• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    PTEN inhibition and axon regeneration and neural repair

    2015-12-15 11:23:31YosukeOhtakeUmarHayatShuxinLi

    Yosuke Ohtake, Umar Hayat, Shuxin Li

    Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA

    PTEN inhibition and axon regeneration and neural repair

    Yosuke Ohtake, Umar Hayat, Shuxin Li*

    Shriners Hospitals Pediatric Research Center, Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, PA, USA

    The intrinsic growth ability of all the neurons declines during development although some may grow better than others. Numerous intracellular signaling proteins and transcription factors have been shown to regulate the intrinsic growth capacity in mature neurons. Among them, PI3 kinase/Akt pathway is important for controlling axon elongation. As a negative regulator of this pathway, the tumor suppressor phosphatase and tensin homolog (PTEN) appears critical to control the regenerative ability of young and adult neurons. This review will focus on recent research progress in axon regeneration and neural repair by PTEN inhibition and therapeutic potential of blocking this phosphatase for neurological disorders. Inhibition of PTEN by deletion in conditional knockout mice, knockdown by short-hairpin RNA, or blockade by pharmacological approaches, including administration of selective PTEN antagonist peptides, stimulates various degrees of axon regrowth in juvenile or adult rodents with central nervous system injuries. Importantly, post-injury PTEN suppression could enhance axonal growth and functional recovery in adult central nervous system after injury.

    PTEN inhibition; antagonist peptide; spinal cord injury; intrinsic growth capacity; axon regeneration; functional recovery

    Funding: This work was supported by research grants to SL from NIH (1R21NS066114, 1R01NS079432 and 1R01EY024575), Christopher & Dana Reeve Foundation (LA1-1002-2) and Shriners Research Foundation (86300).

    Ohtake Y, Hayat U, Li S (2015) PTEN inhibition and axon regeneration and neural repair. Neural Regen Res 10(9):1363-1368.

    Introduction

    Following central nervous system (CNS) injuries, the incapability of axons to regenerate is due to the combination of a non-permissive extrinsic CNS environment (McGee and Strittmatter, 2003; Liu et al., 2006; Busch and Silver, 2007) and a loss of intrinsic regenerative ability during development (Goldberg et al., 2002; Lu et al., 2014). A great number of studies identifi ed various cell types and molecules that inhibit neuronal elongation in adult CNS. The components of CNS myelin, glial scar tissues and certain guidance cues inhibit axon elongation and partially contribute to the CNS regeneration failure. Removing or blocking inhibitory activities of negative molecules, such as myelin or scar associated inhibitors, induces limited degree of axon regeneration in vivo. On the other hand, the intrinsic growth ability of all the neurons declines during development although some neuronal types may grow better than others. Numerous factors could regulate the intrinsic growth capacity, including certain transcription factors, such as cAMP-responsive element binding protein (CREB), signal transducer and activator of transcription 3 (STAT3), nuclear factor of activated T cell (NFAT), c-Jun activating transcription factor 3 (AFT3) and Krüppel-like factors (KLFs), and intracellular signaling proteins, such as PI3 kinase, Akt, phosphatase and tensin homolog (PTEN), suppressor of cytokine signaling 3 (SOCS3), B-RAF, dual leucine zipper kinase (DLK), and insulin/insulin-like growth factor-1 (IGF-1) signaling (Moore and Goldberg, 2011; Byrne et al., 2014; Lu et al., 2014). Although targeting each of these signals could enhance axon growth (Moore and Goldberg, 2011), deletion of the tumor suppressor PTEN in conditional knockout (KO) mice appears to result in most dramatic regrowth of CNS axons after injuries (Park et al., 2008; Liu et al., 2010), suggesting that PTEN/mammalian target of rapamycin (mTOR) signaling is critical to regulate the intrinsic regenerative ability of young and adult neurons (Figure 1) (Park et al., 2010; Lu et al., 2014). Further studies on PTEN knockdown by short-hairpin RNA (shRNA) or blockade by pharmacological approaches demonstrate various degrees of axon regrowth in adult rodents with CNS injuries (Zukor et al., 2013; Lewandowski and Steward, 2014; Ohtake et al., 2014). This review will update recent research progress in axon regeneration and neural repair by PTEN inhibition (Table 1) and discuss the therapeutic potential of blocking this phosphatase for neurological disorders.

    PTEN Deletion and CNS Regeneration and Neural Repair

    PI3K/Akt pathway plays a critical role in regulating axon formation and extension (Zhou and Snider, 2006). Expression ofconstitutively active Akt in embryonic chick dorsal root ganglion (DRG) neurons increases axon branching, cell hypertrophy and growth cone expansion (Grider et al., 2009). Overexpression of active Akt by adeno-associated virus (AAV) vector remarkably promotes regrowth and reinnervation of lesioned dopaminergic axons and partial behavioral recovery in vivo (Kim et al., 2011). Activating Akt signaling also enhances axon regeneration of Drosophila CNS neurons (Song et al., 2012).

    Table 1 Summary of PTEN inhibition on axon growth and neuroprotection

    Given that PTEN negatively mediates Akt activity by dephosphorylating phosphoinositide substrates, PTEN

    suppression is likely to increase axon growth by enhancing activity of PI3K/Akt signaling. Recent studies on neuronal PTEN inactivation by transgenic deletion demonstrate enhanced regeneration of lesioned CNS axons. Intravitreal injection of AAV Cre recombinase enhanced survival of retinal ganglion cells (RGCs) and promoted considerable regeneration of injured optic nerve axons in juvenile mice (Park et al., 2008). Deletion of PTEN by injection of AAV-Cre into the sensorimotor cortex in conditional KO mice induces substantial regrowth of lesioned corticospinal tract (CST) axons and formation of synapse-like structures in the caudal spinal cord of juvenile or adult mice with spinal cord injury (SCI) (Liu et al., 2010). Because treatment with rapamycin, an mTOR inhibitor, abolishes the growth promoting-effect of PTEN deletion (Park et al., 2010), mTOR activation appears critical to control axon growth downstream of PTEN. Simultaneous deletion of PTEN and SOCS3, a negative regulator of Janus kinase (JAK)/STAT pathway, results in more robust and sustained axon regeneration, suggesting that two proteins regulate regenerative programs through distinct mechanisms (Sun et al., 2011). PTEN and SOCS3 double deletion upregulates mTOR activators, such as small GTPaseRheb and IGF-1, in injured RGCs. PTEN deletion combined with overexpression of an active form of B-RAF kinase, a known signal downstream of neurotrophic factors, stimulates additive regeneration of lesioned optic axons (O’Donovan et al., 2014). In addition, simultaneous deletion of PTEN with autophagy-related protein 7 (Atg7), which regulates vacuole transport and autophagy in cytoplasm, increases axon terminal enlargement in midbrain dopamine neurons compared to Atg7 deletion alone (Inoue et al., 2013). Transplanted PTEN-defi cient dopamine neurons into mice with Parkinson’s disease models were less susceptible to cell death and extended longer axons than control grafts (Zhang et al., 2012). Together, PTEN appears important to restrict regeneration of mature neurons and its inactivation may have therapeutic potential for CNS disorders characterized by axonal damages.

