival, neuronal gene expression and morphological development in adult subventricular zone neurogenesis. Mol Cell Neurosci 46:79-88.

    Iwai M, Sato K, Kamada H, Omori N, Nagano, Shoji M, Abe K (2003) Temporal profi le of stem cell division, migration, and diff erentiation from subventricular zone to olfactory bulb after transient forebrain ischemia in gerbils. J Cereb Blood Flow Metab 23:331-341.

    Jagasia R, Steib K, Englberger E, Herold S, Faus-Kessler T, Saxe M, Gage FH, Song H, Lie DC (2009) GABA-CREB signalling regulates maturation and survival of newly generated neurons in the adult hippocampus. J Neurosci 29:7966-7977.

    Jin K, Mao X, Simon R, Greenberg D (2001a) Cyclic AMP response element binding protein (CREB) and CREB binding protein (CBP) in global cerebral ischemia. J Mol Neurosci 16:49-56.

    Jin K, Minami M, Lan JQ, Mao XO, Batteur S, Simon RP, Greenberg DA (2001b) Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat. Proc Natl Acad Sci U S A 98:4710-4715.

    Kermen F, Sultan S, Sacquet J, Mandairon N, Didier A (2010) Consolidation of an olfactory memory trace in the olfactory bulb is required for learning-induced survival of adult-born neurons and long-term memory. PLoS One 5:e12118.

    Kim JS, Yang M, Cho J, Kim SH, Kim JC, Shin T, Moon C (2010) Promotion of cAMP responsive element-binding protein activity ameliorates radiation-induced suppression of hippocampal neurogenesis in adult mice. Toxicol Res 26:177-183.

    Klempin F, Kronenberg G, Cheung G, Kettenmann H, Kempermann G (2011) Properties of doublecortin-(DCX)-expressing cells in the piriform cortex compared to the neurogenic dentate gyrus of adult mice. PLoS One 6:e25760.

    Kutsuna N, Yamashita A, Eriguchi T, Oshima H, Suma T, Sakatani K, Yamamoto T, Yoshino A, Katayama Y (2014) Acute stress exposure preceding transient global brain ischemia exacerbates the decrease in cortical remodeling potential in the rat retrosplenial cortex. Neurosci Res 78:65-71.

    Lazarini F, Gabellec MM, Moigneu C, de Chaumont F, Olivo-Marin JC, Lledo PM (2014) Adult neurogenesis restores dopaminergic neuronal loss in the olfactory bulb. J Neurosci 34:14430-14442.

    Li H, Deng CQ, Chen BY, Zhang SP, Liang Y, Luo XG (2009) Total saponins of Panax Notoginseng modulate the expression of caspases and attenuate apoptosis in rats following focal cerebral ischemia-reperfusion. J Ethnopharmacol 121:412-418.

    Lledo P-M, Saghatelyan A (2005) Integrating new neurons into the adult olfactory bulb: joining the network, life-death decisions, and the eff ects of sensory experience. Trends Neurosci 28:248-254.

    Luo L (2002) Actin cytoskeleton regulation in neuronal morphogenesis and structural plasticity. Annu Rev Cell Dev Biol 18:601-635.

    Luskin MB (1993) Restricted proliferation and migration of postnatally generated neurons derived from the forebrain subventricular zone. Neuron 11:173-189.

    Ma DK, Kim WR, Ming Gl, Song H (2009) Activity-dependent extrinsic regulation of adult olfactory bulb and hippocampal neurogenesis. Ann N Y Acad Sci 1170:664-673.

    Macklis Jeff rey D (2012) Human adult olfactory bulb neurogenesis? Novelty is the best policy. Neuron 74:595-596.

    Mullen RJ, Buck CR, Smith AM (1992) NeuN, a neuronal specifi c nuclear protein in vertebrates. Development 116:201-211.

    Nacher J, Crespo C, McEwen BS (2001) Doublecortin expression in the adult rat telencephalon. Eur J Neurosci 14:629-644.

    Nakagawa S, Kim JE, Lee R, Chen J, Fujioka T, Malberg J, Tsuji S, Duman RS (2002) Localization of phosphorylated cAMP response element-binding protein in immature neurons of adult hippocampus. J Neurosci 22:9868-9876.

    Ng TB (2006) Pharmacological activity of sanchi ginseng (Panax notoginseng). J Pharm Pharmacol 58:1007-1019.

