• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    In search for novel strategies towards neuroprotection and neuroregeneration: is PPARα a promising therapeutic target?

    2015-12-15 11:23:33SandraMoreno,MariaPaolaCerù

    In search for novel strategies towards neuroprotection and neuroregeneration: is PPARα a promising therapeutic target?

    Peroxisome proliferator activated receptors: In the early 1990s, seminal work on rodent liver demonstrated that the hypolipidemic eff ect of xenobiotics, referred to as peroxisome proliferators, was mediated by a member of steroid hormone receptor superfamily, thus designated peroxisome proliferator-activated receptors (PPARs) (Issemann and Green, 1990; Dreyer et al., 1992). The research fi eld opened by this discovery led to the identifi cation of three isotypes, namely PPARα (NR1C1), PPARβ/δ (NR1C2), PPARγ (NR1C3), in a wide range of tissues. All these receptors act as ligand-activated transcription factors, binding lipid molecules with diff erent, though overlapping, specifi city.

    PPARs, as other members of the nuclear receptor superfamily, comprise four domains - one of which binds to specifi c DNA sequences (PPAR response elements, PPREs) -regulating gene expression as heterodimers with retinoid X receptors (RXRs). PPAR activity is modulated by post-translational modifi cations, such as phosphorylation, SUMOylation, ubiquitylation, and by several corepressors and coactivators (Feige et al., 2006).

    It is now well established that PPARs act as lipid sensors, playing a major role in energy homeostasis, lipid metabolism and ROS production/scavenging, thus being involved in key cell processes, including cell proliferation, death and diff erentiation. These receptors are regulators of oxidative stress, infl ammation and immune response, making them a suitable target for the treatment of chronic infl ammatory diseases, diabetes, cancer and neurodegenerative disorders (Feige et al., 2006).

    PPARs in the brain: In the nervous tissue, the presence of PPARs has been thoroughly described. In situ studies have highlighted diff erential distribution of the three isotypes in the central nervous system (CNS), during pre- and postnatal development, in the adult, and in the course of aging (reviewed by Fidaleo et al., 2014). The expression of PPARs has also been analyzed in vitro, demonstrating the presence in all CNS cell types, namely neurons, astrocytes, oligodendrocytes, microglia, as well as in neural stem cells and in cell lines, including neuroblastoma and glioblastoma (Fidaleo et al., 2014). A systematic quantitative and anatomical expression atlas of nuclear receptors, including PPARs in the adult mouse brain has been accomplished (Goffl ot et al., 2007). The possibility to cluster these data into anatomical and regulatory networks opens new perspectives towards the understanding of their functions in the brain. As a matter of fact, the roles played by PPARs in the brain are incompletely understood, especially in relation to the isotype-specifi c mechanisms of action. On the other hand, the largely overlapping action of the three receptors, recently synthesized by Aleshin and co-workers in the “PPAR triad”concept (Fidaleo et al., 2014) should prompt the researchers to equally take into consideration all the isotypes, when studying physiological or pathological models. Despite this notion, the vast majority of investigations has so far dealt with PPARγ and its agonists, while relatively few studies have addressed the role of PPARα and β/δ.

    In this perspective, we will focus on PPARα, with special reference to its potential as a therapeutic target against neurodegeneration. Distribution of the receptor in normal and pathological CNS will be briefl y reviewed and related with that of its endogenous ligands, in order to provide some insights into the specifi c roles played in the nervous tissue. We will then discuss established neuroprotective properties of PPARα ligands, as assessed by in vivo and in vitro models, and their use as stimulators of neurogenesis and neuroregeneration.

    Physiological role of PPARα and its ligands in the brain: The expression of PPARα and its heterodimeric partner RXRα in diff erent brain areas has been rather extensively investigated at mRNA and protein levels while information on the localization of PPARα endogenous ligands is still limited (Fidaleo et al., 2014). Recognised PPARα natural agonists include saturated and unsaturated fatty acids and their metabolites, derived by either catabolic (e.g., intermediates of acyl-CoA β-oxidation pathway and some eicosanoids), or neosynthetic (fatty acid synthase-derived fatty acids) pathways (Chakravarthy et al., 2007; Fidaleo et al., 2014). Interestingly, the endocannabinoid-like molecules oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) have recently been identifi ed as high affi nity PPARα ligands, their synthesis being even enhanced by the activated receptor (Fidaleo et al., 2014). Consistent with the functional relationship linking OEA and PEA with PPARα, qualitatively and quantitatively similar patterns of these molecules are found in selected brain regions (e.g., neocortex, hippocampus, thalamus, amygdala, hypothalamus, substantia nigra, cranial motor nuclei), involved in diverse behaviors (i.e., feeding, motor control, reward system, sleep, memory consolidation). For example, ex vivo studies point to a role for PPARα signaling pathway in motor control, as well as in emotional and cognitive brain functions, by negatively modulating nicotine-induced excitation of dopamine neurons in mesocorticolimbic and mesostriatal systems (Melis et al., 2013). Also, investigations employing PPARα null mice demonstrated its involvement in spatial learning and memory, through regulation of cyclic AMP response element binding (CREB) and hippocampal plasticity-related genes (Roy et al., 2013).