    PTEN Knockdown with shRNA and CNS Regeneration

    shRNA makes a tight hairpin turn and is frequently used to silence target gene expression by RNA interference. Injections of AAV vector encoding shRNA-PTEN into the motor cortex in neonatal mice signifi cantly reduced expression of PTEN protein and enhanced levels of phosphorylated S-6 kinase, a downstream signal of mTOR in neurons (Zukor et al., 2013). Injections of viral shRNA-PTEN into the sensorimotor cortex of neonates could suffi ciently enhance the intrinsic growth of CST neurons and induce CST regrowth in the caudal spinal cord of mice with a crush injury at T8(induced at 6–8.5 weeks old). Some CST axons crossed the lesion area using reactive astrocytic tissues as the bridging tissue although CST sprouts avoided dense clusters of fibroblasts and macrophages around the lesion. The other group generated a similar viral shRNA-PTEN and effi ciently knocked down PTEN protein (Lewandowski and Steward, 2014). Injection of AAV shRNA-PTEN into the motor cortex in adult rats 1 week before a dorsal hemisection injury at C6did not significantly promote CST regrowth in the caudal spinal cord and locomotor function recovery although some biotinylated dextran amine (BDA)-traced CST axons reached the lesion edge in shRNA-PTEN treated animals. However, shRNA-PTEN plus delivery of salmon fi brin into the injury area signifi cantly increased the number of BDA-labeled CST axons in the caudal spinal cord and forelimb-reaching scores.

    Together, PTEN knockdown by pre-injury injection of shRNA stimulates regrowth of injured CST axons in SCI mice, but it has minimal eff ect in SCI rats. PTEN inhibition combined with other strategies, such as those targeting other intracellular signals or extrinsic factors responsible for regeneration failure, may become more effi cient for promoting axon elongation. Notably, it is very important to study whether knockdown of PTEN by viral shRNA-PTEN delivered post-injury stimulates axon regrowth and improves functional recovery after CNS injury because the pre-injury viral vector applications used in previous studies are not clinically translational.

    Pharmacological PTEN Inhibition and Neuroprotection and Axon Regeneration

    PTEN genetic deletion in KO mice and knockdown by pre-injury injection of shRNA are not feasible for clinical treatment. In contrast, suppression of PTEN by a pharmacological method is highly controllable in initiation time, application period and drug dosage. Bisperoxovanadium (bpV) compounds are inhibitors of several protein tyrosine phosphatases (PTPs) with selectivity for PTEN (IC50 = ~40 nM), but also block other PTPs (such as PTPβ) at higher nM levels. bpV treatment is neuroprotective after diff erent CNS injuries. Systemic bpV initiated immediately after injury (for 7 days), increased spared white matter at the lesion area, numbers of oligodendrocytes and motor neuron area, and improved functional recovery in rats with contusive cervical SCI (Walker et al., 2012; Walker and Xu, 2014). bpV enhanced axon outgrowth of primary cortical neuronal cultures following oxygen-glucose deprivation. Although 1-day delayed treatment with bpV (for 14 days) did not reduce infarction size in mice with middle cerebral artery occlusion in acute stage, they signifi cantly improved long-term functional recovery after ischemia (Mao et al., 2013). Thus, post-injury bpV treatments exhibit benefi cial eff ects on recovery after CNS injuries although the molecular basis for bpV actions is less clear because bpVs target other PTPs as well as PTEN. Suppressing PTEN activity is very promising for promoting CNS axon regeneration and neural repair, but transgenic approaches used in previous studies block PTEN before injuries and only target a single neuronal population by local injections of AAV-Cre/AAV-shRNA, not the diffusely-dispersed neurons, such as 5-hydroxytryptamine (5-HT) neurons or propriospinal interneurons known to contribute to functional recovery after SCI (Barbeau and Rossignol, 1991; Ribotta et al., 2000; Li et al., 2004; Courtine et al., 2008). Application of bpV may block PTEN action (Christie et al., 2010), but bpV may result in clinical side eff ects by interacting with

    other PTPs (Scrivens et al., 2003), such as lowering blood glucose by activating insulin signaling (Drake and Posner, 1998). It is important to develop a pharmacological method to suppress PTEN activity effi ciently and selectively. We recently identifi ed selective antagonist peptides for PTEN by targeting its critical functional domains, including PIP2, ATP-type, PDZ and C-terminal tail domains (Ohtake et al., 2014). We demonstrated that those PTEN antagonist peptides (PAPs) bound COS7 cells that over-expressed PTEN protein, promoted neurite outgrowth in vitro and blocked several signals downstream of PTEN. Systemic PAP treatments by subcutaneous delivery (initiated 2 days after injury, 2-week treatment) stimulated regrowth of descending serotonergic axons in the caudal spinal cord of adult mice with dorsal over-hemisection at T7. Systemic PAPs also enhanced sprouting of CST axons rostral to the lesion and limited regrowth of CST axons in the caudal spinal cord. Importantly, systemic PAPs enhanced recovery of locomotor function several weeks after SCI by increasing BMS locomotor scores and stride length of hindlimbs and reducing grid walk errors. Thus, systemic delivery of small peptides after injury selectively blocks PTEN activity and promotes regrowth of injured multiple CNS axonal tracts. The peptide approach shows benefi ts in several areas where the transgenic (such as KO) and invasive approaches (such as local chondroitinase and transplants) are highly defi cient and may thus facilitate development of a successful therapy for CNS axonal injuries. Constantly, our other studies demonstrated great therapeutic potential of small peptides that selectively block other axon growth inhibitory molecules (GrandPre et al., 2002; Li and Strittmatter, 2003; Fisher et al., 2011).

    Figure 1 Schematic of Akt/PTEN pathway that regulates neuronalgrowth and axon regeneration by PTEN inhibition.

