• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhancing endogenous stem cells in the newborn via delayed umbilical cord clamping

    2015-12-15 11:23:30ChristopherLawtonSandraAcostaNateWatsonChiaraGonzalesPortilloTheoDiamandisNaokiTajiriYujiKanekoPaulSanbergCesarBorlongan
    關(guān)鍵詞:總資產(chǎn)越冬賬戶

    Christopher Lawton, Sandra Acosta, Nate Watson, Chiara Gonzales-Portillo, Theo Diamandis, Naoki Tajiri, Yuji Kaneko, Paul R. Sanberg, Cesar V. Borlongan

    Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA

    Enhancing endogenous stem cells in the newborn via delayed umbilical cord clamping

    Christopher Lawton, Sandra Acosta, Nate Watson, Chiara Gonzales-Portillo, Theo Diamandis, Naoki Tajiri, Yuji Kaneko, Paul R. Sanberg, Cesar V. Borlongan*

    Center of Excellence for Aging and Brain Repair, Department of Neurosurgery and Brain Repair, University of South Florida College of Medicine, Tampa, FL, USA

    There is currently no consensus among clinicians and scientists over the appropriate or optimal timing for umbilical cord clamping. However, many clinical studies have suggested that delayed cord clamping is associated with various neonatal benefi ts including increased blood volume, reduced need for blood transfusion, increased cerebral oxygenation in pre-term infants, and decreased frequency of iron defi ciency anemia in term infants. Human umbilical cord blood contains signifi cant amounts of stem and progenitor cells and is currently used in the treatment of several life-threatening diseases. We propose that delayed cord clamping be encouraged as it enhances blood fl ow from the placenta to the neonate, which is accompanied by an increase supply of valuable stem and progenitor cells, as well as may improve blood oxygenation and increase blood volume, altogether reducing the infant’s susceptibility to both neonatal and age-related diseases.

    stem cells; umbilical cord blood; neonates; regenerative medicine

    Funding: CVB is funded by NIH NINDS RO1 1R01NS071956-01, NIH NINDS 1R21NS089851-01, Department of Defense TATRC W811XWH-11-1-0634, Veterans Aff airs BX001407-01A2, James and Esther King Biomedical Research Program 09KB-01-23123, and 1KG01-33966.

    Lawton C, Acosta S, Watson N, Gonzales-Portillo C, Diamandis T, Tajiri N, Kaneko Y, Sanberg PR, Borlongan CV (2015) Enhancing endogenous stem cells in the newborn via delayed umbilical cord clamping. Neural Regen Res 10(9):1359-1362.

    Therapeutic Manipulation of Umbilical Cord Clamping

    The timing of umbilical cord clamping, which separates the newborn from the placenta, has been the subject of much debate for decades (Mercer et al., 2001). ‘Early’ or ‘immediate’umbilical cord clamping (ICC) remains the most commonly employed method and is performed in the third stage of labor, during the period extending from complete delivery of the infant to complete delivery of the placenta (Afl aifel et al., 2012; Sheldon et al., 2013). In a recent Cochrane review (McDonald et al., 2014), early cord clamping was defined as covering a wide range from immediately following birth to less than 1 minute post-birth, whereas delayed cord clamping occurs one or more minutes after birth or when cord pulsation ceases. The benefi ts of delayed umbilical cord clamping (DCC) have been well documented and include lower risks of intraventricular hemorrhage (all grades), lower risk for necrotizing enterocolitis, increased early hemoglobin concentration, increased iron stores, and increased cerebral oxygenation in preterm infants (Baenziger et al., 2007; Rabe et al., 2012; McDonald et al., 2013). This raises the question of why early or immediate cord clamping still predominates. While some contend that the prevalence of ICC is simply because of custom, other reasons include reduced risk of post-partum hemorrhage, easier identifi cation of placental detachment, minimized risk of rhesus iso-immunization, and time constraints faced by physicians in the busy environment of the delivery room (Hutchon, 2010; Downey and Bewley, 2012). However, it is worth noting that recent studies have found no signifi cant diff erences between early versus late cord clamping groups for the primary outcome of severe postpartum hemorrhage (McDonald et al., 2014).

    The benefi ts of DCC are primarily attributed to an increase in neonatal blood volume, secondary to placenta-fetal transfusion (Niermeyer and Velaphi, 2013). This transfusion has been suggested to follow an exponential decay curve with 25% being transferred within the fi rst 15 seconds, 50% by 60 seconds, and fl ow ceasing in most infants by 2–3 minutes (Yao et al., 1968, 1969; Yao and Lind, 1974). However, venous and arterial umbilical fl ow may occur for longer than previously described and placental transfusion appears to be complex and dependent on several factors (Boere et al., 2014). The transfer of umbilical cord blood is of particular interest in this review because of the various valuable stem cells contained such as hematopoietic stem cells, endothelial cell precursors, mesenchymal progenitors and multipotent/pluripotent lineage stem cells.

    Stem Cells in Umbilical Cord Blood

    Human umbilical cord blood (hUCB) plays a significant roleas a reservoir of stem and progenitor cells (Chen et al., 2005; Watson et al., 2015). These stem cells, which have infi nite medical potential, are currently used in the treatment of several life-threatening diseases and are viewed by many as the stem cells source of choice for clinical and non-clinical research applications (Chakraborty et al., 2014). The hematopoietic progenitor cells (HPC) of umbilical cord blood have an extensive proliferative capacity that exceeds that of bone marrow HPC (Broxmeyer et al., 1989; Ballen et al., 2013), and even a single hUCB sample can provide enough hematopoietic stem cells for both short- and long-term engraftment (Sirchia and Rebulla, 1999). While the fi rst umbilical cord blood transplant occurred 26 years ago in France in a child with Fanconi Anemia (Gluckman et al., 1989; Ballen et al., 2013), one might argue that nature’s fi rst stem cell transplant occurs at birth as the placenta and umbilical cord contract and pump blood toward the newborn (Sanberg et al., 2010; Tolosa et al., 2010). Once the blood equilibrates in both compartments, the cord becomes pulseless and blood fl ow ceases. This is the natural course in most placental mammals, yet in humans this cord blood transfusion is curtailed by early clamping of the umbilical cord, thus depriving infants of additional stem cells.