    Nissant A, Bardy C, Katagiri H, Murray K, Lledo PM (2009) Adult neurogenesis promotes synaptic plasticity in the olfactory bulb. Nat Neurosci 12:728-730.

    O’Connell C, Gallagher HC, O’Malley A, Bourke M, Regan CM (2000) CREB phosphorylation coincides with transient synapse formation in the rat hippocampal dentate gyrus following avoidance learning. Neural Plast 7:279-289.

    Pan A, Li M, Gao JY, Xue ZQ, Li Z, Yuan XY, Luo DW, Luo XG, Yan XX (2013) Experimental epidural hematoma causes cerebral infarction and activates neocortical glial and neuronal genesis in adult guinea pigs. J Neurosci Res 91:249-261.

    Paxinos G, Watson C (2005) The Rat Brain in Stereotaxic Coordinates. London: Academic Press.

    Ponti G, Obernier K, Guinto C, Jose L, Bonfanti L, Alvarez-Buylla A (2013) Cell cycle and lineage progression of neural progenitors in the ventricular-subventricular zones of adult mice. Proc Natl Acad Sci U S A 110:E1045-1054.

    Pulsinelli WA, Brierley JB (1979) A new model of bilateral hemispheric ischemia in the unanesthetized rat. Stroke 10:267-272.

    Rajan K, Thangaleela S, Balasundaram C (2015) Spatial learning associated with stimulus response in goldfi sh Carassius auratus: relationship to activation of CREB signalling. Fish Physiol Biochem 41:685-694.

    Saaltink D-J, H?vik B, Verissimo CS, Lucassen PJ, Vreugdenhil E (2012) Doublecortin and doublecortin-like are expressed in overlapping and non-overlapping neuronal cell population: implications for neurogenesis. J Comp Neurol 520:2805-2823.

    Sarnat HB, Nochlin D, Born DE (1998) Neuronal nuclear antigen (NeuN): a marker of neuronal maturation in the early human fetal nervous system1. Brain Dev 20:88-94.

    Si YC, Zhang JP, Xie CE, Zhang LJ, Jiang XN (2011) Effects of Panax notoginseng saponins on proliferation and diff erentiation of rat hippocampal neural stem cells. Am J Chin Med 39:999-1013.

    Tanaka K, Nogawa S, Nagata E, Ito D, Suzuki S, Dembo T, Kosakai A, Fukuuchi Y (2000) Persistent CREB phosphorylation with protection of hippocampal CA1 pyramidal neurons following temporary occlusion of the middle cerebral artery in the rat. Exp Neurol 161:462-471.

    Tonchev AB, Yamashima T, Zhao L, Okano H (2003) Diff erential proliferative response in the postischemic hippocampus, temporal cortex, and olfactory bulb of young adult macaque monkeys. Glia 42:209-224.

    Walton M, Sirimanne E, Williams C, Gluckman P, Dragunow M (1996) The role of the cyclic AMP-responsive element binding protein (CREB) in hypoxic-ischemic brain damage and repair. Brain Res Mol Brain Res 43:21-29.

    Winner B, Cooper-Kuhn CM, Aigner R, Winkler J, Kuhn HG (2002) Long-term survival and cell death of newly generated neurons in the adult rat olfactory bulb. Eur J Neurosci 16:1681-1689.

    Xiong K, Luo DW, Patrylo PR, Luo XG, Struble RG, Clough RW, Yan XX (2008) Doublecortin-expressing cells are present in layer II across the adult guinea pig cerebral cortex: partial colocalization with mature interneuron markers. Exp Neurol 211:271-282.

    Zeng JJ, He XH, Yan XX, Luo XG, Pan AH (2014) Unilateral olfactory functional deprivation model in the left peripheral nostrils by electric cautery injury: olfactory bulb neurogenesis and transformation. Zhongguo Zuzhi Gongcheng Yanjiu 18:231-238.

    Zhang RL, Zhang ZG, Zhang L, Chopp M (2001) Proliferation and diff erentiation of progenitor cells in the cortex and the subventricular zone in the adult rat after focal cerebral ischemia. Neuroscience 105:33-41.

    Zhang XM, Cai Y, Chu Y, Chen EY, Feng JC, Luo XG, Xiong K, Struble RG, Clough RW, Patrylo PR, Kordower JH, Yan XX (2009) Doublecortin-expressing cells persist in the associative cerebral cortex and amygdala in aged nonhuman primates. Front Neuroanat 3:17.