    Further clues toward the understanding of PPARα function in the brain are provided by studies on the expression of its target genes in diff erent brain regions and neuronal/glial cell populations. Overlapping localization of PPARα with catalase (CAT), superoxide dismutase 1 (SOD1) and acyl-CoA oxidase 1 (ACOX1) has been described by our group (Fidaleo et al., 2014), in keeping with the notion that the expression of these genes is regulated by PPARα. These studies

    strongly support a CNS role of the receptor in neuroprotection against oxidative damage, by controlling superoxide anion removal (by SOD1), and hydrogen peroxide generation (by SOD1 and ACOX1) and removal (by CAT). Moreover, the involvement of PPARα in brain lipid metabolism is witnessed both by its regulation by fatty acid synthase-produced fatty acids (Chakravarthy et al., 2007), and by its inducing activity towards ACOX1, the rate limiting enzyme of peroxisomal fatty acyl β-oxidation system, and other lipid-regulatory molecules, such as Niemann-Pick disease type 1 C protein, involved in cholesterol traffi cking (Chinetti-Gbaguidi et al., 2005). Noteworthy, ACOX1 is not only involved in lipid metabolism, but also leads to the production of acetyl-CoA moieties, necessary for acetylcholine (ACh) synthesis. Thus, in the CNS, PPARα modulates neurotransmission by participating in the synthesis of signaling molecules (H2O2, lipids, ACh).

    The role of PPARα in neural cells other than neurons should not be underrated. Past work from our group documented the presence of PPARα in astroglia, whose essential role in maintaining proper CNS functioning is well recognized. We found increased expression of PPARα and RXRα in astrocytes diff erentiating from neural progenitors/stem cells, suggesting a role for PPARα in acquiring the metabolic features characterizing astroglial diff erentiation (Fidaleo et al., 2014). Strong specifi c expression of PPARα in ependymal cells has been reported in normal and regenerating CNS, while little is known about the physiological role of the receptor in oligodendroglia and microglia (Fidaleo et al., 2014). Nevertheless, an involvement of PPARα in microglial and astroglial activation in response to neurotoxic stimuli is well documented. Indeed, a concerted anti-infl ammatory action of PPAR isotypes has been reported after diff erent physical or chemical insults in both in vitro and in vivo models (Fidaleo et al., 2014). The specifi c mechanism whereby ligand-activated PPARα blunts infl ammation seems to involve non-genomic actions (tethering and/or squelching), leading to inhibition of other pro-infl ammatory transcription factors (Feige et al., 2006).

    PPARα as a therapeutic target for neuroprotection and neuroregeneration: The concept that PPARα activity modulates the redox state and neuroinfl ammation represents the basis for novel therapies against acute and chronic CNS diseases. Indeed, the diff erent neuropathologies, while aff ecting select neural cell populations and featuring specifi c pathogenetic mechanisms, all share as common traits oxidative stress and neuroinfl ammation. Thus, targeting PPARα may result in benefi cial eff ects in a wide array of neuroinfl ammatory, neurodegenerative and neuropsychiatric conditions (Figure 1), and even in normal brain aging.

    Several in vivo experimental models, mimicking human acute pathologies (brain ischemia, traumatic brain injury, whole brain irradiation, LPS-induced neuroinfl ammation, viral encephalitis, seizures) or chronic progressive neurodegenerative diseases (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, frontotemporal lobar degeneration, multiple sclerosis), or even neuropsychiatric disorders (schizophrenia, epilepsy) have been so far investigated, testing natural or synthetic PPARα ligands (reviewed by Fidaleo et al., 2014). These include OEA, PEA, the resveratrol derivative pterostilbene, diverse fi brates (fenofi brate, clofi brate, bezafi brate, gemfi brozyl), as well as other structurally unrelated chemicals (Wy-14643, GW7647 and T33). Irrespective of their chemical structures, all PPARα agonists exert neuroprotective properties, in that they reduce brain damage, neurovascular impairment, infl ammation, and oxidative stress, resulting in overall amelioration of behavioral symptoms and neuropathological lesions (Figure 1) (Fidaleo et al., 2014).

    For example, consistent and recent in vivo evidence shows that fenofi brate (i) prevents the short-term motor and cognitive poststroke consequences in mice (Ouk et al., 2014); (ii) protects against hypolocomotion, depressive-like behavior, impairment of learning and memory, and dopaminergic neurodegeneration in MPTP rat models of Parkinson’s disease (Barbiero et al., 2014); (iii) reduces cognitive alterations in a neurodevelopmental rat model of schizophrenia, by ameliorating prepulse inhibition disruption (Rolland et al., 2012); (iv) reduces β-amyloid production in an Alzheimer’s disease transgenic mouse model (Zhang et al., 2014); (v) reduces or abolishes behavioral and electroencephalographic expressions of nicotine-induced seizures, in a mouse model of epilepsy (Puligheddu et al., 2013).

    Similarly to synthetic PPARα agonists, the exogenous administration of naturally occurring molecule PEA (i) ameliorates motor limb function in spinal cord trauma; (ii) reduces infarct size, after transient middle cerebral artery occlusion; (iii) exerts antinociceptive eff ects associated with changes in thermoceptive threshold; (iv) reverses motor defi -cits in the MPTP model of Parkinson’s disease; (v) protects against β-amyloid-induced learning and memory impairment (all reviewed by Fidaleo et al., 2014). Importantly, the primary involvement of PPARα in mediating the eff ects of several natural and synthetic substances has been validated by the concomitant treatment of PPARα null mice. Nevertheless, secondary participation of other signalling pathways, activated by other PPAR isotypes and/or endocannabinoid receptors cannot be ruled out.