    Table 1 Early versus delayed cord clamping

    The existence of stem cells in fetal circulation indicates that a delay in cord clamping should increase stem cell supply to newborns. Alternatively, the artifi cial loss of stem cells at birth could potentially impact later development. The eff ects of DCC on diseases such as neonatal and adult diseases, is unknown but warrants further investigation. Of note, transplantation of exogenous hUCB has been shown to be therapeutic in animal models of cerebral palsy (Yasuhara et al., 2010), autoimmune diseases (Liu et al., 2013), acute injuries like traumatic brain injury (Acosta et al., 2014; Dela Pena et al., 2014a,b) and myocardial infarction (Acosta et al., 2013), and adult-onset disorders, such as stroke (Borlongan et al., 2004; Yu et al., 2009, 2010; Ou et al., 2010), altogether implicating that prophylactic stem cell transplantation, as may be achieved with DCC, can aff ord benefi ts against diseases in neonates and adults.

    The postnatal transfer of hUCB may be particularly important in preterm infants born between 24 to 31 weeks gestation because of the higher concentration of primitive HPC and longterm culture-initiating cells when compared with cord blood of infants born closer to term (Haneline et al., 1996). Consequently, the timing of umbilical cord clamping may be especially important in preterm neonates. DCC may prove to be a safe and inexpensive practice that could potentially decrease morbidity and mortality associated with many newborn conditions, especially when there is no plan to harvest such important cells through cord blood banking.

    Ideal Timing for Delayed Cord Clamping

    In 2010, the International Liaison Committee on Resuscitation (ILCOR) recommended that cord clamping be delayed for at least 1 minute in healthy term infants, but stated that evidence was insuffi cient to recommend a time for clamping in those who require resuscitation (Perlman et al., 2010). Ironically, it could be argued that these infants stand to receive the greatest benefi t from DCC.

    Several systematic reviews have suggested that DCC decreased incidence of intracranial hemorrhage in preterm infants (Committee on Obstetric Practice, 2012). Delaying cord clamping (for at least 30–60 seconds), with the infant maintained at or below the level of the placenta was associated with increased blood volume, reduced need for transfusion, and decreased frequency of iron defi ciency anemia in term infants (Committee on Obstetric Practice, 2012). The existence of stem cells in fetal circulation suggests that a delay in cord clamping should increase stem cell supply to the neonate, providing immediate benefi ts if neonatal disease is indicated (Table 1). In fact, if cord clamping was delayed by 180 seconds, the newborn may receive an additional 75 mL of blood volume (Yao et al., 1969; Diaz-Rossello, 2006) that could contain approximately 1,100-45,000 hematopoietic stem cells.

    Some studies have even suggested that physicians delay cord clamping until ventilation (Bhatt et al., 2013), relying on the infant’s physiology rather than proceeding in a simple time-dependent fashion. Umbilical cord milking or stripping has also been put forth as a viable means of placental transfusion and been suggested to have benefi cial eff ects for newborns (Hosono et al., 2008; Rabe et al., 2011; Erickson et al., 2012; Upadhyay et al., 2013). Such milking likely increases stem cell supply to the neonate. In forming a consensus on the optimal timing for cord clamping, further investigation of the eff ects of DCC on concentrations of stem and/or progenitor cells in the newborn is essential. While DCC is likely to increase the supply of these valuable cells to the infant, it is unknown for what period of time cord clamping should be delayed for optimal benefi t to the infant.

    Alternative Non-Stem Cell Mechanisms

    Alternative non-stem cell mechanisms may account for some of the therapeutic eff ects of DCC. Of note, DCC has a signifi cant impact on newborn hemodynamics, mainly because of increased blood volume and improved blood oxygenation (Yigit et al., 2015). These two mechanisms may contribute to the therapeutic benefi ts rendered by DCC. For example, germinal matrix hemorrhage is known to occur with hypoxia, and DCC may protect against this hemorrhage by way of enhanced blood oxygenation and larger blood volume delivered to the baby. As previously stated, DCC is associated with less necrotizing enterocolitis and reduced incidence of intraventricular hemorrhage (Mercer et al., 2006; Aziz et al., 2012), which may be due to the increase of stem cells transferred to the baby (Sanberg et al., 2010; Tolosa et al., 2010). Likewise, DCC may improve cerebral oxygenation (Baenziger et al., 2007) and may increase blood volume (Yigit et

    al., 2015), altogether reducing the incidence of intraventricular hemorrhage and necrotizing enterocolitis.

    Neuroprotective Eff ects of Delayed Cord Clamping

    Clinical and research-based evidence suggests that DCC may benefi t neurodevelopment and ameliorate early neurological disorders, especially in preterm neonates (McAdams, 2014). DCC’s reduction of intraventricular hemorrhage incidence (Rabe et al., 2012) is an implicated method of therapy. Abnormal neurodevelopment often spurs infant iron-defi cient anemia (Yager and Hartfi eld, 2002), and DCC is a seemingly eff ective intervention. With iron defi ciency aff ecting a substantial portion of the world’s population and approximately 25% of global births (de Benoist et al., 2008), DCC could prove a very low-cost and easy to implement treatment.

    Current research also suggests that DCC provides therapeutic relief beyond the neonatal period (McDonald, 2008). Andersson et al. (2013) produced a multi-year study investigating the neurodevelopmental benefi ts of DCC at various age increments. Beginning two days after birth, infants were seen to have signifi cantly higher hemoglobin levels as well as a decrease in neonatal anemia (Andersson et al., 2015). In conjunction, data suggested more long-term relief. DCC neonates were seen to have increased scores on a series of fi ve diff erent fi ne-motor tests at 4 years of age. Such a long-term relief suggests that DCC may have a substantial impact in development. However, on the time intervals prior to the four-year mark, the data was not as promising (Andersson et al., 2015). Interestingly enough at the 12-month checkup, DCC did not have large eff ect on the iron levels or neurodevelopment in the infant population. While these sporadic improvements have been documented, more research needs to be done to demonstrate the biological cause of this phenomenon (Andersson et al., 2014).

    Another anemia therapy, immediate blood transfusion, has been shown to also produce neuroprotective effects. These transfusions signifi cantly reduce early brain injury in preterm infants by altering the oxygen extraction demand within the body (Osborn, 2007). An elevated cerebral fractional tissue oxygen extraction (cFTOE) typically precedes intraventricular haemorrhage in very preterm infants (Verhagen, 2010; Balegar, 2014; Noori, 2014). The transfusion of red blood cells (RBC) balances the low blood fl ow and the high oxygen demand, eliminating the risk of hypoxia-ischaemia (Altman, 1993). Additionally, research also suggests an improvement in cardiac output and cerebral tissue in late anaemia prematurity (Andersen et al., 2015).