    PTEN Suppression and Peripheral Nervous System (PNS) Regeneration and Axon Myelination

    PNS axons exhibit remarked regrowth after injuries, but their regeneration may not be optimal and many patients suff er from long-term or persistent functional impairment after PNS axon lesions, including motor and sensory loss, chronic pain and inappropriate autonomic responses. PTEN is expressed in PNS neurons (such as DRGs) and contributes to their growth cone collapse and reduced axon growth (Chadborn et al., 2006). PTEN knockdown enhanced regeneration of lesioned sciatic nerve and a preconditioning lesion exhibited an additive eff ect. PTEN knockdown by bpV treatment or local delivery of siRNA accelerated sciatic axon outgrowth in vivo (Christie et al., 2010). PTEN also restricts PNS regeneration in mouse models of diabetes. Following crush of neuropathic sciatic nerves in diabetes models, local delivery of PTEN short interfering RNA increased the number of regenerating myelinated axons distal to injury site, promoted reinnervation of skin by unmyelinated epidermal axons and contributed to recovery of mechanical sensation. Inhibition of PTEN or activation of PI3K enhances growth of DRG neurons probably by mTOR-independent mechanisms because they respond to GSK-3β (also a downstream signal of PI3K) and transcription factor Smad1, but not to mTOR blockade by rapamycin (Zou et al., 2009; Christie et al., 2010; Hur et al., 2011).

    PTEN and PI3K activities also regulate function of oligodendrocytes and Schwann cells and myelination during development. PTEN deletion enhanced the numbers of Schwann cells and myelinated small axons with caliber < 1 μm. PTEN deletion in oligodendrocytes induced PIP3-dependent hypermyelination of CNS axons (Goebbels et al., 2010). Interactions between PTEN and trafficking protein Dlg1 (disks large homolog 1) are able to inhibit axonal myelination and this mechanism limits myelin sheath thickness and prevents over-myelination in mouse sciatic nerves (Cotter et al., 2010).

    Molecular Targets that Regulate Axon Regeneration along Akt Pathway

    Following stimulation by various extracellular growth factors, activation of the receptor tyrosine kinase and/or G-protein coupled receptor activates PI3K and subsequently Akt by increasing the generation of PIP3. Activated Akt phosphorylates tuberous sclerosis protein complex (TSC) and inhibits its activity. Through enhancing Rheb activity, suppression of TSC increases the levels of activated mTOR (Park et al.,

    2010; Walker et al., 2013), which phosphorylates ribosomal protein p70S6 kinase and 4E binding protein-1 (4E-BP1) and regulatesprotein synthesis and cell growth (Proud, 2002). In particular, phosphorylated p70S6K enhances phosphorylation and activity of ribosomal protein S6 and initiates various translation activities required for cell growth. Phosphorylation of 4E-BP1 reduces its activity and its inhibition on protein synthesis and thus promotes neuronal elongation. Moreover, Akt activation critically regulates GSK-3β signaling by phosphorylating this kinase (at serine 9) and subsequently inactivating it (Figure 1) (Cross et al., 1995). Localized GSK-3β inactivation is required for establishing and maintaining neuronal polarity (Jiang et al., 2005; Yoshimura et al., 2005). GSK-3β inactivation at growth cone is able to stimulate axon formation and extension and to convert dendritic processes into axons in polarized neurons. Consistently, GSK-3β inhibitors enhance neurite outgrowth in vitro and regrowth of injured axons after CNS injury (Zhou et al., 2004; Zhou and Snider, 2005; Dill et al., 2008). Therefore, GSK-3β suppression at growth cone is essential for promoting microtubule assembly in axons (Zhou and Snider, 2006; Hur and Zhou, 2010) although inhibiting GSK-3β may also block axon growth (Alabed et al., 2010; Gobrecht et al., 2014). A further study suggests that GSK-3β inhibition can both enhance and prevent axon growth depending on the substrates involved, enhancing axon elongation if towards primed substrates (such as CRMP2 and adenomatous polyposis coli) and preventing axon growth if toward unprimed substrates (such as microtubule-associated protein 1B) (Kim et al., 2006; Hur and Zhou, 2010). Therefore, GSK-3β activity should be fi nely tuned to stimulate axon regeneration, including its reduced activity towards one subset of substrates and preserved activity towards other substrates.

    Prospective

    PI3K/Akt/PTEN pathways play critical roles in regulating neural development and PTEN suppression may have great potential for promoting CNS axon regeneration and neural repair. Many unknown issues and challenges, however, remain regarding PTEN-mediated growth inhibition and its translating potential to clinical applications. Several neuronal populations are known to be sensitive to PTEN blockade, including RGC, CST, 5-HT and DRGs. Do the other types of neurons similarly respond to PTEN inhibition? PTEN is present in both neuronal soma and axonal compartment during axon extension (including the growth cones) (Chadborn et al., 2006). Does PTEN activation in both subcellular structures mediate axon elongation? Sustained and long-distance axon regeneration is crucial for meaningful functional recovery after many CNS injuries, including SCI and optic neuropathy. PTEN deletion induces remarkable axon elongation, but axon regrowth is usually limited to < 1 mm from the lesion. PTEN suppression combined with other strategies, such as regulating infl ammatory responses and activities of other signaling pathways (such as SOCS3/STAT/Erk) or transcriptional factors (such as KLFs and CREB), as well as surmounting scar-mediated inhibition, may induce more robust and distant axon regeneration. Obviously, post-injury intervention of PTEN by pharmacological approaches, including selective blockade by small peptides, is promising and highly relevant to future translation into human use. Targeting PTEN-regulating molecules, such as certain miRNAs and E3 ubiquitin protein ligase Nedd4, may also become alternatives for attenuating PTEN activity and promoting CNS regeneration. Because adult CNS appears to lack adequate guidance cues present during neurodevelopment, regulation of growing axons to make direct or indirect connections with their original targets appears also important for promoting functional recovery after axonal injuries (Luo et al., 2013). Moreover, task-specifi c rehabilitative training is probably required for rewiring appropriate neuronal circuits and reinforcing functionally meaningful synaptic reconnections.

    Author contributions: YO, UH and SL contributed to paper writing. YO and SL also contributed to making fi gure and Table. All authors approved the fi nal version of this paper.

    Confl icts of interest: None declared.

    Alabed YZ, Pool M, Ong Tone S, Sutherland C, Fournier AE (2010) GSK3 beta regulates myelin-dependent axon outgrowth inhibition through CRMP4. J Neurosci 30:5635-5643.

    Barbeau H, Rossignol S (1991) Initiation and modulation of the locomotor pattern in the adult chronic spinal cat by noradrenergic, serotonergic and dopaminergic drugs. Brain Res 546:250-260.

    Busch SA, Silver J (2007) The role of extracellular matrix in CNS regeneration. Curr Opin Neurobiol 17:120-127.

    Byrne AB, Walradt T, Gardner KE, Hubbert A, Reinke V, Hammarlund M (2014) Insulin/IGF1 signaling inhibits age-dependent axon regeneration. Neuron 81:561-573.

    Chadborn NH, Ahmed AI, Holt MR, Prinjha R, Dunn GA, Jones GE, Eickholt BJ (2006) PTEN couples Sema3A signalling to growth cone collapse. J Cell Sci 119:951-957.