    At the cellular level, beneficial effects may rely on the direct or indirect action of the receptor towards diff erent classes of organelles. The biogenesis and/or functionality of mitochondria, peroxisomes and even lysosomes are indeed regulated by PPARα and its cofactors (particularly PGC1α), in cooperation with other nuclear receptors (either partners or not for PPARα) (Fidaleo et al., 2014; Ghosh et al., 2015). Interestingly, PPARα agonists exert pro-survival action not only by protecting neuronal cells against neurotoxic insults, but also directly suppressing cell death, lowering the levels of pro-apoptotic molecules, namely activated caspase 3 and apoptosis inducing factor (Fidaleo et al., 2014). This eff ect is in agreement with the demonstrated control of cell cycle operated by PPARα in several tissues. Moreover, growing evidence suggests a role for activated PPARα in promoting autophagy, as a survival mechanism under stress conditions, in cooperation with other nuclear receptors (Lee et al., 2014).

    Figure 1 Neuroprotective effects of PPARα agonists.

    Importantly, the concept of a role for the receptor in neurogenesis is recently emerging, based on the in vitro evidence of its presence in adult neural stem cells, and on in vivo studies on models of acute neuropathologies (Fidaleo et al., 2014; Ouk et al., 2014). Indeed, endogenous production of the PPARα ligand OEA and specific PPARα expression in proliferating neural cells was observed after insult. Consistently, fenofibrate was shown to favor brain repair, by preserving and stimulating neurogenesis in damaged areas. Unfortunately, no data are presently available on the involvement of PPARα in neurogenesis during chronic neurodegenerative diseases. Indeed, despite the large body of literature demonstrating disturbances to this process occurring in several pathologies (Mouhieddine et al., 2014) and the eff ort in developing therapeutic strategies targeting neurogenesis, the benefi cial eff ects of PPARα agonist treatment in neurodegenerative disease models have never been interpreted in view of a pro-neurogenic action of the receptor. Equally lacking are experimental data on the putative role of PPARαin neurogenesis, in either developing, or aging normal brain.

    Perspectives and caveat for PPARα agonist-based therapies: In summary, the pleiotropic eff ects of activated PPARα seem to converge on the molecular pathways shared by diff erent brain pathologies and even normal aging - namely, oxidative stress, inflammation, lipid dysmetabolism, defective neurogenesis, abnormal autophagy and cell death. Therefore, our opinion is that PPARα agonist-based therapy, rather than a panacea, should be considered as an add on to other pharmacological approaches, targeting disease-specifi c pathogenetic mechanisms. Noteworthy, validated treatments against neuroinflammation, such as caloric restriction or hypothermia (Buga et al., 2013), may themselves involve activation of PPARα.

    In order to customize therapeutic strategies against specific CNS disorders, the eff ects of PPARα activation in specifi c neural cell populations, aff ected by diff erent diseases, need to be further clarifi ed. Studies addressing this issue should also take into account the expression, concentration and cellular/ intracellular localization of the receptor in the targeted brain area. Moreover, knowledge of age-, gender- and pathology-dependent variations in PPARα expression, infl uencing responsiveness of certain neural cell populations to the treatment, may help select the appropriate patient subgroup and window treatment. Our past and recent studies on PPARα distribution throughout the adult brain (Moreno et al., 2004) and on changes of its concentration and localization in select brain areas (namely, hippocampus and neocortex) related to aging and to Alzheimer’s disease pathology (Fanelli et al., 2013; Porcellotti et al., 2015), may constitute a starting point to get further insights into these relevant aspects.

    Given that the nervous system is surpassed in PPARα content by other organs (particularly, liver, heart and kidney), systemic undesired eff ects of any treatment should not be underrated. Concerning fi brates (particularly, fenofi brate), no relevant side eff ect has been noted, even though monitoring renal function during treatment is recommended (Munigoti and Harinarayan, 2014). More recent studies point to a promising class of synthetic molecules, acting as dual PPARα/γ agonists, namely Glitazars, which are highly eff ective as hypolipidemic, hypotensive, antiatherogenic, anti-infl ammatory and anticoagulant drugs. Among these, Saroglitazar, with predominant PPARα-mediated activity, is considered novel and unique as it was conceptualized to deliver antidyslipidemic and antihyperglycemic eff ects without any of the adverse eff ects of other molecules of its family (Munigoti and Harinarayan, 2014).

    Conclusions: Clinical trials employing PPARα ligands have so far been limited to the treatment of pathologies unrelated, or only indirectly related, to the brain, while, in our opinion, the time has come to expand these studies to neural disorders. Noteworthy, in humans, PPARα gene polymorphisms are currently being studied, also in relation to their importance as risk factors in specifi c diseases (namely, Alzheimer’s disease). These notions will be indispensible

    for future pharmacogenomics paradigms seeking to predict PPARα agonist responders.

    An emerging concept suggests that, considering the complex interplay among PPAR isotypes, RXRs, and the endocannabinoid system, combinatorial therapies, aimed at activating multiple receptors, could be especially eff ective towards neuroprotection and neuroregeneration.

    One of the most critical points remains the selection of window treatment, as well as of drug/s dosage, given the heterogeneity of literature data concerning the above parameters. An eff ort should be made to unify multiple data sources, to indicate optimal conditions to achieve neuroprotection, which is one important point in the future direction. The rapid development of statistical methodology (i.e., cluster analysis, hyerarchical model) provides powerful tools for integrating multi-dimensional data at the analysis stage, in addition to the experimental phase, to purify and compare the treatment eff ect in a dynamic longitudinal way.

    This work was supported by CAL grant to SM from University Roma Tre. The authors are grateful to Francesca Greco for fi gure editing.