    Conclusion

    In summary, DCC can increase in neonatal blood volume, secondary to placenta-fetal transfusion. A larger blood volume may result in a higher stem cell supply to the neonate, which likely accompanies this hUCB-transfusion. Human umbilical cord blood is known to possess valuable stem and progenitor cells, which the newborn likely stands to benefi t from. Human umbilical cord blood is currently being evaluated for its effi cacy in mitigating the eff ects of various diseases and the artifi cial loss of stem cells imposed by early or immediate clamping of the umbilical cord may negatively aff ect a child’s endogenous ability to combat various diseases. In conjunction with improved oxygenation and increased blood volume, the additional stem cells delivered to the baby following DCC may aff ord therapeutic eff ects against neonatal- and adult-onset diseases.

    Author contributions: CL, SA, NW, CGP, TD, NT, YK, PRS, CVB contributed to the conception of the study, review of the literature, interpretation of the studies, wrote the manuscript and provided critical revision of the manuscript for intellectual content. PRS and CVB obtained funding, and provided administrative, technical, and material support, and led the supervision of the study. All authors approved the fi nal version of this paper.

    Conflicts of interest: PRS and CVB are consultants and hold patents to a number of stem cell-based biotech companies.

    Acosta SA, Tajiri N, Shinozuka K, Ishikawa H, Sanberg PR, Sanchez-Ramos J, Song S, Kaneko Y, Borlongan CV (2014) Combination therapy of human umbilical cord blood cells and granulocyte colony stimulating factor reduces histopathological and motor impairments in an experimental model of chronic traumatic brain injury. PLoS One 9:e90953.

    Acosta SA, Franzese N, Staples M, Weinbren NL, Babilonia M, Patel J, Merchant N, Simancas AJ, Slakter A, Caputo M, Patel M, Franyuti G, Franzblau MH, Suarez L, Gonzales-Portillo C, Diamandis T, Shinozuka K, Tajiri N, Sanberg PR, Kaneko Y, Miller LW, Borlongan CV (2013) Human umbilical cord blood for transplantation therapy in myocardial infarction. J Stem Cell Res Ther (Suppl 4) pii:S4-005.

    Afl aifel N, Weeks AD (2012) Active management of the third stage of labour. BMJ 345:e45-46.

    Altman DI, Perlman JM, Volpe JJ, Powers WJ (1993) Cerebral oxygen metabolism in newborns. Pediatrics 92:99-104.

    Andersen CC, Karayil SM, Hodyl NA, Stark MJ (2015) Early red cell transfusion favourably alters cerebral oxygen extraction in very preterm newborns. Arch Dis Child Fetal Neonatal Ed doi:10.1136/archdischild-2014-307565.

    Andersson O, Domell?f M, Andersson D, Hellstr?m-Westas L (2013) Eff ects of delayed cord clamping on neurodevelopment and infection at four months of age: a randomised trial. Acta Paediatrica 102:525-531.

    Andersson O, Domell?f M, Anderson D, Hellstr?m-Westas D (2014) Eff ect of delayed vs early umbilical cord clamping on iron status and neurodevelopment at age 12 months: a randomized clinical trial. JAMA Pediatr 168:547-554.

    Andersson O, Hellstr?m-Westas L, Andersson D, Clausen J, Domell?f M (2013) Eff ects of delayed compared with early umbilical cord clamping on maternal postpartum hemorrhage and cord blood gas sampling: a randomized trial. Acta Obstet Gynecol Scand 92:567-574.

    Andersson O, Lindquist B, Lindgren M, Stjernqvist K, Domell?f M, Hellstr?m-Westas L (2015) Eff ect of Delayed Cord Clamping on Neurodevelopment at 4 Years of Age: A Randomized Clinical Trial. JAMA Pediatr 169:631-638.

    Aziz K, Chinnery H, Lacaze-Masmonteil T (2012) A single-center experience of implementing delayed cord clamping in babies born at less than 33 weeks’ gestational age. Adv Neonatal Care 12:371-376.

    Baenziger O, Stolkin F, Keel M, von Siebenthal K, Fauchere JC, Das Kundu S, Dietz V, Bucher HU, Wolf M (2007) The infl uence of the timing of cord clamping on postnatal cerebral oxygenation in preterm neonates: a randomized, controlled trial. Pediatrics 119:455-459.

    Balegar KK, Stark MJ, Briggs N, Andersen CC (2014) Early cerebral oxygen extraction and the risk of death or sonographic brain injury in very preterm infants. J Pediatr 164:475-480.

    Ballen KK, Gluckman E, Broxmeyer HE (2013) Umbilical cord blood transplantation: the fi rst 25 years and beyond. Blood 122:491-498.

    Bhatt S, Alison BJ, Wallace EM, Crossley KJ, Gill AW, Kluckow M, te Pas AB, Morley CJ, Polglase GR, Hooper SB (2013) Delaying cord clamping until ventilation onset improves cardiovascular function at birth in preterm lambs. J Physiol 591:2113-2126.

    Boere I, Roest AA, Wallace E, Ten Harkel AD, Haak MC, Morley CJ, Hooper SB, Te Pas AB (2014) Umbilical blood fl ow patterns directly after birth before delayed cord clamping. Arch Dis Child Fetal Neonatal Ed 0:F1-5.

    Borlongan CV, Hadman M, Sanberg CD, Sanberg PR (2004) Central nervous system entry of peripherally injected umbilical cord blood cells is not required for neuroprotection in stroke. Stroke 35:2385-2389.

    Brocklebank AM, Sparrow RL (2001) Enumeration of CD34+ cells in cord blood: a variation on a single-platform fl ow cytometric method based on the ISHAGE gating strategy. Cytometry 46:254-261.

    Broxmeyer HE, Douglas GW, Hangoc G, Cooper S, Bard J, English D, Arny M, Thomas L, Boyse EA (1989) Human umbilical cord blood as a potential source of transplantable hematopoietic stem/progenitor cells. Proc Natl Acad Sci U S A 86:3828-3832.

