• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    自由基誘導的水溶液中氟西汀的降解:脈沖輻解及穩(wěn)態(tài)輻照研究

    2017-05-12 06:58:02吉天翼劉艷成趙劍鋒王文鋒吳明紅
    物理化學學報 2017年4期
    關鍵詞:羥基自由基脈沖

    吉天翼 劉艷成 趙劍鋒,3 徐 剛 王文鋒,* 吳明紅,*

    自由基誘導的水溶液中氟西汀的降解:脈沖輻解及穩(wěn)態(tài)輻照研究

    吉天翼1,2劉艷成2趙劍鋒2,3徐 剛1王文鋒2,*吳明紅1,*

    (1上海大學環(huán)境與化學工程學院,上海200444;2中國科學院上海應用物理研究所,上海201800;3中國科學院大學,北京100049)

    本文運用脈沖輻解探究了不同自由基與藥物氟西汀(FLX)之間的反應。羥基自由基(·OH)與FLX反應生成苯環(huán)上的羥基加成物,而硫酸根陰離子自由基則通過單電子氧化FLX生成苯陽離子自由基,該中間產(chǎn)物再進一步與水反應生成苯環(huán)上的羥基加成物。本研究測定了三種自由基·OH,水合電子以及與 FLX反應的反應速率常數(shù)分別為:7.8×109,2.3×109和1.1×109mol·L-1·s-1。本文還運用電子束輻照技術探究了不同輻照條件下的FLX降解效果,結合HPLC和紫外可見光譜儀進行分析。在N2O和空氣飽和的兩種條件下,F(xiàn)LX溶液經(jīng)1.5 kGy輻照后降解效率均達到90%以上,而N2飽和條件下,加入0.1 mol·L-1的叔丁醇的FLX溶液經(jīng)1.5 kGy輻照后僅有43%分解。此外,酸性和中性條件下FLX的降解效率均大于堿性條件下的。結果闡明了飽和空氣的FLX溶液在中性條件下的降解效果最佳,且·OH誘導的反應比更有利于FLX的分解。本研究期望對于進一步探究FLX的降解反應提供有益的幫助。

    氟西??;脈沖輻解;羥基自由基;硫酸根陰離子自由基;降解

    Key Words: Fluoxetine;Pulse radiolysis;Hydroxyl radical;Sulfate radical anion;Degradation

    1 Introduction

    Recently,social and scientific concerns about the occurrence of pharmaceutical and personal care products(PPCPs)in the environmental water have increased1,2.Many drugs have been detected in environmental water due to the widespread use of pharmaceuticals and the insufficient removal processes in ordinary water and wastewater treatment3,4.Furthermore,concerns have also been raised about the potential impacts of their parent compounds and biologically active metabolites on environmental and human health5.Therefore,PPCPs have been recognized as environmental pollutants6.

    Fluoxetine(FLX)(N-methyl-3-(p-trifluoromethylphenoxy)-3-phenylpropylamine,shown in Fig.1),also named Prozac,is widely used for treating depression and other neurological or mental diseases.As a selective serotonin reuptake inhibitor(SSRI), fluoxetine(FLX)and its demethylated active metabolite norfluoxetine(NFLX)were proposed as being potentially dangerous to the environment in a list of 10 pharmaceuticals7.Since they undergo incomplete decomposition in the wastewater treatment process,FLX and NFLX have been detected with the concentration level of ng·L-1in surface waters of most of countries8-11. Hence,it implied that wastewater effluents are an important source of FLX and NFLX residue in the surface water12,13.Furthermore, it was reported that some freshwater fishes were toxic and the copulation and maturity of microorganisms were distributed after exposure to FLX14,15.Therefore,although FLX and its metabolites are present in the environment in very low concentrations,they may present a potential hazard to the environmental water as well as to human health.