    Christie KJ, Webber CA, Martinez JA, Singh B, Zochodne DW (2010) PTEN inhibition to facilitate intrinsic regenerative outgrowth of adult peripheral axons. J Neurosci 30:9306-9315.

    Cotter L, Ozcelik M, Jacob C, Pereira JA, Locher V, Baumann R, Relvas JB, Suter U, Tricaud N (2010) Dlg1-PTEN interaction regulates myelin thickness to prevent damaging peripheral nerve overmyelination. Science 328:1415-1418.

    Courtine G, Song B, Roy RR, Zhong H, Herrmann JE, Ao Y, Qi J, Edgerton VR, Sofroniew MV (2008) Recovery of supraspinal control of stepping via indirect propriospinal relay connections after spinal cord injury. Nat Med 14:69-74.

    Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA (1995) Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 378:785-789.

    de Lima S, Koriyama Y, Kurimoto T, Oliveira JT, Yin Y, Li Y, Gilbert HY, Fagiolini M, Martinez AM, Benowitz L (2012) Full-length axon regeneration in the adult mouse optic nerve and partial recovery of simple visual behaviors. Proc Natl Acad Sci U S A 109:9149-9154.

    Dill J, Wang H, Zhou FQ, Li S (2008) Inactivation of glycogen synthase kinase-3 promotes axonal growth and recovery in the CNS. J Neurosci 28:8914-8928.

    Drake PG, Posner BI (1998) Insulin receptor-associated protein tyrosine phosphatase(s): role in insulin action. Mol Cell Biochem 182:79-89.

    Drinjakovic J, Jung H, Campbell DS, Strochlic L, Dwivedy A, Holt CE (2010) E3 ligase Nedd4 promotes axon branching by downregulating PTEN. Neuron 65:341-357.

    Fisher D, Xing B, Dill J, Li H, Hoang HH, Zhao Z, Yang XL, Bachoo R, Cannon S, Longo FM, Sheng M, Silver J, Li S (2011) Leukocyte common antigen-related phosphatase is a functional receptor for chondroitin sulfate proteoglycan axon growth inhibitors. J Neurosci 31:14051-14066.

    Gobrecht P, Leibinger M, Andreadaki A, Fischer D (2014) Sustained GSK3 activity markedly facilitates nerve regeneration. Nat Commun 5:4561.

    Goebbels S, Oltrogge JH, Kemper R, Heilmann I, Bormuth I, Wolfer S, Wichert SP, Mobius W, Liu X, Lappe-Siefke C, Rossner MJ, Groszer M, Suter U, Frahm J, Boretius S, Nave KA (2010) Elevated phosphatidylinositol 3,4,5-trisphosphate in glia triggers cell-autonomous membrane wrapping and myelination. J Neurosci 30:8953-8964.

    Goldberg JL, Klassen MP, Hua Y, Barres BA (2002) Amacrine-signaled loss of intrinsic axon growth ability by retinal ganglion cells. Science 296:1860-1864.

    GrandPre T, Li S, Strittmatter SM (2002) Nogo-66 receptor antagonist peptide promotes axonal regeneration. Nature 417:547-551.

    Grider MH, Park D, Spencer DM, Shine HD (2009) Lipid raft-targeted Akt promotes axonal branching and growth cone expansion via mTOR and Rac1, respectively. J Neurosci Res 87:3033-3042.

    Hur EM, Zhou FQ (2010) GSK3 signalling in neural development. Nat Rev Neurosci 11:539-551.

    Hur EM, Saijilafu, Lee BD, Kim SJ, Xu WL, Zhou FQ (2011) GSK3 controls axon growth via CLASP-mediated regulation of growth cone microtubules. Genes Dev 25:1968-1981.

    Inoue K, Rispoli J, Yang L, Macleod D, Beal MF, Klann E, Abeliovich A (2013) Coordinate regulation of mature dopaminergic axon morphology by macroautophagy and the PTEN signaling pathway. PLoS Genet 9:e1003845.

    Jiang H, Guo W, Liang X, Rao Y (2005) Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3beta and its upstream regulators. Cell 120:123-135.

    Kim SR, Chen X, Oo TF, Kareva T, Yarygina O, Wang C, During M, Kholodilov N, Burke RE (2011) Dopaminergic pathway reconstruction by Akt/Rheb-induced axon regeneration. Ann Neurol 70:110-120.

    Kim WY, Zhou FQ, Zhou J, Yokota Y, Wang YM, Yoshimura T, Kaibuchi K, Woodgett JR, Anton ES, Snider WD (2006) Essential roles for GSK-3s and GSK-3-primed substrates in neurotrophin-induced and hippocampal axon growth. Neuron 52:981-996.

    Kurimoto T, Yin Y, Omura K, Gilbert HY, Kim D, Cen LP, Moko L, Kugler S, Benowitz LI (2010) Long-distance axon regeneration in the mature optic nerve: contributions of oncomodulin, cAMP, and pten gene deletion. J Neurosci 30:15654-15663.

    Lewandowski G, Steward O (2014) AAVshRNA-mediated suppression of PTEN in adult rats in combination with salmon fibrin administration enables regenerative growth of corticospinal axons and enhances recovery of voluntary motor function after cervical spinal cord injury. J Neurosci 34:9951-9962.

    Li S, Strittmatter SM (2003) Delayed systemic Nogo-66 receptor antagonist promotes recovery from spinal cord injury. J Neurosci 23:4219-4227.

    Li S, Liu BP, Budel S, Li M, Ji B, Walus L, Li W, Jirik A, Rabacchi S, Choi E, Worley D, Sah DW, Pepinsky B, Lee D, Relton J, Strittmatter SM (2004) Blockade of Nogo-66, myelin-associated glycoprotein, and oligodendrocyte myelin glycoprotein by soluble Nogo-66 receptor promotes axonal sprouting and recovery after spinal injury. J Neurosci 24:10511-10520.

    Liu BP, Cafferty WB, Budel SO, Strittmatter SM (2006) Extracellular regulators of axonal growth in the adult central nervous system. Philos Trans R Soc Lond B Biol Sci 361:1593-1610.

    Liu K, Lu Y, Lee JK, Samara R, Willenberg R, Sears-Kraxberger I, Tedeschi A, Park KK, Jin D, Cai B, Xu B, Connolly L, Steward O, Zheng B, He Z (2010) PTEN deletion enhances the regenerative ability of adult corticospinal neurons. Nat Neurosci 13:1075-1081.

    Lu Y, Belin S, He Z (2014) Signaling regulations of neuronal regenerative ability. Curr Opin Neurobiol 27:135-142.

    Luo X, Salgueiro Y, Beckerman SR, Lemmon VP, Tsoulfas P, Park KK (2013) Three-dimensional evaluation of retinal ganglion cell axon regeneration and pathfi nding in whole mouse tissue after injury. Exp Neurol 247:653-662.