    Chakraborty SK, Banu LA, Rahman MF, Paul S (2014) Cord blood stem cells – a dream for future medicine. Mymensingh Med J 23:614-620.

    Chen N, Hudson JE, Walczak P, Misiuta I, Garbuzova-Davis S, Jiang L, Sanchez-Ramos J, Sanberg PR, Zigova T, Willing AE (2005) Human umbilical cord blood progenitors: the potential of these hematopoitic cells to become neural. Stem Cells 23:1560-1570.

    Committee on Obstetric Practice, American College of Obstetricians and Gynecologists (2012) Committee Opinion No.543: Timing of umbilical cord clamping after birth. Obstet Gynecol 120:1522-1526.

    de Benoist B, McLean E, Egli I, Cogswell M (2008) Worldwide prevalence of anaemia 1993–2005: WHO Global Database on Anaemia. Geneva (Switzerland): World Health Organization.

    De la Pe?a I, Sanberg PR, Acosta S, Lin SZ, Borlongan CV (2014). Umbilical cord blood cell and granulocyte-colony stimulating factor: combination therapy for traumatic brain injury. Regen Med 9:409-412.

    Dela Pe?a I, Sanberg PR, Acosta S, Tajiri N, Lin SZ, Borlongan CV (2014) Stem cells and G-CSF for treating neuroinfl ammation in traumatic brain injury: aging as a comorbidity factor. J Neurosurg Sci 58:145-149.

    Diaz-Rossello JL (2006) Cord clamping for stem cell donation: medical facts and ethics. NeoReviews 7:e557-e563.

    Downey CL, Bewley S (2012) Historical perspectives on umbilical cord clamping and neonatal transition. J R Soc Med 105:325-329.

    Erickson-Owens DA, Mercer JS, Oh W (2012) Umbilical cord milking in term infants delivered by cesarean section: a randomized controlled trial. J Perinatol 32:580-584.

    Gluckman E, Broxmeyer HA, Auerbach AD, Friedman HS, Douglas GW, Devergie A, Esperou H, Thierry D, Socie G, Lehn P, Cooper S, English D, Kertzberg J, Bard J, Boyse E (1989) Hematopoietic reconstitution in a patient with Fanconi’s anemia by means of umbilical-cord blood from and HLA-identical sibling. N Engl J Med 321:1174-1178.

    Haneline LS, Marshall KP, Clapp DW (1996) The highest concentration of primitive hematopoietic progenitor cells in cord blood is found in extremely premature infants. Pediatr Res 39:820-825.

    Hosono S, Mugishima H, Fujita H, Hosono A, Minato M, Okada T, Takahashi S, Harada K (2008) Umbilical cord milking reduces the need for red cell transfusions and improves neonatal adaptation in infants born at less than 29 weeks’ gestation: a randomised controlled trial. Arch Dis Child Fetal Neonatal Ed 93:F14-F19.

    Hutchon DJ (2010) Why do obstetricians and midwives still rush to clamp the cord? BMJ 341:c5447.

    Liu R, Zhang Z, Lu Z, Borlongan C, Pan J, Chen J, Qian L, Liu Z, Zhu L, Zhang J, Xu Y (2013) Human umbilical cord stem cells ameliorate experimental autoimmune encephalomyelitis by regulating immunoinfl ammation and remyelination. Stem Cells Dev 22:1053-1062.

    3.模型的設(shè)定。本文借鑒李越冬等(2014)研究?jī)?nèi)控重大缺陷與審計(jì)定價(jià)之間相關(guān)性的研究模型,并加入固定資產(chǎn)與應(yīng)收類賬戶占總資產(chǎn)比例對(duì)其進(jìn)行修正,構(gòu)建如下模型進(jìn)行研究。

    McAdams RM (2014) Time to implement delayed cord clamping. Obstet Gynecol 123:549-552.

    McDonald SJ, Middleton P, Dowswell T, Morris PS (2014) Eff ect of timing of umbilical cord clamping of term infants on maternal and neonatal outcomes. Evid Based Child Health 9:303-397.

    McDonald SJ, Middleton P, Dowswell T, Morris PS (2013) Eff ect of timing of umbilical cord clamping of term infants on maternal and neonatal outcomes. Cochrane Database Syst Rev 7:CD004074.

    Mercer JS (2001) Current best evidence: a review of the literature on umbilical cord clamping. J Midwifery Womens Health 46:402-414.

    Mercer JS, Vohr BR, McGrath MM, Padbury JF, Wallach M, Oh W (2006) Delayed cord clamping in very preterm infants reduces the incidence of intraventricular hemorrhage and late-onset sepsis: a randomized, controlled trial. Pediatrics 117:1235-1242.

    Niermeyer S, Velaphi S (2013) Promoting physiologic transition at birth: re-examining resuscitation and the timing of cord clamping. Semin Fetal Neonatal Med 18:385-392.

    Noori S, McCoy M, Anderson MP, Ramji F, Seri I (2014) Changes in cardiac function and cerebral blood fl ow in relation to peri/intraventricular hemorrhage in extremely preterm infants. J Pediatr 164:264-270.e1-3.

    Osborn DA, Evans N, Kluckow M, Bowen JR, Rieger I (2007) Low superior vena cava fl ow and eff ect of inotropes on neurodevelopment to 3 years in preterm infants. Pediatrics 120:372-380.

    Perlman JM, Wyllie J, Kattwinkel DL, Atkins DL, Chameides JP, Goldsmith JP, Guinsburg R, Hazinski MF, Morley C, Richmond S, Simon WM, Singhal N, Szyld E, Tamura M, Velaphi S (2010) Part 11: Neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 122:S516-S538.

    Rabe H, Diaz-Rossello JL, Duley L, Dowswell T (2012) Effect of timing of umbilical cord clamping and other strategies to infl uence placental transfusion at preterm birth on maternal and infant outcomes. Cochrane Database Syst Rev 8:CD003248.

    Rabe H, Jewison A, Alvarez RF, Crook D, Stilton D, Bradley R, Holden D (2011) Milking compared with delayed cord clamping to increase placental transfusion in preterm neonates: a randomized controlled trial. Obstet Gynecol 117:205-211.

    Sanberg PR, Park DH, Borlongan CV (2010) Stem cell transplants at childbirth. Stem Cell Rev 6:27-30.