    FLX shows the most absorbance in the range of UV spectrum, but its photodegradation is limited in environmental water,even under appropriate conditions of pH and temperature.Kwon and Armbrust16illustrated the low biological degradability of FLX in wastewater treatment plants,as it was not only stable during hydrolysis and photolysis but also resistant to micro-biodegradation.Nowadays,advanced oxidation processes(AOPs)are a rapid and high-efficiency technology that have been used successfully to remove multiple pollutants by forming strong oxidants such as hydroxyl radicals(·OH)to eliminate contaminants and mineralization.To improve this degradation efficiency,a study reported that using sonochemical treatment as a mean of pretreatment combined with biological treatment to remove FLX17. FLX was eliminated in an Ar-saturated solution after 60 min of sonication,and 15%was mineralized after 360 min of ultrasonic irradiation.Radiation technology is considered to be an advanced oxidation processes(AOP)technique,and the radicals formed by radiolysis of water can degrade pollutants18,19.Silva et al.20reported FLX eliminated completely by electron beam irradiation at a dose of more than 2.5 kGy,while TOC was removed only 22%even at a dose of 20 kGy.Garrido et al.21discovered that FLX was oxidized mainly through the oxidations of the secondary amine group and aromatic ring,which yielded a transient cation-radical and then conducted further reactions.

    Fig.1 Molecular structure of FLX

    In this paper,we studied that different intermediates of water radiolysis reacted with FLX by monitoring the growth/decay of transient intermediates by using pulse radiolysis.The rate constants of radical reactions with FLX were determined,and the yield of FLX decomposition was investigated in different conditions by electron beam irradiation.Finally,we compared the rate constants of different radical reactions with FLX and the degradation rates of FLX under different conditions to discern the optimal conditions for eliminating FLX.

    2 Materials and methods

    2.1 Materials

    Fluoxetine hydrochloride(FLX·HCl)was purchased from Tokyo Chemical Industry(>98%purity).Tert-butanol and K2S2O8were obtained from Sigma-Aldrich.NaOH and phosphate(used for preparation of buffers,pH=7.1)were purchased form J&K Chemical Ltd.All chemicals were analytical reagents and employed without further purification.Sample solutions were prepared using ultra-pure water,and experiments were carried out at ambient temperature.Solutions were bubbled with N2O or N2(high purity,99.999%)for at least 20 min.

    2.2 Pulse radiolysis and steady state radiolysis

    The nanosecond pulse radiolysis experiments were conducted using a 10 MeV linear electron accelerator with high-energy electron pulse duration of 8 ns,and the details were described elsewhere22,23.As a thiocyanate dosimeter,0.1 mol·L-1KSCN solution bubbled with N2O was used to measure the pulse dosimetry using G[(CNS)2·-]=5.8 and by taking ε480nm=7600 dm3· m-1·cm-122.The dose of each electron pulse was 10 Gy.A500 W xenon lamp was used as the source of analyzing light,and the electron pulse and the detecting beam passed vertically through a quartz cell with an optical path length of 10 mm.

    Main radicals generated by water radiolysis were shown in Eq. (1),in which the G-values(μmol·J-1)shown in brackets are the radiation chemical yields of radicals24-26.To study the hydroxyl radical(·OH)reaction,sample solutions were pre-saturated with N2O to convert the hydrated electron(e-aq)and hydrogen atom(·H) to·OH under pulse radiolysis,as shown in Eqs.(2)and(3)24,27,28. To research the reducing reactions oftert-butanol was used to scavenge·OH in the N2saturated solutions as shown in Eq.(4)27,29.

    H2O?·OH(0.28),·H(0.06),H3O+(0.27),H2(0.05),

    Electron beam irradiation was accomplished utilizing a GJ-2-II electron accelerator with a 1.8 MeV beam energy during the steady state radiolysis study.The experiments were irradiated with a dose range of 0.5-20 kGy and a dose rate of 0.045 kGy·s-1.