    Copyedited by Paul P, Park M, Yu J, Qiu Y, Li CH, Song LP, Zhao M

    *Correspondence to:

    Ai-hua Pan, Ph.D. or Zhi-yuan Li, Ph.D., panaihua@csu.edu.cn or

    li_zhiyuan@gibh.ac.cn.

    # These authors contributed equally to this work.

    orcid:

    0000-0003-2068-8028 (Ai-hua Pan)

    10.4103/1673-5374.165514

    http://www.nrronline.org/

    Accepted: 2015-08-11

    亚洲三区欧美一区| 日韩欧美一区视频在线观看| 日韩电影二区| 亚洲欧美精品自产自拍| 99久久精品国产亚洲精品| 看免费av毛片| 中文字幕制服av| 国产欧美日韩一区二区三 | 男女免费视频国产| 中文字幕色久视频| 曰老女人黄片| 精品亚洲成a人片在线观看| 大香蕉久久网| 免费高清在线观看视频在线观看| 两个人看的免费小视频| 久久国产精品影院| 午夜福利,免费看| 视频在线观看一区二区三区| 久久午夜综合久久蜜桃| 国产无遮挡羞羞视频在线观看| 赤兔流量卡办理| 久久99一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 国产99久久九九免费精品| 韩国高清视频一区二区三区| 欧美人与善性xxx| 日韩大码丰满熟妇| 青春草亚洲视频在线观看| 一边摸一边抽搐一进一出视频| videos熟女内射| 国产男女超爽视频在线观看| 亚洲国产av新网站| 午夜福利影视在线免费观看| 久久狼人影院| 亚洲av国产av综合av卡| √禁漫天堂资源中文www| 色婷婷久久久亚洲欧美| 人妻 亚洲 视频| 久久99一区二区三区| 国产精品人妻久久久影院| 欧美乱码精品一区二区三区| 亚洲第一av免费看| 亚洲欧美精品自产自拍| 久久久精品94久久精品| 久久精品久久久久久久性| 久久毛片免费看一区二区三区| 国产女主播在线喷水免费视频网站| 可以免费在线观看a视频的电影网站| 一级毛片我不卡| 女人被躁到高潮嗷嗷叫费观| 国产精品99久久99久久久不卡| 一区在线观看完整版| 久久性视频一级片| 国产免费福利视频在线观看| 视频在线观看一区二区三区| 人人妻人人澡人人看| 一本—道久久a久久精品蜜桃钙片| 91麻豆av在线| 精品第一国产精品| 美女福利国产在线| 下体分泌物呈黄色| 久热爱精品视频在线9| 男人舔女人的私密视频| 巨乳人妻的诱惑在线观看| 亚洲精品一二三| 无遮挡黄片免费观看| 亚洲男人天堂网一区| 成人手机av| 人人澡人人妻人| 超碰97精品在线观看| 欧美人与善性xxx| 日本av免费视频播放| 久久久久久久久免费视频了| 亚洲精品国产av蜜桃| 19禁男女啪啪无遮挡网站| 欧美日韩福利视频一区二区| 中文字幕高清在线视频| 少妇精品久久久久久久| 日韩av不卡免费在线播放| 黑人猛操日本美女一级片| 少妇 在线观看| 蜜桃在线观看..