    Sheldon WR, Durocher J, Winikoff B, Blum J, Trussell J (2013) How eff ective are the components of active management of the third stage of labor? BMC Pregnancy Childbirth 13:46.

    Sirchia G, Rebulla P (1999) Placental/umbilical cord blood transplantation. Haematologica 84:738-747.

    Tolosa JN, Park DH, Eve DJ, Klasko SK, Borlongan CV, Sanberg PR (2010) Mankind’s fi rst natural stem cell transplant. J Cell Mol Med 14:488-495. Upadhyay A, Gothwal S, Parihar R, Garg A, Gupta A, Chawla D, Gulati IK (2013) Eff ect of umbilical cord milking in term and near term infants: randomized control trial. Am J Obstet Gynecol 208:120.e1-e6.

    Verhagen EA, Ter Horst HJ, Keating P, Martijn A, Van Braeckel KN, Bos AF (2010) Cerebral oxygenation in preterm infants with germinal matrix-intraventricular hemorrhages. Stroke 41:2901-2907.

    Watson N, Divers R, Kedar R, Mehindru A, Mehindru A, Borlongan MC, Borlongan CV (2015) Discarded Wharton jelly of the human umbilical cord: a viable source for mesenchymal stromal cells. Cytotherapy 17:18-24.

    Yager JY, Hartfi eld DS (2002) Neurologic manifestations of iron defi ciency in childhood. Pediatr Neurol 27:85-92.

    Yasuhara T, Hara K, Maki M, Xu L, Yu G, Ali MM, Masuda T, Yu SJ, Bae EK, Hayashi T, Matsukawa N, Kaneko Y, Kuzmin-Nichols N, Ellovitch S, Cruz EL, Klasko SK, Sanberg CD, Sanberg PR, Borlongan CV (2010) Mannitol facilitates neurotrophic factor up-regulation and behavioural recovery in neonatal hypoxic-ischaemic rats with human umbilical cord blood grafts. J Cell Mol Med 14:914-921.

    Yao AC, Lind J (1974) Blood fl ow in the umbilical vessels during the third stage of labor. Biol Neonate 25:186-193.

    Yao AC, Lind J (1974) Placental transfusion. Am J Dis Child 127:128-141.

    Yao AC, Hirvensalo M, Lind J (1968) Placental transfusion-rate and uterine contraction. Lancet 1:380-383.

    Yao AC, Moinian M, Lind J (1969) Distribution of blood between infant and placenta after birth. Lancet 2:871-873.

    Yigit MB, Kowalski WJ, Hutchon DJ, Pekkan K (2015) Transition from fetal to neonatal circulation: Modeling the eff ect of umbilical cord clamping. J Biomech S0021-9290:00130-X.

    Yu G, Borlongan CV, Ou Y, Stahl CE, Yu S, Bae E, Kaneko Y, Yang T, Yuan C, Fang L (2010) In vitro non-viral lipofectamine delivery of the gene for glial cell line-derived neurotrophic factor to human umbilical cord blood CD34+ cells. Brain Res 1325:147-154.

    Yu G, Borlongan CV, Stahl CE, Hess DC, Ou Y, Kaneko Y, Yu SJ, Yang T, Fang L, Xie X (2009) Systemic delivery of umbilical cord blood cells for stroke therapy: a review. Restor Neurol Neurosci 27:41-54.

    *Correspondence to:

    Cesar V. Borlongan, Ph.D.,

    cborlong@health.usf.edu.

    orcid:

    0000-0002-2966-9782

    (Cesar V. Borlongan)