    2.3 Analytical procedures

    The UV-visible experiments were performed using a Hitachi U-3900 spectrophotometer with the detection wavelength in the range of 190-500 nm.The concentrations of FLX before and after irradiation were measured using an HPLC system(Agilent 1200 series)equipped with a reversed C18column(250 mm×4.6 mm); the detection wavelength of the VW monitor was set as 226 nm. The mobile phase was a mixture of acetonitrile(ACN)and 10 mmol·L-1potassium monophosphate(50:50)at an isocratic mode(1 mL·min-1)30.The injection volume of the auto-sampler was set to 10 μL.

    3 Results and discussion

    3.1 Pulse radiolysis

    3.1.1 Hydroxyl radical reactions

    The concentration of 0.5 mmol·L-1FLX in the N2O-saturated solution at pH=7.1 was studied by pulse radiolysis.As shown in Fig.2,the transient absorption spectrum for the reaction of·OH with FLX depicts a characteristic absorption at 340 nm.After 1 μs, it was quenched rapidly with time increased.Merga et al.31reported that the absorption peak in the range of 300-350 nm corresponded to the·OH adduct,which was generated by the·OH attack on the aromatic ring.According to a previous report,FLX degraded to produce the hydroxylated and O-dealkylated intermediates under indirect photodegradation32.It is possible that·OH reacted with FLX as shown in the following equation:

    Fig.2 Transient absorption spectra obtained from hydroxyl radical oxidation with 5×10-4mol·L-1FLX in N2O-saturated aqueous solutions(pH=7.1)

    The inset of Fig.2 shows the buildup rate constant(kobs)monitored at 340 nm,with various concentrations of FLX ranging from 0.02 to 1 mmol·L-1.Therefore,the rate constant was determined to be 7.8×109mol·L-1·s-1based on the linear trend of the pseudo-first-order transient rate constant.The value of the rate constant of·OH reaction with FLX is similar to those reported about·OH reaction with benzene32,demonstrating that the formation of the hydroxylcyclohexadienyl radical is the first step in the reaction of·OH with FLX24,33.This result also suggests that the majority of·OH added to the benzene ring,rather than reacting with alkylbenzene in the abstraction of the hydrogen atom.

    3.1.2 Hydrated electron reactions

    To investigate the reaction of FLX with hydrated electrons,the experiment was performed in an N2-saturated sample solution with the addition of 0.1 mol·L-1tert-butanol to scavenge·OH,where e-aqis main reactor partner.Astrong broad band at the peak of 690 nm was observed after electron pulse irradiation(as shown in Fig.3a).And the spectrum exhibits the decay ofat 690 nm with different time in the presence and absence of FLX solution.Thedecay ofwas faster with 0.5 mmol·L-1FLX solution than without the addition of FLX solution.After 1 μs,the characteristic absorption ofdecayed completely in the 0.5 mmol·L-1FLX solution.Hence,the hydrated electron decay appears to be accelerated in the presence of FLX.

    Fig.3 (a)Time-resolved absorption spectra obtained from thereaction with 5×10-4mol·L-1FLX in N-saturated solutions2containing 0.1 mol·L-1tert-butanol(pH=7.1);(b)plot of the observed decay rate constant(kobs)as monitored by the reaction ofwith different concentrations of FLX at 690 nm

    Fig.3b shows that the plot of decay rate constant for the reaction ofwith different concentrations of FLX was observed in the decay signal ofat 690 nm.The curve was fitted to a linear trend of the pseudo-first-order rate constant,the value of the reaction ofwith FLX was determined to be 2.3×109mol·L-1·s-1.The