    Mao L, Jia J, Zhou X, Xiao Y, Wang Y, Mao X, Zhen X, Guan Y, Alkayed NJ, Cheng J (2013) Delayed administration of a PTEN inhibitor BPV improves functional recovery after experimental stroke. Neuroscience 231:272-281.

    McGee AW, Strittmatter SM (2003) The Nogo-66 receptor: focusing myelin inhibition of axon regeneration. Trends Neurosci 26:193-198.

    Moore DL, Goldberg JL (2011) Multiple transcription factor families regulate axon growth and regeneration. Dev Neurobiol 71:1186-1211.

    Ning K, Drepper C, Valori CF, Ahsan M, Wyles M, Higginbottom A, Herrmann T, Shaw P, Azzouz M, Sendtner M (2010) PTEN depletion rescues axonal growth defect and improves survival in SMN-defi -cient motor neurons. Hum Mol Genet 19:3159-3168.

    O’Donovan KJ, Ma K, Guo H, Wang C, Sun F, Han SB, Kim H, Wong JK, Charron J, Zou H, Son YJ, He Z, Zhong J (2014) B-RAF kinase drives developmental axon growth and promotes axon regeneration in the injured mature CNS. J Exp Med 211:801-814.

    Ohtake Y, Park D, Abdul-Muneer PM, Li H, Xu B, Sharma K, Smith GM, Selzer ME, Li S (2014) The eff ect of systemic PTEN antagonist peptides on axon growth and functional recovery after spinal cord injury. Biomaterials 35:4610-4626.

    Park KK, Liu K, Hu Y, Kanter JL, He Z (2010) PTEN/mTOR and axon regeneration. Exp Neurol 223:45-50.

    Park KK, Liu K, Hu Y, Smith PD, Wang C, Cai B, Xu B, Connolly L, Kramvis I, Sahin M, He Z (2008) Promoting axon regeneration in the adult CNS by modulation of the PTEN/mTOR pathway. Science 322:963-966.

    Proud CG (2002) Regulation of mammalian translation factors by nutrients. Eur J Biochem 269:5338-5349.

    Ribotta MG, Provencher J, Feraboli-Lohnherr D, Rossignol S, Privat A, Orsal D (2000) Activation of locomotion in adult chronic spinal rats is achieved by transplantation of embryonic raphe cells reinnervating a precise lumbar level. J Neurosci 20:5144-5152.

    Scrivens PJ, Alaoui-Jamali MA, Giannini G, Wang T, Loignon M, Batist G, Sandor VA (2003) Cdc25A-inhibitory properties and antineoplastic activity of bisperoxovanadium analogues. Mol Cancer Ther 2:1053-1059.

    Singh B, Singh V, Krishnan A, Koshy K, Martinez JA, Cheng C, Almquist C, Zochodne DW (2014) Regeneration of diabetic axons is enhanced by selective knockdown of the PTEN gene. Brain 137:1051-1067.

    Song Y, Ori-McKenney KM, Zheng Y, Han C, Jan LY, Jan YN (2012) Regeneration of Drosophila sensory neuron axons and dendrites is regulated by the Akt pathway involving Pten and microRNA bantam. Genes Dev 26:1612-1625.

    Sun F, Park KK, Belin S, Wang D, Lu T, Chen G, Zhang K, Yeung C, Feng G, Yankner BA, He Z (2011) Sustained axon regeneration induced by co-deletion of PTEN and SOCS3. Nature 480:372-375.

    Walker CL, Xu XM (2014) PTEN inhibitor bisperoxovanadium protects oligodendrocytes and myelin and prevents neuronal atrophy in adult rats following cervical hemicontusive spinal cord injury. Neurosci Lett 573:64-68.

    Walker CL, Liu NK, Xu XM (2013) PTEN/PI3K and MAPK signaling in protection and pathology following CNS injuries. Front Biol (Beijing) 8. Walker CL, Walker MJ, Liu NK, Risberg EC, Gao X, Chen J, Xu XM (2012) Systemic bisperoxovanadium activates Akt/mTOR, reduces autophagy, and enhances recovery following cervical spinal cord injury. PLoS One 7:e30012.

    Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K (2005) GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell 120:137-149.

    Zhang Y, Granholm AC, Huh K, Shan L, Diaz-Ruiz O, Malik N, Olson L, Hoff er BJ, Lupica CR, Hoff man AF, Backman CM (2012) PTEN deletion enhances survival, neurite outgrowth and function of dopamine neuron grafts to MitoPark mice. Brain 135:2736-2749.

    Zhao J, Qu Y, Wu J, Cao M, Ferriero DM, Zhang L, Mu D (2013) PTEN inhibition prevents rat cortical neuron injury after hypoxia-ischemia. Neuroscience 238:242-251.

    Zhou FQ, Snider WD (2005) Cell biology. GSK-3beta and microtubule assembly in axons. Science 308:211-214.

    Zhou FQ, Snider WD (2006) Intracellular control of developmental and regenerative axon growth. Philos Trans R Soc Lond B Biol Sci 361:1575-1592.

    Zhou FQ, Zhou J, Dedhar S, Wu YH, Snider WD (2004) NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. Neuron 42:897-912.

    Zou H, Ho C, Wong K, Tessier-Lavigne M (2009) Axotomy-induced Smad1 activation promotes axonal growth in adult sensory neurons. J Neurosci 29:7116-7123.

    Zukor K, Belin S, Wang C, Keelan N, Wang X, He Z (2013) Short hairpin RNA against PTEN enhances regenerative growth of corticospinal tract axons after spinal cord injury. J Neurosci 33:15350-15361.

    *Correspondence to:

    Shuxin Li, M.D., Ph.D.,

    Shuxin.li@temple.edu.