    10.4103/1673-5374.165218

    http://www.nrronline.org/

    Accepted: 2015-06-02

    猜你喜歡
    總資產(chǎn)越冬賬戶
    三季度末我國(guó)金融業(yè)機(jī)構(gòu)總資產(chǎn)同比增10.1%
    奶牛安全越冬要抓好防寒保溫
    探索自由貿(mào)易賬戶體系創(chuàng)新應(yīng)用
    外匯賬戶相關(guān)業(yè)務(wù)
    父親的股票賬戶
    特別健康(2018年4期)2018-07-03 00:38:20
    北方園林植物常見(jiàn)越冬防寒措施
    流蘇越冬種條低溫貯藏扦插繁育試驗(yàn)初報(bào)
    冬季西葫蘆越冬豐產(chǎn)栽培技術(shù)
    Windows中的隱秘賬戶
    av在线观看视频网站免费| ponron亚洲| 欧美bdsm另类| 欧美性感艳星| 又爽又黄无遮挡网站| 欧美一级a爱片免费观看看| 久久精品国产亚洲av天美| 秋霞在线观看毛片| 亚洲精品久久国产高清桃花| 免费高清视频大片| 日产精品乱码卡一卡2卡三| 国产白丝娇喘喷水9色精品| 黄色配什么色好看| 亚洲成av人片在线播放无| 中文在线观看免费www的网站| 99热6这里只有精品| 97超级碰碰碰精品色视频在线观看| 国产亚洲欧美98| 夜夜夜夜夜久久久久| 成人鲁丝片一二三区免费| 晚上一个人看的免费电影| 级片在线观看| 99久久精品一区二区三区| 伦精品一区二区三区| 国产白丝娇喘喷水9色精品| 三级国产精品欧美在线观看| 精品人妻偷拍中文字幕| 一进一出抽搐gif免费好疼| 日本与韩国留学比较| 国产成年人精品一区二区| 一夜夜www| 性欧美人与动物交配| 日日摸夜夜添夜夜添av毛片| 国产男靠女视频免费网站| 色综合站精品国产| 国产精品一二三区在线看| 亚洲三级黄色毛片| 两个人的视频大全免费| 女生性感内裤真人,穿戴方法视频| 给我免费播放毛片高清在线观看| 成人av在线播放网站| 99久国产av精品国产电影| 狂野欧美激情性xxxx在线观看| 久久国产乱子免费精品| 少妇的逼水好多| 国产91av在线免费观看| 国产精品久久电影中文字幕| 极品教师在线视频| 性欧美人与动物交配| 成人亚洲精品av一区二区| 成年av动漫网址| 在线播放国产精品三级| 黄色欧美视频在线观看| 欧美最黄视频在线播放免费| 啦啦啦观看免费观看视频高清| 久久草成人影院| 国产亚洲av嫩草精品影院| 日本爱情动作片www.在线观看 | 久久久精品欧美日韩精品| 在线观看一区二区三区| 久久精品国产清高在天天线| 国产高清视频在线播放一区| 亚洲欧美成人精品一区二区| 一本精品99久久精品77| 国产单亲对白刺激| 精品人妻熟女av久视频| 51国产日韩欧美| 亚洲人成网站在线播| 国产精品亚洲一级av第二区| 99riav亚洲国产免费| 可以在线观看的亚洲视频| 久久人人爽人人片av| 一级a爱片免费观看的视频| 国产伦精品一区二区三区视频9| 亚洲aⅴ乱码一区二区在线播放| 精品99又大又爽又粗少妇毛片| 国产精品乱码一区二三区的特点| 日韩欧美一区二区三区在线观看| 日本欧美国产在线视频| 亚洲在线自拍视频| 亚洲激情五月婷婷啪啪| 男女之事视频高清在线观看| 又爽又黄a免费视频| 99视频精品全部免费 在线| 久久久久久久久大av| 久久久久国内视频| 国产精品野战在线观看| 亚洲av中文av极速乱| 99九九线精品视频在线观看视频| 久久99热6这里只有精品| 伦精品一区二区三区| 一级a爱片免费观看的视频| av视频在线观看入口| 九九爱精品视频在线观看| 国产毛片a区久久久久| 亚洲国产高清在线一区二区三| av免费在线看不卡| 久久久色成人| 国产精品不卡视频一区二区| 不卡一级毛片| 男女做爰动态图高潮gif福利片| 搡老妇女老女人老熟妇| 国产麻豆成人av免费视频| 国产欧美日韩精品一区二区| 亚洲自拍偷在线| 一夜夜www| 精品午夜福利视频在线观看一区| 精品久久久久久久人妻蜜臀av| 国语自产精品视频在线第100页| 高清午夜精品一区二区三区 | 欧美国产日韩亚洲一区| 亚洲精品国产av成人精品 | 伊人久久精品亚洲午夜| 一个人看的www免费观看视频| 尾随美女入室| 尾随美女入室| 国产探花极品一区二区| .国产精品久久| 日产精品乱码卡一卡2卡三| 国产私拍福利视频在线观看| 中文字幕熟女人妻在线| 亚洲欧美清纯卡通| 国产片特级美女逼逼视频| 久久精品综合一区二区三区| 国产私拍福利视频在线观看| 美女黄网站色视频| 欧美性猛交黑人性爽| 亚洲精品影视一区二区三区av| 国产黄色视频一区二区在线观看 | 床上黄色一级片| 国产人妻一区二区三区在| 国产精品人妻久久久久久| 久久人人精品亚洲av| 一区二区三区四区激情视频 | 女同久久另类99精品国产91| 男女边吃奶边做爰视频| 久久精品国产亚洲网站| 波野结衣二区三区在线| 亚洲熟妇中文字幕五十中出| 久久精品国产99精品国产亚洲性色| 白带黄色成豆腐渣| 久久久久久久午夜电影| 色尼玛亚洲综合影院| 午夜福利在线观看免费完整高清在 | 在线天堂最新版资源| 亚洲av成人av| 晚上一个人看的免费电影| .