    3.1.3 Sulfate radical anion

    aq,with a yield of G(SO4·-)=2.7 μmol·J-1(Eq.(6))35.Fig.4 depicts the time-resolved absorption spectra of the SO4·-reaction with FLX recorded at different time,which shows strong absorption peaks at 350 and 460 nm.The characteristic absorption ofwas reported to be at 460 nm in previous studies36.Compared to the absorption spectrum of transient intermediate in the absence of FLX at 1 μs, it has a new absorption peak at 350 nm in the 0.5 mmol·L-1FLX solution.The characteristic absorption ofdecayed rapidly with increasing time,while the absorbance of transient intermediate increased at 350 nm(shown in Eq.(7)).Theradicalinduced degradation of some benzene compounds formed the intermediates of hydroxylated adducts of the benzene ring18.In this study,we conjectured that the SO4·-attacked to the aromatic ring by single electron oxidation,forming benzene radical cation and then further reacted with H2O,forming·OH adduct37.The bimolecular rate constant of the SO4·-radical reaction with FLX was estimated with the range concentration from 0.06-0.22 mmol·L-1, based on the pseudo-first-order decay rate constant(inset of Fig.4).And the value is 1.1×109mol·L-1·s-1,as determined from the decay of SO4·-at 460 nm.

    Fig.4 Time-resolved absorption spectra obtained in the reaction of SO·4-with 5×10-4mol·L-1FLX in N2-saturated solutions containing 0.1 mol·L-1K2S2O8and 0.1 mol·L-1tert-butanol(pH=7.1)

    3.2 Steady state radiolysis

    The initial concentration of 0.29 mmol·L-1FLX in air,N2O or N2bubbled solutions were irradiated with different doses by the electron beam irradiation.In the N2O-saturated solution,·OH is the dominant oxidant to oxidizes pollutants.While e-aqis an important reducing agent in the N2-saturated solution containing 0.1 mol·L-1tert-butanol as the selected radical scavenger.In the presence of dissolved O2,and H·were both converted into O2·-/ HO2·(Eqs.(8,9)),therefore,·OH+O2·-/HO2·reactions occur in the aerated solution19.

    Fig.5 displays the·OH-induced degradation efficiency of FLX in the N2O-saturated solution at pH=7.At a dose of 1.5 kGy,the decomposition yield of FLX was approximately 90%;at an absorbed dose of 5 kGy,more than 99%FLX was consumed.With the increasing dose,the characteristic absorption of FLX decreased at 226 nm,indicating the decomposition of FLX in the aqueous solution(inset of Fig.5).Meanwhile,when the absorbed dose was increased,the absorption peak at 265 nm also increased. It was also observed that the peak at approximately 265 nm was slightly redshifted after irradiation,and this same phenomenon also was observed in the spectrum of the air-saturated solution (data not shown).The peak at 265 nm was denoted the formation of changed aromatic rings38.It was also illustrated the hydroxylated product formed by·OH attacked to the aromatic ring.

    To study reactions of individual radical with FLX,the atmo-

    Fig.5 Effect of various doses on the yield of decomposition of the initial concentration of 0.29 mmol·L-1FLX in the

    N2O-saturated solution as determined by the HPLC system and integrating the area under the chromatographic peaksphere condition was changed to produce reactive radical intermediates.And the above experiments suggested that SO4·-can oxide with FLX,so we also further explored the efficiency ofoxidation with FLX.From the Fig.6,the efficiency of the·OH-induced reaction was slightly higher than the·OH+O2·-/HO2· reaction in the N2O and air atmospheres,but both reactions were much higher than theandreactions in the N2atmosphere. After being irradiated with a dose of 1.5 kGy,the initial FLX molecules deceased by 95%and 93%in N2O and air bubbled

    solutions,respectively,in contrast with 43%reaction)and 73%reaction)reductions in the N2-saturated solution.FLX were decomposed completely with·OH and·OH+reactions at a dose of 5 kGy,and more than 90%FLX were decomposed withandreactions.It was reported that the mineralization of ibuprofen by

    radical is better than·OH at pH=7 since the yield of oxidizing radicals increased about 2.2 times in the presence of K2S2O818.However,as proved by our transient study,·OH reaction with FLX was observed to be faster than SO4·-.Meanwhile,as shown by the steady state results,·OH-induced degradation of FLX is more efficient thanradicalinduced degradation.This is probably due to two reasons listed

    adical could not fully or mostly react with FLX because of the competitive reaction between the selfdecay of radical andradical reaction with FLX.The other reason is that the addition reaction of·OH radical is more efficient than the single electron oxidation ofradical in the ring opening reaction of FLX.