    Sandra Moreno*, Maria Paola Cerù

    Department of Science-LIME, University Roma Tre, Rome, Italy (Moreno S, Cerù MP)

    Department of Life, Health and Environmental Sciences,

    University of L’Aquila, Coppito (AQ), Italy (Cerù MP)

    *Correspondence to: Sandra Moreno, Ph.D.,

    sandra.moreno@uniroma3.it.

    Accepted: 2015-06-07

    orcid: 0000-0002-1079-3222 (Sandra Moreno)

    Barbiero JK, Santiago R, Tonin FS, Boschen S, da Silva LM, Werner MF, da Cunha C, Lima MM, Vital MA (2014) PPAR-α agonist fenofi brate protects against the damaging eff ects of MPTP in a rat model of Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 53:35-44.

    Buga AM, Di Napoli M, Popa-Wagner A (2013) Preclinical models of stroke in aged animals with or without comorbidities: role of neuroinfl ammation. Biogerontology 14:651-662.

    Chakravarthy MV, Zhu Y, López M, Yin L, Wozniak DF, Coleman T, Hu Z, Wolfgang M, Vidal-Puig A, Lane MD, Semenkovich CF (2007) Brain fatty acid synthase activates PPARalpha to maintain energy homeostasis. J Clin Invest 117:2539-2552.

    Chinetti-Gbaguidi G, Rigamonti E, Helin L, Mutka AL, Lepore M, Fruchart JC, Clavey V, Ikonen E, Lestavel S, Staels B (2005) Peroxisome proliferator-activated receptor alpha controls cellular cholesterol traffi cking in macrophages. J Lipid Res 46:2717-2725.

    Dreyer C, Krey G, Keller H, Givel F, Helftenbein G, Wahli W (1992) Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Cell 68:879-887.

    Fanelli F, Sepe S, D’Amelio M, Bernardi C, Cristiano L, Cimini A, Cecconi F, Cerù MP, Moreno S (2013) Age-dependent roles of peroxisomes in the hippocampus of a transgenic mouse model of Alzheimer’s disease. Mol Neurodegener 8:8.

    Feige JN, Gelman L, Michalik L, Desvergne B, Wahli W (2006) From molecular action to physiological outputs: peroxisome proliferator-activated receptors are nuclear receptors at the crossroads of key cellular functions. Prog Lipid Res 45:120-159.

    Fidaleo M, Fanelli F, Ceru MP, Moreno S (2014) Neuroprotective properties of peroxisome proliferator-activated receptor alpha (PPARα) and its lipid ligands. Curr Med Chem 21:2803-2821

    Ghosh A, Jana M, Modi K, Gonzalez FJ, Sims KB, Berry-Kravis E, Pahan K (2015) Activation of peroxisome proliferator-activated receptor α induces lysosomal biogenesis in brain cells: implications for lysosomal storage disorders. J Biol Chem 290:10309-10324.

    Goffl ot F, Chartoire N, Vasseur L, Heikkinen S, Dembele D, Le Merrer J, Auwerx J (2007) Systematic gene expression mapping clusters nuclear receptors according to their function in the brain. Cell 131:405-418.

    Issemann I, Green S (1990) Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 347:645-650.

    Lee JM, Wagner M, Xiao R, Kim KH, Feng D, Lazar MA, Moore DD (2014) Nutrient-sensing nuclear receptors coordinate autophagy. Nature 516:112-115.

    Melis M, Scheggi S, Carta G, Madeddu C, Lecca S, Luchicchi A, Cadeddu F, Frau R, Fattore L, Fadda P, Ennas MG, Castelli MP, Fratta W, Schilstrom B, Banni S, De Montis MG, Pistis M (2013) PPARα regulates cholinergic-driven activity of midbrain dopamine neurons via a novel mechanism involving α7 nicotinic acetylcholine receptors. J Neurosci 33:6203-6211.

    Moreno S, Farioli-Vecchioli S, Cerù MP (2004) Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. Neuroscience 123:131-145.

    Mouhieddine TH, Kobeissy FH, Itani M, Nokkari A, Wang KK (2014) Stem cells in neuroinjury and neurodegenerative disorders: challenges and future neurotherapeutic prospects. Neural Regen Res 9:901-906.

    Munigoti SP, Harinarayan CV (2014) Role of Glitazars in atherogenic dyslipidemia and diabetes: Two birds with one stone? Indian J Endocrinol Metab 18:283-287.

    Ouk T, Gautier S, Pétrault M, Montaigne D, Maréchal X, Masse I, Devedjian JC, Deplanque D, Bastide M, Nevière R, Duriez P, Staels B, Pasquier F, Leys D, Bordet RJ (2014) Eff ects of the PPAR-α agonist fenofi brate on acute and short-term consequences of brain ischemia. Cereb Blood Flow Metab 34:542-551.

    Porcellotti S, Fanelli F, Fracassi A, Sepe S, Cecconi F, Bernardi C, Cimini A, Cerù MP, Moreno S (2015) Oxidative stress during the progression of β-amyloid pathology in the neocortex of the Tg2576 mouse model of Alzheimer’s disease. Oxid Med Cell Longev 2015:967203.

    Puligheddu M, Pillolla G, Melis M, Lecca S, Marrosu F, De Montis MG, Scheggi S, Carta G, Murru E, Aroni S, Muntoni AL, Pistis M (2013) PPAR-alpha agonists as novel antiepileptic drugs: preclinical fi ndings. PLoS One 8:e64541.