    10.4103/1673-5374.165496

    http://www.nrronline.org/

    Accepted: 2015-05-16

    这个男人来自地球电影免费观看 | 国产成人一区二区在线| 人妻 亚洲 视频| 蜜桃久久精品国产亚洲av| 国产精品熟女久久久久浪| 大香蕉97超碰在线| 亚洲精品国产av成人精品| 成年人午夜在线观看视频| 免费观看无遮挡的男女| 热99国产精品久久久久久7| 在线 av 中文字幕| 免费在线观看成人毛片| 精品亚洲成国产av| 日本黄色日本黄色录像| 免费播放大片免费观看视频在线观看| 久久久久久久精品精品| 久久精品久久久久久久性| 日本欧美视频一区| 我的老师免费观看完整版| 日韩大片免费观看网站| 在现免费观看毛片| 一个人免费看片子| 国产女主播在线喷水免费视频网站| 亚洲一级一片aⅴ在线观看| 国产av国产精品国产| 欧美丝袜亚洲另类| 欧美日本中文国产一区发布| 亚洲熟女精品中文字幕| 成人漫画全彩无遮挡| 简卡轻食公司| a级一级毛片免费在线观看| 黄色日韩在线| 美女国产视频在线观看| 午夜福利影视在线免费观看| 日本欧美视频一区| 男女啪啪激烈高潮av片| 男女边吃奶边做爰视频| 亚洲精品第二区| 中文字幕久久专区| 亚洲精品视频女| 色哟哟·www| 下体分泌物呈黄色| 97超碰精品成人国产| 亚洲激情五月婷婷啪啪| 亚洲精品国产色婷婷电影| 国产片特级美女逼逼视频| 日本欧美视频一区| 午夜日本视频在线| 在线观看美女被高潮喷水网站| a级毛色黄片| 日韩成人伦理影院| 亚洲真实伦在线观看| 搡老乐熟女国产| 在线免费观看不下载黄p国产| 亚洲丝袜综合中文字幕| 亚洲欧美精品专区久久| 国产亚洲最大av| 国产av国产精品国产| 色婷婷久久久亚洲欧美| 少妇人妻精品综合一区二区| 精品99又大又爽又粗少妇毛片| 欧美精品高潮呻吟av久久| 日本免费在线观看一区| 午夜激情久久久久久久| 国产精品国产三级国产专区5o| 久久精品熟女亚洲av麻豆精品| 夫妻性生交免费视频一级片| 国产高清不卡午夜福利| av福利片在线观看| 日韩av不卡免费在线播放| 精品国产乱码久久久久久小说| 免费观看a级毛片全部| 国产精品偷伦视频观看了| 色婷婷av一区二区三区视频| 午夜久久久在线观看| 久久综合国产亚洲精品| 久久6这里有精品| 女性被躁到高潮视频| 国产精品一区二区在线不卡| 一级,二级,三级黄色视频| 国产免费福利视频在线观看| 久久99一区二区三区| 免费高清在线观看视频在线观看| 国产一区二区在线观看av| 国产精品女同一区二区软件| 丰满迷人的少妇在线观看| 成人无遮挡网站| 97精品久久久久久久久久精品| 老女人水多毛片| 欧美xxxx性猛交bbbb| 欧美3d第一页| 免费黄网站久久成人精品| tube8黄色片| 你懂的网址亚洲精品在线观看| 久久鲁丝午夜福利片| 一个人看视频在线观看www免费| 久久久亚洲精品成人影院| 大码成人一级视频| 18禁在线无遮挡免费观看视频| 欧美3d第一页| 国产精品不卡视频一区二区| 午夜福利网站1000一区二区三区| 亚洲国产av新网站| 日韩强制内射视频| 97精品久久久久久久久久精品| 亚洲精品乱码久久久v下载方式| av视频免费观看在线观看| 欧美激情极品国产一区二区三区 | 国产精品秋霞免费鲁丝片| 97超视频在线观看视频| 亚洲欧美日韩卡通动漫| 国产日韩欧美视频二区| 久久久久久久国产电影| 日韩视频在线欧美| 成人免费观看视频高清| 男女边摸边吃奶| 久久99精品国语久久久| 一级a做视频免费观看| 婷婷色综合www| 国产欧美日韩一区二区三区在线 | 乱人伦中国视频| 日韩视频在线欧美| 久久亚洲国产成人精品v| 精品人妻一区二区三区麻豆| 丝瓜视频免费看黄片| 青春草视频在线免费观看| tube8黄色片| 熟妇人妻不卡中文字幕| 特大巨黑吊av在线直播| 高清在线视频一区二区三区| 国产欧美日韩精品一区二区| 日日摸夜夜添夜夜添av毛片| 国产高清不卡午夜福利| 黑丝袜美女国产一区| 男女边摸边吃奶| 在线观看免费日韩欧美大片 | 日日啪夜夜撸| 日韩不卡一区二区三区视频在线| 久久久久久伊人网av| 97在线视频观看| 一级毛片久久久久久久久女| 亚洲色图综合在线观看| 亚洲精品久久午夜乱码| 97精品久久久久久久久久精品| 人妻系列 视频| 91在线精品国自产拍蜜月| 五月天丁香电影| 最新中文字幕久久久久| 精品久久久久久久久亚洲| 亚洲一级一片aⅴ在线观看| 国产成人精品婷婷| 国语对白做爰xxxⅹ性视频网站| 女性被躁到高潮视频| 免费看日本二区| 欧美精品高潮呻吟av久久| 少妇被粗大的猛进出69影院 | 国产伦在线观看视频一区| 人人妻人人爽人人添夜夜欢视频 | 99久久精品热视频| 欧美另类一区| 插阴视频在线观看视频| 久久99热6这里只有精品| 久久久欧美国产精品| 五月开心婷婷网| 男人舔奶头视频| 免费不卡的大黄色大毛片视频在线观看| 嫩草影院新地址| 亚洲精品456在线播放app| 亚洲第一av免费看| 国产精品一区二区在线观看99| 亚洲av中文av极速乱| 自拍欧美九色日韩亚洲蝌蚪91 | 少妇被粗大的猛进出69影院 | 热99国产精品久久久久久7| 蜜桃久久精品国产亚洲av| 午夜福利,免费看| 亚洲真实伦在线观看| 成人漫画全彩无遮挡| 曰老女人黄片| 免费少妇av软件| 赤兔流量卡办理| 国产成人精品福利久久| 亚洲国产精品一区二区三区在线| 国产一区二区三区av在线| 97在线视频观看| 国产在视频线精品| 妹子高潮喷水视频| 国产免费又黄又爽又色| 国产成人精品福利久久| 日韩av不卡免费在线播放| 免费不卡的大黄色大毛片视频在线观看| 精品国产国语对白av| 十八禁高潮呻吟视频 | 国产成人精品婷婷| 91久久精品国产一区二区成人| 老司机影院成人| 老女人水多毛片| 人体艺术视频欧美日本| 亚洲欧美成人综合另类久久久| 噜噜噜噜噜久久久久久91| 日本欧美国产在线视频| 老司机亚洲免费影院| 天堂俺去俺来也www色官网| av在线老鸭窝| 色5月婷婷丁香| 男女啪啪激烈高潮av片| 午夜久久久在线观看| 一本久久精品| 韩国高清视频一区二区三区| 欧美精品高潮呻吟av久久| 免费av不卡在线播放| 亚洲美女黄色视频免费看| 久久午夜综合久久蜜桃| av女优亚洲男人天堂| 中文在线观看免费www的网站| 亚洲经典国产精华液单| 国产欧美日韩综合在线一区二区 | 国产日韩欧美视频二区| 国产日韩欧美在线精品| 大话2 男鬼变身卡| av免费观看日本| 一级毛片久久久久久久久女| 亚洲va在线va天堂va国产| 亚洲精品乱码久久久v下载方式| 高清视频免费观看一区二区| 这个男人来自地球电影免费观看 | 精品国产露脸久久av麻豆| 免费高清在线观看视频在线观看| 有码 亚洲区| 久久久久网色| 又黄又爽又刺激的免费视频.