国产精品久久| 国产男人的电影天堂91| 亚洲av不卡在线观看| 国产老妇女一区| 国产黄a三级三级三级人| 久久人人爽人人片av| 又黄又爽又免费观看的视频| АⅤ资源中文在线天堂| 精品日产1卡2卡| 欧美日韩一区二区视频在线观看视频在线 | 国产一区二区三区av在线 | 日本在线视频免费播放| 夜夜看夜夜爽夜夜摸| 日本色播在线视频| 免费人成在线观看视频色| 赤兔流量卡办理| 亚洲国产精品合色在线| 熟妇人妻久久中文字幕3abv| 网址你懂的国产日韩在线| 欧美三级亚洲精品| 国产女主播在线喷水免费视频网站 | 日本三级黄在线观看| 国产伦精品一区二区三区四那| 国产老妇女一区| 色在线成人网| 美女内射精品一级片tv| 赤兔流量卡办理| 亚洲精品成人久久久久久| 亚洲欧美清纯卡通| 日本熟妇午夜| 久久精品影院6| 国产单亲对白刺激| 一进一出抽搐gif免费好疼| 综合色丁香网| 欧美潮喷喷水| 菩萨蛮人人尽说江南好唐韦庄 | 亚洲国产欧洲综合997久久,| 亚洲欧美精品综合久久99| 99视频精品全部免费 在线| 亚洲精品粉嫩美女一区| 晚上一个人看的免费电影| 欧美三级亚洲精品| 99国产精品一区二区蜜桃av| a级一级毛片免费在线观看| 18禁黄网站禁片免费观看直播| 国产成人影院久久av| 亚洲人成网站在线观看播放| 久久久久久伊人网av| 国产精品一区www在线观看| 日韩国内少妇激情av| 国产精品免费一区二区三区在线| 国产v大片淫在线免费观看| 欧美三级亚洲精品| 欧美在线一区亚洲| 可以在线观看毛片的网站| 精品人妻视频免费看| 美女cb高潮喷水在线观看| 亚洲欧美成人精品一区二区| 免费av毛片视频| 国产美女午夜福利| 国产精品亚洲一级av第二区| 最近中文字幕高清免费大全6| 久久人妻av系列| 人人妻人人澡欧美一区二区| 亚洲av免费高清在线观看| 国产成人一区二区在线| 变态另类丝袜制服| 国产91av在线免费观看| 最好的美女福利视频网| 国产淫片久久久久久久久| 日韩国内少妇激情av| 亚洲自偷自拍三级| 国产精品伦人一区二区| 男女啪啪激烈高潮av片| 日本一二三区视频观看| 99久久九九国产精品国产免费| 天堂动漫精品| 桃色一区二区三区在线观看| 国产色婷婷99| 小蜜桃在线观看免费完整版高清| 成人高潮视频无遮挡免费网站| 日韩精品青青久久久久久| 国产爱豆传媒在线观看| 国产蜜桃级精品一区二区三区| 女生性感内裤真人,穿戴方法视频| 在线观看午夜福利视频| 亚洲欧美中文字幕日韩二区| 夜夜夜夜夜久久久久| 晚上一个人看的免费电影| 久久久久免费精品人妻一区二区| 亚洲精品日韩在线中文字幕 | 国产一区二区亚洲精品在线观看| 国产真实乱freesex| 亚洲三级黄色毛片| 12—13女人毛片做爰片一| 变态另类丝袜制服| 久久久国产成人免费| 黄色欧美视频在线观看| 欧美一区二区精品小视频在线| 国产成人福利小说| 乱系列少妇在线播放| 少妇的逼水好多| 日日啪夜夜撸| 午夜亚洲福利在线播放| 国产91av在线免费观看| 日韩,欧美,国产一区二区三区 | 精品人妻熟女av久视频| 小蜜桃在线观看免费完整版高清| 亚洲欧美日韩无卡精品| 我要搜黄色片| 亚洲国产色片| 久久人妻av系列| 欧美最新免费一区二区三区| 99视频精品全部免费 在线| 国产精品人妻久久久久久| 日日啪夜夜撸| 日韩欧美三级三区| 国模一区二区三区四区视频| 亚洲人与动物交配视频| 国产又黄又爽又无遮挡在线| 网址你懂的国产日韩在线| 精品一区二区免费观看| 欧美成人一区二区免费高清观看| 成年av动漫网址| 伦理电影大哥的女人| 日韩欧美三级三区| 国产美女午夜福利| 高清毛片免费观看视频网站| 一级毛片电影观看 | 国产日本99.免费观看| 成人永久免费在线观看视频| 久久国产乱子免费精品| 久久九九热精品免费| 亚洲成人av在线免费| 亚洲国产精品sss在线观看| 成人午夜高清在线视频| 久久草成人影院| 熟女电影av网| 九色成人免费人妻av| 国产精品伦人一区二区| 欧美最新免费一区二区三区| 国产成人91sexporn| 国产美女午夜福利| 国产毛片a区久久久久| 男女边吃奶边做爰视频| 91精品国产九色| 99久久久亚洲精品蜜臀av| 免费看美女性在线毛片视频| 欧美成人免费av一区二区三区| 国语自产精品视频在线第100页| 99久久中文字幕三级久久日本| 国产人妻一区二区三区在| 国产av一区在线观看免费| 变态另类丝袜制服| 最近2019中文字幕mv第一页| 欧美人与善性xxx| 美女黄网站色视频| 精品欧美国产一区二区三| 国产在线精品亚洲第一网站| 国产免费一级a男人的天堂| 日韩制服骚丝袜av| 国产精品久久视频播放| 桃色一区二区三区在线观看| 亚洲人成网站高清观看| 一区二区三区高清视频在线| 国产精品国产三级国产av玫瑰| 亚洲四区av| 亚洲人成网站高清观看| 久久精品人妻少妇| 校园人妻丝袜中文字幕| 日本色播在线视频| 两个人视频免费观看高清| 国产视频内射| 国产老妇女一区| or卡值多少钱| 久久人妻av系列| 蜜臀久久99精品久久宅男| 精品免费久久久久久久清纯| 又爽又黄a免费视频| 国产成人精品久久久久久| 亚洲无线在线观看| 成年女人毛片免费观看观看9| 少妇熟女aⅴ在线视频| 久久99热这里只有精品18| 亚洲人与动物交配视频| 91狼人影院| 精品乱码久久久久久99久播| 观看免费一级毛片| 亚洲av免费在线观看| 中文字幕人妻熟人妻熟丝袜美| 少妇丰满av| 免费看日本二区| 午夜福利18| 99热这里只有是精品在线观看| 日韩精品青青久久久久久| 好男人在线观看高清免费视频| 欧美区成人在线视频| 男女视频在线观看网站免费| 在线观看66精品国产| 毛片一级片免费看久久久久| 在线a可以看的网站| 亚洲国产精品成人综合色| 97超碰精品成人国产| 午夜a级毛片| 久久久久性生活片| 22中文网久久字幕| 性插视频无遮挡在线免费观看| 美女被艹到高潮喷水动态| 亚洲第一电影网av| 99热6这里只有精品| 亚洲成人久久爱视频| 中文字幕久久专区| 99国产极品粉嫩在线观看| 久久综合国产亚洲精品| 99热这里只有精品一区| 免费av不卡在线播放| 色综合亚洲欧美另类图片| 一个人免费在线观看电影| 国产v大片淫在线免费观看| 国产精品1区2区在线观看.