| 日韩大码丰满熟妇| 午夜免费鲁丝| 嫩草影视91久久| 视频区欧美日本亚洲| 亚洲国产av新网站| 日韩 亚洲 欧美在线| 国产午夜精品一二区理论片| 成人黄色视频免费在线看| 免费在线观看日本一区| 91成人精品电影| 欧美日韩亚洲综合一区二区三区_| 99热网站在线观看| 国产片特级美女逼逼视频| 男女无遮挡免费网站观看| 精品福利永久在线观看| 久久ye,这里只有精品| 99国产精品99久久久久| 又大又爽又粗| 久久久久精品人妻al黑| 深夜精品福利| 老司机影院毛片| 电影成人av| 国产国语露脸激情在线看| 欧美另类一区| 大片免费播放器 马上看| 亚洲熟女毛片儿| 国产在线一区二区三区精| a级片在线免费高清观看视频| 视频区欧美日本亚洲| 电影成人av| 性少妇av在线| av一本久久久久| 大片免费播放器 马上看| 亚洲欧美激情在线| 精品亚洲成a人片在线观看| 久久国产精品大桥未久av| 成年女人毛片免费观看观看9 | 巨乳人妻的诱惑在线观看| 中文字幕另类日韩欧美亚洲嫩草| 久久久精品94久久精品| 亚洲国产欧美日韩在线播放| 99精国产麻豆久久婷婷| 欧美另类一区| 男人舔女人的私密视频| 一级片免费观看大全| 国产精品三级大全| 国产精品久久久久久精品古装| 美女高潮到喷水免费观看| 国产97色在线日韩免费| 九色亚洲精品在线播放| 亚洲精品美女久久久久99蜜臀 | 亚洲国产毛片av蜜桃av| 国产黄频视频在线观看| 丁香六月欧美| 久久亚洲精品不卡| 99香蕉大伊视频| 99国产精品99久久久久| 久热这里只有精品99| 在线观看免费日韩欧美大片| 亚洲中文日韩欧美视频| 日韩欧美一区视频在线观看| 少妇人妻 视频| 欧美 亚洲 国产 日韩一| 国产午夜精品一二区理论片| 麻豆国产av国片精品| 热re99久久国产66热| 巨乳人妻的诱惑在线观看| 丝袜人妻中文字幕| 91精品伊人久久大香线蕉| 91成人精品电影| 电影成人av| 校园人妻丝袜中文字幕| 亚洲欧美色中文字幕在线| 免费看十八禁软件| netflix在线观看网站| 国产淫语在线视频| 日本一区二区免费在线视频| 丝袜脚勾引网站| 一本一本久久a久久精品综合妖精| 国产成人一区二区三区免费视频网站 | 日韩 亚洲 欧美在线| 精品少妇黑人巨大在线播放| 精品久久久久久电影网| 五月天丁香电影| 黄片小视频在线播放| 黄色片一级片一级黄色片| 我要看黄色一级片免费的| 亚洲人成网站在线观看播放| 桃花免费在线播放| 又紧又爽又黄一区二区| 成人亚洲欧美一区二区av| 男女边吃奶边做爰视频| 丝瓜视频免费看黄片| 亚洲欧美一区二区三区黑人| 可以免费在线观看a视频的电影网站| 久久久久精品国产欧美久久久 | 老司机在亚洲福利影院| 亚洲精品在线美女| 午夜福利乱码中文字幕| 大陆偷拍与自拍| 国产色视频综合| 熟女少妇亚洲综合色aaa.| 99国产精品一区二区三区| 女人被躁到高潮嗷嗷叫费观| 久久久精品免费免费高清| 精品免费久久久久久久清纯 | 搡老乐熟女国产| 中文精品一卡2卡3卡4更新| 丰满迷人的少妇在线观看| 国产成人av激情在线播放| 9191精品国产免费久久| 美女主播在线视频| 午夜免费男女啪啪视频观看| 永久免费av网站大全| 自拍欧美九色日韩亚洲蝌蚪91| 美女国产高潮福利片在线看| 丝瓜视频免费看黄片| 欧美日本中文国产一区发布| 国产黄色免费在线视频| 国产亚洲欧美精品永久| 国产成人免费无遮挡视频| a级毛片黄视频| 一区福利在线观看| 中文字幕人妻丝袜制服| 免费在线观看黄色视频的| 久久 成人 亚洲| 超碰97精品在线观看| 国产91精品成人一区二区三区 | 超碰成人久久| av天堂在线播放| 色94色欧美一区二区| 日本一区二区免费在线视频| 免费一级毛片在线播放高清视频 | 色94色欧美一区二区| 成人亚洲精品一区在线观看| 无限看片的www在线观看| 久久久精品区二区三区| 九色亚洲精品在线播放| 两个人免费观看高清视频| 中文字幕人妻丝袜制服| 操美女的视频在线观看| 9191精品国产免费久久| 女人高潮潮喷娇喘18禁视频| 免费高清在线观看日韩| 99久久精品国产亚洲精品| 久久 成人 亚洲| 韩国精品一区二区三区| 精品国产一区二区三区久久久樱花| 