    Rolland B, Marche K, Cottencin O, Bordet R (2012) The PPARα Agonist Fenofi brate Reduces Prepulse Inhibition Disruption in a Neurodevelopmental Model of Schizophrenia. Schizophr Res Treatment 2012:839853.

    Roy A, Jana M, Corbett GT, Ramaswamy S, Kordower JH, Gonzalez FJ, Pahan K (2013) Regulation of cyclic AMP response element binding and hippocampal plasticity-related genes by peroxisome proliferator-activated receptor α. Cell Rep 4:724-737.

    Zhang H, Gao Y, Qiao PF, Zhao FL, Yan Y (2014) Fenofi brate reduces amyloidogenic processing of APP in APP/PS1 transgenic mice via PPAR-α/PI3-K pathway. Int J Dev Neurosci 38:223-231.

    10.4103/1673-5374.165313 http://www.nrronline.org/ Moreno S, Cerù MP (2015) In search for novel strategies towards neuroprotection and neuroregeneration: is PPARα a promising therapeutic target? Neural Regen Res 10(9):1409-1412.

    成年女人毛片免费观看观看9 | 女的被弄到高潮叫床怎么办| 少妇精品久久久久久久| 免费看不卡的av| 国产毛片在线视频| 在线天堂中文资源库| 女性生殖器流出的白浆| 美女视频免费永久观看网站| 我要看黄色一级片免费的| 久久精品亚洲av国产电影网| 精品一区二区三区四区五区乱码 | 精品少妇久久久久久888优播| 水蜜桃什么品种好| 国产午夜精品一二区理论片| 高清黄色对白视频在线免费看| 亚洲一级一片aⅴ在线观看| 卡戴珊不雅视频在线播放| 黄网站色视频无遮挡免费观看| 日韩 欧美 亚洲 中文字幕| 捣出白浆h1v1| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久精品94久久精品| 日韩 亚洲 欧美在线| 在线观看人妻少妇| 日韩熟女老妇一区二区性免费视频| 中文欧美无线码| av一本久久久久| 成年人午夜在线观看视频| 中文字幕制服av| 久久精品国产亚洲av涩爱| 丝袜人妻中文字幕| 黑人欧美特级aaaaaa片| 久久久久国产精品人妻一区二区| 蜜桃在线观看..| 亚洲第一区二区三区不卡| av片东京热男人的天堂| 亚洲国产最新在线播放| 99久久人妻综合| 亚洲,欧美,日韩| 这个男人来自地球电影免费观看 | 亚洲久久久国产精品| 国产极品天堂在线| 久久人人爽av亚洲精品天堂| 欧美成人午夜精品| 免费看不卡的av| 亚洲av国产av综合av卡| 在线观看国产h片| 18禁观看日本| 看十八女毛片水多多多| 精品国产一区二区久久| 亚洲情色 制服丝袜| 国产在视频线精品| 日本欧美视频一区| 天堂中文最新版在线下载| 女人精品久久久久毛片| 国产精品熟女久久久久浪| 无遮挡黄片免费观看| 午夜福利在线免费观看网站| 中文字幕色久视频| 中文乱码字字幕精品一区二区三区| 三上悠亚av全集在线观看| 亚洲国产精品999| 亚洲精品日韩在线中文字幕| 两个人看的免费小视频| 晚上一个人看的免费电影| 亚洲国产精品999| 国产黄频视频在线观看| 亚洲,一卡二卡三卡| 亚洲五月色婷婷综合| 考比视频在线观看| 国产精品无大码| 黑人欧美特级aaaaaa片| 亚洲图色成人| 51午夜福利影视在线观看| 亚洲成国产人片在线观看| 一区二区三区乱码不卡18| 涩涩av久久男人的天堂| 欧美在线一区亚洲| 亚洲国产精品一区三区| 蜜桃国产av成人99| 欧美最新免费一区二区三区| 成人国语在线视频| 精品久久久精品久久久| 80岁老熟妇乱子伦牲交| 丝袜人妻中文字幕| 美女福利国产在线| 国产精品麻豆人妻色哟哟久久| 天天添夜夜摸| 中文字幕色久视频| 免费黄色在线免费观看| 亚洲第一青青草原| 国产国语露脸激情在线看| 黄色毛片三级朝国网站| 欧美av亚洲av综合av国产av | 久久久久久免费高清国产稀缺| 午夜福利,免费看| 国产精品久久久久久人妻精品电影 | 在线看a的网站| 国产伦人伦偷精品视频| 纵有疾风起免费观看全集完整版| 日本av免费视频播放| bbb黄色大片| 中文字幕色久视频| netflix在线观看网站| 激情视频va一区二区三区| 国产99久久九九免费精品| 一区二区三区乱码不卡18| 下体分泌物呈黄色| 国产精品免费视频内射| 欧美成人精品欧美一级黄| 国产深夜福利视频在线观看| 国产日韩欧美在线精品| 国产成人一区二区在线| 国产熟女午夜一区二区三区| 美国免费a级毛片| 国产成人系列免费观看| 国产女主播在线喷水免费视频网站| www.