| 亚洲在久久综合| 国产精品无大码| 偷拍熟女少妇极品色| 一本一本综合久久| 黑人巨大精品欧美一区二区蜜桃 | 一级毛片久久久久久久久女| 少妇 在线观看| 日韩在线高清观看一区二区三区| 在线观看免费日韩欧美大片 | 亚洲欧美一区二区三区国产| 欧美人与善性xxx| 免费播放大片免费观看视频在线观看| 午夜福利视频精品| 中文字幕人妻熟人妻熟丝袜美| 久久久国产精品麻豆| 视频区图区小说| 高清不卡的av网站| 青春草国产在线视频| 一级毛片aaaaaa免费看小| 全区人妻精品视频| 久久久久视频综合| 亚洲欧美中文字幕日韩二区| 80岁老熟妇乱子伦牲交| 国产免费一级a男人的天堂| 久久久国产一区二区| 黄色视频在线播放观看不卡| 久久久欧美国产精品| 国产黄色免费在线视频| 亚洲情色 制服丝袜| 人妻少妇偷人精品九色| av在线app专区| av福利片在线观看| 七月丁香在线播放| 日本欧美国产在线视频| 久久久国产欧美日韩av| 亚洲国产精品一区二区三区在线| 嘟嘟电影网在线观看| 午夜免费观看性视频| .国产精品久久| 99久久中文字幕三级久久日本| 六月丁香七月| 亚洲精品乱码久久久v下载方式| 免费观看av网站的网址| 免费久久久久久久精品成人欧美视频 | 国产精品一区二区在线不卡| 青春草国产在线视频| 国产成人freesex在线| 亚洲欧美成人综合另类久久久| 丰满少妇做爰视频| 一级毛片aaaaaa免费看小| 久久久久久久久久久久大奶| 精品一区在线观看国产| 国产视频内射| 成人免费观看视频高清| 亚洲精品色激情综合| 亚洲精品国产av成人精品| 欧美 日韩 精品 国产| 亚洲性久久影院| 久久久久精品久久久久真实原创| 成人无遮挡网站| 国产成人精品一,二区| 久久久久久久久久久久大奶| 偷拍熟女少妇极品色| 黑人巨大精品欧美一区二区蜜桃 | 最近的中文字幕免费完整| 欧美97在线视频| 国产成人精品久久久久久| 欧美少妇被猛烈插入视频| 水蜜桃什么品种好| 国产午夜精品一二区理论片| 这个男人来自地球电影免费观看 | 国产黄频视频在线观看| 亚洲欧美日韩卡通动漫| av黄色大香蕉| 国产黄片美女视频| 中国三级夫妇交换| 国产日韩欧美视频二区| 免费大片黄手机在线观看| 亚洲国产精品专区欧美| 午夜福利视频精品| 一级爰片在线观看| 亚洲av欧美aⅴ国产| 青春草亚洲视频在线观看| 国产无遮挡羞羞视频在线观看| 亚洲欧美日韩东京热| 少妇丰满av| 亚洲国产最新在线播放| 亚洲国产毛片av蜜桃av| 在线观看免费日韩欧美大片 | 久久国产亚洲av麻豆专区| 亚洲av免费高清在线观看| 国产av一区二区精品久久| 观看av在线不卡| 91精品国产国语对白视频| av线在线观看网站| 国产成人精品无人区| 欧美国产精品一级二级三级 | 男人舔奶头视频| 久久青草综合色| 国产亚洲av片在线观看秒播厂| 边亲边吃奶的免费视频| 人人妻人人添人人爽欧美一区卜| 18禁动态无遮挡网站| 肉色欧美久久久久久久蜜桃| 久久久精品94久久精品| 美女视频免费永久观看网站| 黄色日韩在线| 国产亚洲午夜精品一区二区久久| 丝袜在线中文字幕| 久久人妻熟女aⅴ| 美女xxoo啪啪120秒动态图| 中文字幕亚洲精品专区| 国产精品一区二区性色av| 国产精品女同一区二区软件| 老熟女久久久| 一级,二级,三级黄色视频| 少妇猛男粗大的猛烈进出视频| 青春草视频在线免费观看| 国产精品福利在线免费观看| 国模一区二区三区四区视频| 亚洲国产精品999| 一本—道久久a久久精品蜜桃钙片| 亚洲欧美一区二区三区国产| 亚洲人成网站在线观看播放| 午夜福利在线观看免费完整高清在| 97在线视频观看| 狠狠精品人妻久久久久久综合| av天堂中文字幕网| 丰满乱子伦码专区| 另类精品久久| 成年美女黄网站色视频大全免费 | 在线观看免费高清a一片| 日韩电影二区| 精品国产乱码久久久久久小说| 99热6这里只有精品| 国产黄片美女视频| 青春草亚洲视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产真实伦视频高清在线观看| 亚洲va在线va天堂va国产| 大又大粗又爽又黄少妇毛片口| 久久久久精品久久久久真实原创| av卡一久久| 丁香六月天网| 日本午夜av视频| 国产精品久久久久久精品电影小说| 免费看不卡的av| 亚洲av.av天堂| 插阴视频在线观看视频| 十八禁高潮呻吟视频 | 亚洲婷婷狠狠爱综合网| 免费少妇av软件| 亚洲av日韩在线播放| 中文精品一卡2卡3卡4更新| 国产老妇伦熟女老妇高清| 青春草视频在线免费观看| 男女边摸边吃奶| 91久久精品国产一区二区三区| 免费看av在线观看网站| 色网站视频免费| 大片电影免费在线观看免费| 国产精品久久久久久精品电影小说| 欧美+日韩+精品| 亚洲欧美精品专区久久| 亚洲国产最新在线播放| 少妇被粗大的猛进出69影院 | 久久久久久久国产电影| 日韩一本色道免费dvd| 黑人猛操日本美女一级片| 欧美3d第一页| 精品少妇黑人巨大在线播放| 婷婷色麻豆天堂久久| 人人澡人人妻人| 久久精品国产a三级三级三级| 日本黄大片高清| 亚洲国产精品一区三区| 欧美 日韩 精品 国产| 国产男女超爽视频在线观看| 一边亲一边摸免费视频| 