亚洲免费av在线视频| 欧美精品啪啪一区二区三区 | 国产精品一区二区在线观看99| 男人操女人黄网站| 亚洲欧洲精品一区二区精品久久久| 精品少妇一区二区三区视频日本电影| 国产av一区二区精品久久| 欧美精品人与动牲交sv欧美| 日韩av免费高清视频| 亚洲色图综合在线观看| 精品国产超薄肉色丝袜足j| 国产av一区二区精品久久| av网站免费在线观看视频| 中文精品一卡2卡3卡4更新| 777久久人妻少妇嫩草av网站| 国产精品香港三级国产av潘金莲 | 亚洲精品国产av成人精品| av在线app专区| 国产精品.久久久| 观看av在线不卡| 国产成人a∨麻豆精品| 999精品在线视频| 看免费成人av毛片| 午夜老司机福利片| 无限看片的www在线观看| 波多野结衣av一区二区av| 国产精品成人在线| 一级黄片播放器| 久久人妻福利社区极品人妻图片 | 精品国产乱码久久久久久男人| 我的亚洲天堂| 免费看不卡的av| 国产成人欧美在线观看 | 精品国产乱码久久久久久小说| 777米奇影视久久| 又粗又硬又长又爽又黄的视频| 午夜久久久在线观看| 亚洲一区中文字幕在线| 在线观看免费视频网站a站| 十八禁人妻一区二区| 精品少妇久久久久久888优播| 黑人巨大精品欧美一区二区蜜桃| 美女高潮到喷水免费观看| 国产精品人妻久久久影院| 免费看av在线观看网站| 天天添夜夜摸| 国产人伦9x9x在线观看| 欧美日韩亚洲高清精品| 久久人妻熟女aⅴ| 两个人看的免费小视频| 亚洲av成人不卡在线观看播放网 | 国产精品麻豆人妻色哟哟久久| 美女脱内裤让男人舔精品视频| av福利片在线| 欧美乱码精品一区二区三区| 午夜影院在线不卡| 交换朋友夫妻互换小说| 亚洲欧洲精品一区二区精品久久久| 亚洲中文字幕日韩| 久久女婷五月综合色啪小说| 极品人妻少妇av视频| 夜夜骑夜夜射夜夜干| 国产精品久久久av美女十八| 人成视频在线观看免费观看| 两个人看的免费小视频| 久久人人97超碰香蕉20202| 最近中文字幕2019免费版| 国产一区亚洲一区在线观看| 在现免费观看毛片| 亚洲,欧美精品.| 成人黄色视频免费在线看| 亚洲国产欧美网| videos熟女内射| a级毛片在线看网站| 人人澡人人妻人| 在线观看www视频免费| av电影中文网址| 韩国精品一区二区三区| 日本a在线网址| av国产精品久久久久影院| 啦啦啦啦在线视频资源| 欧美日本中文国产一区发布| 欧美精品一区二区大全| 午夜久久久在线观看| 精品国产超薄肉色丝袜足j| 久久中文字幕一级| 搡老乐熟女国产| 性色av一级| 麻豆乱淫一区二区| 国产男女超爽视频在线观看| 又粗又硬又长又爽又黄的视频| 一边摸一边抽搐一进一出视频| 亚洲国产日韩一区二区| 欧美成狂野欧美在线观看| 啦啦啦中文免费视频观看日本| 美女午夜性视频免费| 90打野战视频偷拍视频| 伦理电影免费视频| 亚洲精品成人av观看孕妇| 免费高清在线观看日韩| 欧美日韩亚洲国产一区二区在线观看 | 精品视频人人做人人爽| 免费观看a级毛片全部| 一本久久精品| 免费看不卡的av| 免费在线观看黄色视频的| 国产精品久久久久成人av| 国产欧美日韩一区二区三 | 久久av网站| 麻豆av在线久日| 啦啦啦视频在线资源免费观看| av在线老鸭窝| 男的添女的下面高潮视频| 人人妻人人添人人爽欧美一区卜| 国产精品一二三区在线看| 免费高清在线观看日韩| 一级毛片 在线播放| 美女国产高潮福利片在线看| www.av在线官网国产| 中文字幕色久视频| 在线观看www视频免费| 看十八女毛片水多多多| 黑人猛操日本美女一级片| 国产精品一二三区在线看| 免费观看av网站的网址| 少妇人妻久久综合中文| 久久精品亚洲熟妇少妇任你| 国产不卡av网站在线观看| 