精华液| 日韩中文字幕欧美一区二区 | 欧美日韩亚洲综合一区二区三区_| 国产极品天堂在线| 国产片内射在线| 咕卡用的链子| 美女福利国产在线| 国产精品一区二区精品视频观看| 如何舔出高潮| 天天躁狠狠躁夜夜躁狠狠躁| 少妇被粗大的猛进出69影院| 91精品三级在线观看| 中文字幕人妻丝袜制服| 十八禁人妻一区二区| 日韩精品有码人妻一区| 久久久国产一区二区| 天堂8中文在线网| www日本在线高清视频| 丝瓜视频免费看黄片| 久久久久精品人妻al黑| av又黄又爽大尺度在线免费看| 丝袜脚勾引网站| 人人妻人人爽人人添夜夜欢视频| 爱豆传媒免费全集在线观看| 少妇 在线观看| 人人妻人人爽人人添夜夜欢视频| 女人精品久久久久毛片| 少妇人妻精品综合一区二区| 99re6热这里在线精品视频| 国产精品秋霞免费鲁丝片| 国产在视频线精品| 免费在线观看完整版高清| 日韩精品有码人妻一区| 少妇 在线观看| 看免费成人av毛片| 一级片'在线观看视频| 精品少妇一区二区三区视频日本电影 | 天天躁夜夜躁狠狠久久av| 国产视频首页在线观看| 在线观看人妻少妇| 制服诱惑二区| av女优亚洲男人天堂| 一本一本久久a久久精品综合妖精| 国产熟女午夜一区二区三区| 2021少妇久久久久久久久久久| 日韩一区二区视频免费看| 在线观看免费日韩欧美大片| 亚洲欧美清纯卡通| av视频免费观看在线观看| 欧美日韩视频精品一区| 亚洲欧美清纯卡通| 国产一区二区三区综合在线观看| av网站在线播放免费| 天堂俺去俺来也www色官网| 亚洲中文av在线| 亚洲成国产人片在线观看| 一级黄片播放器| 2018国产大陆天天弄谢| 超碰成人久久| 美女高潮到喷水免费观看| 成人国语在线视频| 欧美日韩亚洲高清精品| 久久人妻熟女aⅴ| 国产亚洲最大av| 国产精品蜜桃在线观看| 精品国产乱码久久久久久男人| 男女边吃奶边做爰视频| 丝袜在线中文字幕| 人体艺术视频欧美日本| 欧美日韩视频高清一区二区三区二| 亚洲美女搞黄在线观看| av.在线天堂| 亚洲欧洲精品一区二区精品久久久 | 国产在线一区二区三区精| 亚洲七黄色美女视频| 国产精品 欧美亚洲| 青春草国产在线视频| 久久久国产精品麻豆| 午夜激情久久久久久久| 天天躁夜夜躁狠狠躁躁| 视频在线观看一区二区三区| 美国免费a级毛片| 宅男免费午夜| 国产一区亚洲一区在线观看| 中文字幕制服av| 永久免费av网站大全| 伦理电影免费视频| 亚洲伊人色综图| 交换朋友夫妻互换小说| 丰满少妇做爰视频| 1024香蕉在线观看| 日韩中文字幕视频在线看片| www.自偷自拍.com| 在线观看免费日韩欧美大片| 下体分泌物呈黄色| 欧美激情高清一区二区三区 | 精品酒店卫生间| 亚洲国产欧美在线一区| 亚洲av在线观看美女高潮| 男女边摸边吃奶| 亚洲精品国产色婷婷电影| 无限看片的www在线观看| 最黄视频免费看| 国产亚洲欧美精品永久| 一区二区三区乱码不卡18| 免费少妇av软件| 波野结衣二区三区在线| e午夜精品久久久久久久| 免费久久久久久久精品成人欧美视频| 又黄又粗又硬又大视频| 亚洲精品中文字幕在线视频| kizo精华| 国产熟女午夜一区二区三区| 少妇猛男粗大的猛烈进出视频| 亚洲欧美一区二区三区久久| 精品酒店卫生间| 日韩熟女老妇一区二区性免费视频| 国产精品无大码| 啦啦啦中文免费视频观看日本| 丰满少妇做爰视频| 久久天堂一区二区三区四区| 中文欧美无线码| 91老司机精品| 国产精品嫩草影院av在线观看| 大片免费播放器 马上看| 一区二区三区乱码不卡18| 久久99精品国语久久久| 国产成人91sexporn| 啦啦啦中文免费视频观看日本| 亚洲欧美一区二区三区国产| av在线app专区| 人妻一区二区av| 大陆偷拍与自拍| 成人黄色视频免费在线看| 免费av中文字幕在线| www日本在线高清视频| 国产野战对白在线观看| 波野结衣二区三区在线| 一区在线观看完整版| 热re99久久国产66热| 日本欧美国产在线视频| 天天躁狠狠躁夜夜躁狠狠躁| a级片在线免费高清观看视频| 一级片免费观看大全| 夫妻午夜视频| 欧美人与性动交α欧美软件| 不卡视频在线观看欧美| 久久ye,这里只有精品| 国产日韩欧美亚洲二区| 欧美日韩一级在线毛片| 女性被躁到高潮视频| 欧美激情极品国产一区二区三区| 色视频在线一区二区三区| 涩涩av久久男人的天堂| 国产一区二区在线观看av| 婷婷色av中文字幕| 久久天躁狠狠躁夜夜2o2o | 日韩 亚洲 欧美在线| 国产有黄有色有爽视频| 亚洲欧美一区二区三区久久| 90打野战视频偷拍视频| 亚洲,一卡二卡三卡| 1024香蕉在线观看| 伦理电影免费视频| 欧美变态另类bdsm刘玥| 一边亲一边摸免费视频| 波多野结衣av一区二区av| av福利片在线| 女人被躁到高潮嗷嗷叫费观| 纵有疾风起免费观看全集完整版| 老司机亚洲免费影院| 熟女av电影| 国产男人的电影天堂91| 亚洲欧美色中文字幕在线| 国产精品秋霞免费鲁丝片| 婷婷成人精品国产| 最新的欧美精品一区二区| a级毛片黄视频| 精品酒店卫生间| 青青草视频在线视频观看| 国产淫语在线视频| 午夜老司机福利片| 免费黄网站久久成人精品| 国产精品无大码| 亚洲精品第二区| 永久免费av网站大全| av电影中文网址| 日韩熟女老妇一区二区性免费视频| 久久综合国产亚洲精品| 国产毛片在线视频| 久久人人爽av亚洲精品天堂| 免费在线观看完整版高清| 男女边吃奶边做爰视频| 久热这里只有精品99| 日韩大片免费观看网站| 十八禁高潮呻吟视频| 日本午夜av视频| 精品少妇一区二区三区视频日本电影 | 欧美日韩一级在线毛片| 久久久久久人人人人人| av福利片在线| 天天躁夜夜躁狠狠躁躁| 亚洲欧洲国产日韩| 中文字幕亚洲精品专区| 69精品国产乱码久久久| 老司机深夜福利视频在线观看 | 国产一卡二卡三卡精品 | 极品少妇高潮喷水抽搐| 日本wwww免费看| 欧美亚洲日本最大视频资源| 91aial.com中文字幕在线观看| 国产亚洲av高清不卡| 亚洲精品aⅴ在线观看| 国语对白做爰xxxⅹ性视频网站| 看十八女毛片水多多多| 色播在线永久视频| 伦理电影大哥的女人| 国产av国产精品国产| 99re6热这里在线精品视频| 制服人妻中文乱码| 另类亚洲欧美激情| 国产片内射在线| 80岁老熟妇乱子伦牲交| 久久ye,这里只有精品| 久热这里只有精品99| 日韩av免费高清视频| 亚洲第一av免费看| 欧美日韩亚洲国产一区二区在线观看 | 少妇 在线观看| 电影成人av| 老司机在亚洲福利影院| 亚洲精品aⅴ在线观看| 欧美国产精品va在线观看不卡| 国产高清不卡午夜福利| 丰满少妇做爰视频| 久久人妻熟女aⅴ| 中文字幕精品免费在线观看视频| 中文字幕人妻丝袜制服| 老司机亚洲免费影院| 国产成人精品久久久久久| 亚洲精品久久午夜乱码| 亚洲成人免费av在线播放| 国产福利在线免费观看视频| 国产亚洲欧美精品永久| 在线免费观看不下载黄p国产| 90打野战视频偷拍视频| 爱豆传媒免费全集在线观看| 狂野欧美激情性bbbbbb| 男女床上黄色一级片免费看| 99香蕉大伊视频| 校园人妻丝袜中文字幕| 国产乱人偷精品视频| 久久人妻熟女aⅴ| 男女高潮啪啪啪动态图| 男人爽女人下面视频在线观看| 亚洲在久久综合| 视频区图区小说| 午夜激情av网站| 国产伦人伦偷精品视频| 精品一区二区三区av网在线观看 | 女人高潮潮喷娇喘18禁视频| 男的添女的下面高潮视频| 男女边吃奶边做爰视频| 久久久久久人妻| 交换朋友夫妻互换小说| 中文字幕av电影在线播放| 日本欧美视频一区| 国产精品偷伦视频观看了| 五月天丁香电影| 狠狠婷婷综合久久久久久88av| 日韩欧美精品免费久久| 在线天堂最新版资源| 午夜91福利影院| 国产熟女欧美一区二区| 成年人午夜在线观看视频| 天天操日日干夜夜撸| 午夜激情av网站| 亚洲av国产av综合av卡| 国产一级毛片在线| 亚洲国产av新网站| 日本91视频免费播放| av片东京热男人的天堂| 美女午夜性视频免费| 中文精品一卡2卡3卡4更新| 久久精品熟女亚洲av麻豆精品| 国产精品三级大全| 国产毛片在线视频| 卡戴珊不雅视频在线播放| 波野结衣二区三区在线| 超碰成人久久| 1024视频免费在线观看| 欧美亚洲日本最大视频资源| 久久这里只有精品19| 国产亚洲精品第一综合不卡| 久久久国产一区二区| 日韩欧美一区视频在线观看| 欧美少妇被猛烈插入视频| 一区福利在线观看| 欧美久久黑人一区二区| 性高湖久久久久久久久免费观看| 最近手机中文字幕大全| 伊人亚洲综合成人网| 亚洲欧美精品综合一区二区三区| 香蕉国产在线看| 飞空精品影院首页| 日日撸夜夜添| 国产色婷婷99| 在线观看国产h片| 日本黄色日本黄色录像| 咕卡用的链子| 美女大奶头黄色视频| 久热爱精品视频在线9| 日韩av在线免费看完整版不卡| 激情视频va一区二区三区| 欧美精品一区二区免费开放| 久久久久久久国产电影| 亚洲精品乱久久久久久| 少妇被粗大的猛进出69影院| 最近中文字幕高清免费大全6| 九草在线视频观看| 色播在线永久视频| 高清黄色对白视频在线免费看| 狂野欧美激情性bbbbbb| 国产熟女午夜一区二区三区| 涩涩av久久男人的天堂| 亚洲国产中文字幕在线视频| 男女床上黄色一级片免费看| 99久久99久久久精品蜜桃| 精品国产一区二区三区久久久樱花| 我要看黄色一级片免费的| 久久久久久久久久久久大奶| 国产精品久久久久久精品古装| 美女主播在线视频| 男人舔女人的私密视频| 最近最新中文字幕免费大全7| 国产免费又黄又爽又色| 国产人伦9x9x在线观看| 亚洲中文av在线| 亚洲欧美清纯卡通| 亚洲av国产av综合av卡| 狠狠精品人妻久久久久久综合| 最新在线观看一区二区三区 | 亚洲,欧美精品.