| 久久精品国产亚洲av香蕉五月| 亚洲精品国产av成人精品 | 日本成人三级电影网站| 国产私拍福利视频在线观看| 春色校园在线视频观看| 亚洲av中文字字幕乱码综合| 大型黄色视频在线免费观看| 久久久久久久午夜电影| 99久国产av精品国产电影| 午夜视频国产福利| 日日撸夜夜添| 欧美中文日本在线观看视频| 国内精品美女久久久久久| 精品免费久久久久久久清纯| 美女被艹到高潮喷水动态| 少妇人妻一区二区三区视频| 亚洲精品国产av成人精品 | 亚洲欧美成人综合另类久久久 | 国内少妇人妻偷人精品xxx网站| 国产私拍福利视频在线观看| 国产精品嫩草影院av在线观看| 又爽又黄a免费视频| 欧美三级亚洲精品| 亚洲精品国产成人久久av| 99久国产av精品| 两个人的视频大全免费| 国产高清有码在线观看视频| 亚洲av成人精品一区久久| 日韩精品青青久久久久久| 性色avwww在线观看| 久久久久免费精品人妻一区二区| 精品午夜福利在线看| 久久精品国产99精品国产亚洲性色| 亚洲成人久久性| 女生性感内裤真人,穿戴方法视频| 国产一区二区在线av高清观看| 1024手机看黄色片| 欧美+日韩+精品| 亚州av有码| 亚洲不卡免费看| 天天躁夜夜躁狠狠久久av| 中国美女看黄片| 亚洲av二区三区四区| 五月玫瑰六月丁香| 中出人妻视频一区二区| 22中文网久久字幕| 91久久精品国产一区二区成人| 少妇的逼水好多| 国产一区亚洲一区在线观看| 如何舔出高潮| 国产毛片a区久久久久| 日日摸夜夜添夜夜添av毛片| 91在线精品国自产拍蜜月| 一本精品99久久精品77| 不卡一级毛片| 男插女下体视频免费在线播放| 九九在线视频观看精品| 色播亚洲综合网| 国产探花极品一区二区| 亚洲精品国产成人久久av| 亚洲欧美日韩高清在线视频| 亚洲自拍偷在线| 一级毛片我不卡| 人人妻人人看人人澡| 99久久中文字幕三级久久日本| 国产中年淑女户外野战色| h日本视频在线播放| 有码 亚洲区| 人妻久久中文字幕网| 国产精品综合久久久久久久免费| 美女内射精品一级片tv| 国内精品久久久久精免费| 国产三级中文精品| 中国国产av一级| 日本黄色片子视频| 黄色一级大片看看| 久久久久久久久大av| 久久久久国内视频| 国产精品1区2区在线观看.| 女生性感内裤真人,穿戴方法视频| 久久久欧美国产精品| 国产精品精品国产色婷婷| 日韩,欧美,国产一区二区三区 | 亚洲激情五月婷婷啪啪| 国产精品久久久久久久久免| 久久久久久伊人网av| 大又大粗又爽又黄少妇毛片口| 国产欧美日韩精品亚洲av| 午夜日韩欧美国产| 日日干狠狠操夜夜爽| 国产老妇女一区| 国产片特级美女逼逼视频| 99国产极品粉嫩在线观看| 免费看日本二区| 日韩制服骚丝袜av| 啦啦啦韩国在线观看视频| 成人漫画全彩无遮挡| 99久久九九国产精品国产免费| 久久久久九九精品影院| 久久精品人妻少妇| 人妻久久中文字幕网| 美女黄网站色视频| 午夜日韩欧美国产| 99久久无色码亚洲精品果冻| av在线蜜桃| 99热这里只有是精品在线观看| 欧美bdsm另类| 成人美女网站在线观看视频| 99九九线精品视频在线观看视频| 亚洲av二区三区四区| 久久久色成人| 国产午夜精品久久久久久一区二区三区 | 日韩大尺度精品在线看网址| 亚洲性夜色夜夜综合| 白带黄色成豆腐渣| 老司机影院成人| 久久欧美精品欧美久久欧美| 内地一区二区视频在线| 99在线人妻在线中文字幕| 国产精品不卡视频一区二区| 嫩草影院入口| 日本免费一区二区三区高清不卡| 欧美中文日本在线观看视频| 美女黄网站色视频| 91在线观看av| 欧美xxxx黑人xx丫x性爽| 人妻夜夜爽99麻豆av| 夜夜夜夜夜久久久久| 草草在线视频免费看| 精品国内亚洲2022精品成人| 日本免费a在线| 免费av不卡在线播放| 人妻少妇偷人精品九色| 精华霜和精华液先用哪个| 老女人水多毛片| 日韩强制内射视频| 成年版毛片免费区| 成人性生交大片免费视频hd| 国产一区二区在线观看日韩| 国内精品久久久久精免费| 免费看美女性在线毛片视频| 亚洲人成网站在线播放欧美日韩| 最近的中文字幕免费完整| eeuss影院久久| 国内精品久久久久精免费| 亚洲av一区综合| 免费看光身美女| 色播亚洲综合网| 一个人看的www免费观看视频| 欧美一区二区亚洲| 欧美人与善性xxx| 99九九线精品视频在线观看视频| 亚洲性久久影院| 亚洲国产欧美人成| 麻豆一二三区av精品| 少妇的逼好多水| 国产高清三级在线| 国内揄拍国产精品人妻在线| 久久精品国产99精品国产亚洲性色| 欧美日韩在线观看h| 免费在线观看成人毛片| 欧美+亚洲+日韩+国产| 国产麻豆成人av免费视频| 亚洲精品日韩在线中文字幕 | 免费看av在线观看网站| 亚洲欧美日韩无卡精品| 久久久国产成人精品二区| 亚洲国产精品sss在线观看| 如何舔出高潮| 精华霜和精华液先用哪个| 一卡2卡三卡四卡精品乱码亚洲| 久久精品国产自在天天线| 99热这里只有精品一区| 草草在线视频免费看| 老师上课跳d突然被开到最大视频| 香蕉av资源在线| 国产成人a区在线观看| 亚洲熟妇熟女久久| 看黄色毛片网站| 狂野欧美激情性xxxx在线观看| 久久亚洲国产成人精品v| 两个人视频免费观看高清| 国产黄片美女视频| 97热精品久久久久久| 欧美日韩一区二区视频在线观看视频在线 | 欧美最新免费一区二区三区| 国产精品久久视频播放| 国产免费一级a男人的天堂| 国产成人福利小说| 国产午夜精品论理片| 丝袜美腿在线中文| 变态另类成人亚洲欧美熟女| 亚洲欧美清纯卡通| 日韩一本色道免费dvd| 桃色一区二区三区在线观看| 欧美日韩精品成人综合77777| 久久精品国产鲁丝片午夜精品| 免费av毛片视频| 老师上课跳d突然被开到最大视频| 看非洲黑人一级黄片| 一级黄片播放器| 在线观看av片永久免费下载| 夜夜爽天天搞| 欧美日本视频| 高清日韩中文字幕在线| 日本黄色片子视频| 久久久午夜欧美精品| 国产淫片久久久久久久久| 在线天堂最新版资源| 偷拍熟女少妇极品色| 午夜视频国产福利| 国产亚洲91精品色在线| 别揉我奶头 嗯啊视频| 少妇人妻一区二区三区视频| 夜夜看夜夜爽夜夜摸| 波多野结衣高清作品| 午夜精品国产一区二区电影 | 特大巨黑吊av在线直播| 一a级毛片在线观看| 十八禁国产超污无遮挡网站| 亚洲最大成人av| 免费观看在线日韩| 成人亚洲精品av一区二区| 欧美性猛交黑人性爽| 色综合色国产| 亚洲国产色片| 美女大奶头视频| 成熟少妇高潮喷水视频| 色吧在线观看| 国产精品人妻久久久久久| 看十八女毛片水多多多| 一级毛片久久久久久久久女| 一个人看的www免费观看视频| 欧美色视频一区免费| 国产一区二区三区av在线 | 亚洲人成网站在线播| 国产黄a三级三级三级人| 亚洲最大成人中文| 禁无遮挡网站| av天堂在线播放| 国产av一区在线观看免费| 丰满乱子伦码专区| 久久久久国产网址| 最近手机中文字幕大全| 大型黄色视频在线免费观看| 免费看日本二区| 亚洲18禁久久av| 亚洲无线观看免费|