一区在线观看完整版| 亚洲国产精品成人久久小说| 久久精品熟女亚洲av麻豆精品| 中文欧美无线码| 丰满少妇做爰视频| 尾随美女入室| 国产精品秋霞免费鲁丝片| 高清欧美精品videossex| 午夜福利视频在线观看免费| 美女大奶头黄色视频| 精品少妇内射三级| 在线观看免费视频网站a站| 免费在线观看黄色视频的| 国语对白做爰xxxⅹ性视频网站| 日本欧美视频一区| 中文欧美无线码| 国产成人a∨麻豆精品| 午夜免费男女啪啪视频观看| 免费高清在线观看视频在线观看| 亚洲国产欧美在线一区| 婷婷色av中文字幕| 成年美女黄网站色视频大全免费| 狂野欧美激情性xxxx| 97人妻天天添夜夜摸| 老司机影院毛片| 9色porny在线观看| 国产日韩欧美在线精品| 最黄视频免费看| 亚洲精品久久午夜乱码| 在线观看一区二区三区激情| 最新的欧美精品一区二区| 校园人妻丝袜中文字幕| 国产精品久久久av美女十八| 在线观看免费日韩欧美大片| 国语对白做爰xxxⅹ性视频网站| 深夜精品福利| 大码成人一级视频| 在线亚洲精品国产二区图片欧美| 男女边摸边吃奶| 久久精品国产综合久久久| 蜜桃在线观看..| 亚洲综合色网址| 国产免费又黄又爽又色| 亚洲国产中文字幕在线视频| 少妇被粗大的猛进出69影院| 激情五月婷婷亚洲| 91精品三级在线观看| av国产精品久久久久影院| 国产一区二区激情短视频 | 超碰97精品在线观看| 亚洲天堂av无毛| 晚上一个人看的免费电影| 女警被强在线播放| 免费黄频网站在线观看国产| 成人三级做爰电影| 欧美变态另类bdsm刘玥| 天堂8中文在线网| 啦啦啦 在线观看视频| 国产成人a∨麻豆精品| 天天添夜夜摸| 亚洲一区中文字幕在线| 免费高清在线观看视频在线观看| 高清欧美精品videossex| 成人免费观看视频高清| 免费观看人在逋| 免费人妻精品一区二区三区视频| 日本欧美国产在线视频| 亚洲九九香蕉| 少妇猛男粗大的猛烈进出视频| h视频一区二区三区| 视频区图区小说| 黄网站色视频无遮挡免费观看| 高清黄色对白视频在线免费看| 99国产精品99久久久久| 亚洲av美国av| √禁漫天堂资源中文www| 成年av动漫网址| 色婷婷av一区二区三区视频| 国产xxxxx性猛交| 一级毛片电影观看| 久久久久精品人妻al黑| 咕卡用的链子| 交换朋友夫妻互换小说| 亚洲精品在线美女| 菩萨蛮人人尽说江南好唐韦庄| 国产精品麻豆人妻色哟哟久久| 日本猛色少妇xxxxx猛交久久| 蜜桃在线观看..| 免费在线观看日本一区| 丝袜美腿诱惑在线| 日韩 亚洲 欧美在线| 中文欧美无线码| 伊人久久大香线蕉亚洲五| 色婷婷av一区二区三区视频| 久久精品熟女亚洲av麻豆精品| 久久午夜综合久久蜜桃| 成人免费观看视频高清| 在线 av 中文字幕| 国产精品成人在线| 精品亚洲乱码少妇综合久久| 亚洲国产中文字幕在线视频| 精品少妇黑人巨大在线播放| 肉色欧美久久久久久久蜜桃| 国产视频首页在线观看| 欧美黑人欧美精品刺激| 亚洲中文日韩欧美视频| 大型av网站在线播放| 黄色视频在线播放观看不卡| 大香蕉久久成人网| 伊人久久大香线蕉亚洲五| 中文字幕色久视频| 亚洲成人国产一区在线观看 | kizo精华| 久久精品久久精品一区二区三区| 亚洲成色77777| 欧美精品啪啪一区二区三区 | 最黄视频免费看| 国产野战对白在线观看| 夫妻午夜视频| 九草在线视频观看| 超碰成人久久| 国产精品偷伦视频观看了| 成人国产一区最新在线观看 | 亚洲第一av免费看| 自拍欧美九色日韩亚洲蝌蚪91| 国产xxxxx性猛交| 91麻豆av在线| 亚洲第一av免费看| 欧美人与性动交α欧美精品济南到| 久热爱精品视频在线9| 男的添女的下面高潮视频| 