| 精品少妇久久久久久888优播| 午夜福利在线免费观看网站| 国产精品久久久久久精品电影小说| 一二三四中文在线观看免费高清| 精品国产一区二区三区久久久樱花| 成年人午夜在线观看视频| 欧美亚洲 丝袜 人妻 在线| 三上悠亚av全集在线观看| 中国三级夫妇交换| 亚洲视频免费观看视频| 国产99久久九九免费精品| 99精国产麻豆久久婷婷| 丝袜脚勾引网站| 日本av免费视频播放| 亚洲伊人色综图| 一级片'在线观看视频| 欧美激情 高清一区二区三区| 啦啦啦在线免费观看视频4| 在线天堂最新版资源| 亚洲欧美精品综合一区二区三区| 中文字幕人妻熟女乱码| 观看美女的网站| 久久精品人人爽人人爽视色| 色婷婷久久久亚洲欧美| 日本av免费视频播放| 极品少妇高潮喷水抽搐| av一本久久久久| 岛国毛片在线播放| 五月天丁香电影| 青草久久国产| 18禁观看日本| 亚洲精品国产一区二区精华液| 亚洲,欧美,日韩| 精品久久久精品久久久| 这个男人来自地球电影免费观看 | 国产精品人妻久久久影院| 午夜免费观看性视频| 人人澡人人妻人| 久久女婷五月综合色啪小说| 国产片特级美女逼逼视频| 免费高清在线观看视频在线观看| 久久久久久人妻| 欧美日韩亚洲国产一区二区在线观看 | 亚洲少妇的诱惑av| 亚洲精品国产色婷婷电影| 日韩,欧美,国产一区二区三区| 精品卡一卡二卡四卡免费| 满18在线观看网站| 丝袜在线中文字幕| 亚洲av福利一区| 亚洲久久久国产精品| 亚洲综合精品二区| 亚洲精品,欧美精品| 亚洲伊人色综图| 欧美另类一区| 大香蕉久久网| 2021少妇久久久久久久久久久| 国产黄频视频在线观看| videos熟女内射| 777久久人妻少妇嫩草av网站| 亚洲欧美精品综合一区二区三区| 亚洲欧美一区二区三区黑人| 91精品国产国语对白视频| 尾随美女入室| 中国国产av一级| kizo精华| 久久热在线av| 中文字幕人妻丝袜一区二区 | 免费黄频网站在线观看国产| 亚洲免费av在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 日韩中文字幕视频在线看片| 男女无遮挡免费网站观看| 高清av免费在线| 日韩视频在线欧美| 国产精品人妻久久久影院| 欧美97在线视频| 亚洲美女视频黄频| 欧美日韩视频高清一区二区三区二| 1024香蕉在线观看| 国产 一区精品| 老汉色∧v一级毛片| 人人妻人人澡人人看| 国产欧美日韩一区二区三区在线| 菩萨蛮人人尽说江南好唐韦庄| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲欧美精品永久| 午夜影院在线不卡| 777米奇影视久久| 亚洲第一av免费看| 午夜激情久久久久久久| 男女无遮挡免费网站观看| 午夜久久久在线观看| 另类亚洲欧美激情| 人人澡人人妻人| 黄色一级大片看看| 色播在线永久视频| 黄频高清免费视频| 下体分泌物呈黄色| 亚洲人成电影观看| 亚洲av综合色区一区| 成人国产麻豆网| 在线观看人妻少妇| 亚洲精品国产一区二区精华液| 国产不卡av网站在线观看| 日本av手机在线免费观看| 亚洲av日韩精品久久久久久密 | 国产极品粉嫩免费观看在线| av线在线观看网站| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲,欧美,日韩| 成年人午夜在线观看视频| 久久精品久久久久久噜噜老黄| 80岁老熟妇乱子伦牲交| 日韩欧美精品免费久久| 中文欧美无线码| 精品一区二区三卡| 中文字幕高清在线视频| 伊人亚洲综合成人网| 精品亚洲乱码少妇综合久久| 黑人欧美特级aaaaaa片| 最近最新中文字幕大全免费视频 | 性高湖久久久久久久久免费观看| 亚洲精品第二区| 一本—道久久a久久精品蜜桃钙片| 久久av网站| 男人爽女人下面视频在线观看| 亚洲欧美成人综合另类久久久| 1024香蕉在线观看| av不卡在线播放| 精品国产乱码久久久久久小说| 精品一区二区三卡| 国产成人a∨麻豆精品| 欧美日韩成人在线一区二区| 巨乳人妻的诱惑在线观看| 卡戴珊不雅视频在线播放| 国产精品国产三级专区第一集| 搡老岳熟女国产| 久久韩国三级中文字幕| 欧美亚洲 丝袜 人妻 在线| 国产又爽黄色视频| av卡一久久| 两性夫妻黄色片| h视频一区二区三区| 色播在线永久视频| 如日韩欧美国产精品一区二区三区| 在线观看免费视频网站a站| 咕卡用的链子| 欧美人与性动交α欧美精品济南到| 两个人免费观看高清视频| 夜夜骑夜夜射夜夜干| av免费观看日本| 国产精品久久久人人做人人爽| 我要看黄色一级片免费的| 又大又黄又爽视频免费|