国产黄色视频一区二区在线观看| 十八禁网站网址无遮挡 | 欧美丝袜亚洲另类| 欧美日韩一区二区视频在线观看视频在线| 国产精品欧美亚洲77777| 中文字幕制服av| 成年美女黄网站色视频大全免费 | 久久久久久久精品精品| 亚洲三级黄色毛片| 国产一区二区在线观看av| 下体分泌物呈黄色| 女人久久www免费人成看片| 久久久精品94久久精品| 精品人妻一区二区三区麻豆| 一区二区三区精品91| 成人无遮挡网站| 国产伦在线观看视频一区| 丰满人妻一区二区三区视频av| 日韩一区二区三区影片| 夜夜看夜夜爽夜夜摸| av国产精品久久久久影院| 免费黄色在线免费观看| 新久久久久国产一级毛片| 国产精品偷伦视频观看了| 久久精品夜色国产| 女人久久www免费人成看片| 校园人妻丝袜中文字幕| 久久毛片免费看一区二区三区| 少妇人妻 视频| 欧美精品亚洲一区二区| 亚洲中文av在线| 国产精品免费大片| 极品教师在线视频| 中文字幕人妻丝袜制服| 亚洲欧洲精品一区二区精品久久久 | 免费看av在线观看网站| 久久国产精品大桥未久av | 男女无遮挡免费网站观看| 欧美日韩视频精品一区| 久久午夜福利片| 亚洲人成网站在线观看播放| 少妇被粗大猛烈的视频| 国产美女午夜福利| 久久久国产精品麻豆| 一级片'在线观看视频| 免费看av在线观看网站| 纵有疾风起免费观看全集完整版| 天堂8中文在线网| 在线观看一区二区三区激情| 精品一区二区免费观看| 亚洲四区av| 女人久久www免费人成看片| 久久人人爽人人爽人人片va| 中文字幕免费在线视频6| 欧美亚洲 丝袜 人妻 在线| 久久国内精品自在自线图片| 日韩成人伦理影院| 自拍欧美九色日韩亚洲蝌蚪91 | 亚洲精品乱码久久久久久按摩| 欧美日韩国产mv在线观看视频| 成人亚洲精品一区在线观看| av卡一久久| 夫妻性生交免费视频一级片| av卡一久久| 九草在线视频观看| 亚洲人成网站在线播| 永久网站在线| 久久青草综合色| 在线观看免费视频网站a站| 99热国产这里只有精品6| 精品一区二区三区视频在线| 女人久久www免费人成看片| 国产精品一区二区在线不卡| 伊人久久国产一区二区| 国产熟女午夜一区二区三区 | 国产淫片久久久久久久久| 精品酒店卫生间| 青春草亚洲视频在线观看| 精品亚洲乱码少妇综合久久| 亚洲精品日韩在线中文字幕| 亚洲高清免费不卡视频| 国产毛片在线视频| 日本猛色少妇xxxxx猛交久久| 免费黄网站久久成人精品| 亚洲精品,欧美精品| 亚洲va在线va天堂va国产| 国产在线免费精品| 亚洲国产精品一区三区| 国产精品麻豆人妻色哟哟久久| av福利片在线| 亚洲欧美日韩另类电影网站| 国产精品一区二区在线观看99| 国产精品一区二区在线不卡| tube8黄色片| 日韩伦理黄色片| 免费看av在线观看网站| 人妻夜夜爽99麻豆av| 日韩强制内射视频| h视频一区二区三区| 26uuu在线亚洲综合色| 国产视频内射| 久久免费观看电影| 国产精品久久久久久精品电影小说| 夫妻性生交免费视频一级片| 91久久精品国产一区二区成人| 欧美老熟妇乱子伦牲交| 国产一区亚洲一区在线观看| 亚洲国产毛片av蜜桃av| 十分钟在线观看高清视频www | 伦精品一区二区三区| 一级a做视频免费观看| 精品亚洲乱码少妇综合久久| 国产 一区精品| 精品一区二区三区视频在线| 高清午夜精品一区二区三区| 2021少妇久久久久久久久久久| 免费观看在线日韩| 一级毛片久久久久久久久女| 黄色欧美视频在线观看| 国产一区二区在线观看日韩| 嘟嘟电影网在线观看| 国产精品国产三级专区第一集| 亚洲精品国产成人久久av| 一个人免费看片子| 日本vs欧美在线观看视频 | 亚洲精品乱码久久久久久按摩| 国产淫片久久久久久久久| 亚洲第一区二区三区不卡| 亚洲av免费高清在线观看| 亚洲欧美精品自产自拍| 夜夜骑夜夜射夜夜干| 欧美三级亚洲精品| 国产精品熟女久久久久浪| 日本黄大片高清| 欧美精品亚洲一区二区| 国产精品国产三级专区第一集| 久久久久精品性色| 亚洲电影在线观看av| 卡戴珊不雅视频在线播放| 亚洲性久久影院| 少妇裸体淫交视频免费看高清| 99久久精品一区二区三区| 日韩强制内射视频| 久久鲁丝午夜福利片| 日韩免费高清中文字幕av| 日本-黄色视频高清免费观看| 欧美日韩av久久| 国产精品偷伦视频观看了| 精品99又大又爽又粗少妇毛片| 日韩不卡一区二区三区视频在线| videos熟女内射| 免费久久久久久久精品成人欧美视频 | 亚洲国产日韩一区二区| 男男h啪啪无遮挡| 制服丝袜香蕉在线| 狂野欧美白嫩少妇大欣赏| 久久99蜜桃精品久久| 内地一区二区视频在线| 国产欧美另类精品又又久久亚洲欧美| 日韩精品免费视频一区二区三区 | 亚洲国产精品999| 91精品国产国语对白视频| 成人亚洲精品一区在线观看| 99久久精品国产国产毛片| 日韩一本色道免费dvd| 欧美丝袜亚洲另类| 搡女人真爽免费视频火全软件| 精品久久久噜噜| 精品久久国产蜜桃| 不卡视频在线观看欧美| 日韩欧美精品免费久久| 久久免费观看电影| 晚上一个人看的免费电影| 日韩大片免费观看网站| 久久久欧美国产精品| 一级毛片久久久久久久久女| 午夜免费男女啪啪视频观看| 久久99热这里只频精品6学生| 精品酒店卫生间| 我要看黄色一级片免费的| 99视频精品全部免费 在线| 午夜福利视频精品| 国产精品一区二区三区四区免费观看| videossex国产| 肉色欧美久久久久久久蜜桃| 精品国产国语对白av| 天天躁夜夜躁狠狠久久av| 色视频www国产| 极品人妻少妇av视频| av视频免费观看在线观看| 综合色丁香网| 国产有黄有色有爽视频| 狂野欧美激情性bbbbbb| 欧美日韩精品成人综合77777| 老女人水多毛片| av天堂久久9| 人人妻人人澡人人爽人人夜夜| 男人爽女人下面视频在线观看| 国产精品国产三级专区第一集| 丝袜在线中文字幕| 亚州av有码| 日韩在线高清观看一区二区三区| 毛片一级片免费看久久久久| 色94色欧美一区二区| 2021少妇久久久久久久久久久|