国产精品久久久久成人av| 亚洲人成77777在线视频| 久久久久久久久免费视频了| 久久久欧美国产精品| 国产精品 欧美亚洲| 久久精品熟女亚洲av麻豆精品| 啦啦啦在线观看免费高清www| 精品人妻一区二区三区麻豆| 日本wwww免费看| 女人高潮潮喷娇喘18禁视频| 男女国产视频网站| 国产免费现黄频在线看| 午夜激情av网站| 成人黄色视频免费在线看| 国产野战对白在线观看| 国产人伦9x9x在线观看| 亚洲人成77777在线视频| 黄色视频在线播放观看不卡| 欧美日韩福利视频一区二区| 日韩 欧美 亚洲 中文字幕| 国产成人av激情在线播放| 欧美日韩亚洲综合一区二区三区_| 97精品久久久久久久久久精品| 如日韩欧美国产精品一区二区三区| 一二三四在线观看免费中文在| 伊人亚洲综合成人网| 只有这里有精品99| 国产在视频线精品| 大陆偷拍与自拍| 9191精品国产免费久久| 免费在线观看完整版高清| 丰满迷人的少妇在线观看| 午夜福利,免费看| 人人澡人人妻人| 日本黄色日本黄色录像| 日日爽夜夜爽网站| 老汉色av国产亚洲站长工具| 亚洲精品久久午夜乱码| 亚洲国产日韩一区二区| 欧美久久黑人一区二区| 蜜桃在线观看..| 国产高清国产精品国产三级| 亚洲精品久久成人aⅴ小说| 欧美少妇被猛烈插入视频| 免费看不卡的av| 亚洲av电影在线观看一区二区三区| 国产午夜精品一二区理论片| 中国国产av一级| 国产av精品麻豆| 久久久久国产精品人妻一区二区| 日本wwww免费看| 另类亚洲欧美激情| 欧美日韩国产mv在线观看视频| 亚洲av国产av综合av卡| 精品人妻一区二区三区麻豆| 久久国产精品人妻蜜桃| 中文字幕人妻丝袜制服| 精品国产超薄肉色丝袜足j| 国产精品亚洲av一区麻豆| 一本一本久久a久久精品综合妖精| 国产在视频线精品| 日本av免费视频播放| 亚洲第一av免费看| 国产av国产精品国产| 国产精品久久久久久人妻精品电影 | 亚洲天堂av无毛| 国产真人三级小视频在线观看| 久久青草综合色| 在线看a的网站| 中文字幕亚洲精品专区| 高清av免费在线| 五月开心婷婷网| 亚洲专区国产一区二区| 99久久精品国产亚洲精品| 欧美激情 高清一区二区三区| 日韩免费高清中文字幕av| 国产一区二区三区av在线| 国产一区有黄有色的免费视频| 亚洲精品久久午夜乱码| 亚洲黑人精品在线| 999久久久国产精品视频| 黑人猛操日本美女一级片| 国产男女超爽视频在线观看| 国产精品一二三区在线看| 可以免费在线观看a视频的电影网站| 精品人妻熟女毛片av久久网站| 亚洲一区中文字幕在线| 一区二区av电影网| 亚洲第一青青草原| av不卡在线播放| 制服诱惑二区| 亚洲精品久久成人aⅴ小说| 色播在线永久视频| 久久性视频一级片| 精品一区二区三卡| 精品少妇内射三级| 嫁个100分男人电影在线观看 | av一本久久久久| 欧美日韩亚洲综合一区二区三区_| 亚洲精品国产区一区二| 美女扒开内裤让男人捅视频| 久久精品人人爽人人爽视色| 亚洲中文字幕日韩| 啦啦啦在线观看免费高清www| 国产精品.久久久| 国产精品国产三级国产专区5o| 亚洲精品乱久久久久久| 19禁男女啪啪无遮挡网站| 久久久久国产精品人妻一区二区| 老司机午夜十八禁免费视频| 欧美人与善性xxx| 丝袜脚勾引网站| 操美女的视频在线观看| 国产欧美日韩精品亚洲av| 亚洲欧美一区二区三区国产| 十分钟在线观看高清视频www| 国产一区二区三区综合在线观看| 日韩 亚洲 欧美在线| 首页视频小说图片口味搜索 | 夜夜骑夜夜射夜夜干| av福利片在线| 国产91精品成人一区二区三区 | 国精品久久久久久国模美| 亚洲激情五月婷婷啪啪| 天天躁狠狠躁夜夜躁狠狠躁| 啦啦啦视频在线资源免费观看|