    The effect of degradation efficiency of FLX at different pH values was also examined.Fig.7 displays the decomposition yield of FLX in air-saturated solutions at pH 4,7 and 11.At a dose of 2 kGy,FLX had decomposed by more than 95%at pH 4 and 7. The decompositions of FLX both under acidic condition and the neutral condition were better than alkaline condition at a low absorbed dose.Additionally,it has been reported that the degradation of FLX increased at a condition of acidic pH by sonochemical treatment,which has been interpreted to reflect the

    Fig.6 Dependence of the yield of FLX radiolytic decomposition on the·OH reaction(■)in the N2O-saturated solution,the

    ·OH+O2·-/HO2·reaction(▲)in the air-saturated solution,and the(●)and? Fig.7 Dose dependence of the decomposition yield of the initial concentration of 0.29 mmol·L-1FLX in the

    air-saturated solution(·OH+O2·-/HO2·reaction) dominance of the hydrophilic form of FLX17.The pKavalue of FLX is 10.0530.Therefore,the substance exists mainly in its neutral form at pH=11,which is more stable at the time of radical attacking. 4 Conclusions

    This study has shown the transient reactions of FLX with different radicals in pulse radiolysis,and the degradation efficiencies of FLX by electron beam irradiation under different conditions. The·OH radical,solvated electrons,and sulfate radical anions quickly reacted with FLX with the rate constants of 7.8×109, 2.3×109,and 1.1×109mol·L-1·s-1,respectively.The experiments illustrated that the degradation of FLX was occurred both by oxidative and reducing radicals,and the oxidative radicals tend to be more efficient for the decomposition of FLX.Based on the results obtained in this study,we thought that hydroxylated adduct was formed by hydroxyl radical attacking the aromatic ring directly.While it was found that SO4·-reaction preferentially formed a benzene radial cation by single electron oxidation,the intermediates were further transformed into the·OH adduct by reacting with H2O.

    For the steady study,over 90%FLX degraded with an absorbed dose of 1.5 kGy both in the presence of oxygen(·OH+O2·-/HO2· reaction)and in its absence(·OH reaction).In comparing different oxidants,it was observed that the degradation rates of FLX with·OH were higher than that with SO4·-radical.It is possible that the yield of SO4·-radical reacted with FLX was not as much as the yield of·OH,and·OH adduct was more efficient for the ring opening reaction of FLX.Therefore,radiolytic degradation is likely an effective way of eliminating FLX in aqueous solution. And it is also recommended that the radiolytic degradation of FLX molecule was performed by·OH-induced reaction at a neutral condition.

    Acknowledgment: The authors gratefully thank the Shanghai Institute of Applied Physics,Chinese Academy of Sciences and the University of Shanghai.References

    (1)Sui,Q.;Huang,J.;Deng,S.B.;Chen,W.W.;Yu,G.Environ.

    (2) Subedi,B.;Kannan,K.Environ.Sci.Technol.2014,48,6661.

    (20) Silva,V.H.O.;Batista,A.P.D.S.;Borrely,S.I.Environ.Sci. Pollut.R 2016,23,11927.doi:10.1007/s11356-016-6410-1

    (21) Garrido,E.M.;Garrido,J.;Calheiros,R.;Marques,M.P.M.; Borges,F.J.Phys.Chem.A 2009,113,9934.doi:10.1021/ jp904306b

    (22)Yao,S.D.;Sheng,S.G.;Cai,J.H.;Zhang,J.S.;Lin,N.Y. Radiat.Phys.Chem.1995,46,105.doi:10.1016/0969-806X(94) 00120-9

    (23) Liu,Y.C.;Zhang,P.;Li,H.X.;Tang,R.Z.;Cui,R.R.;Wang, W.F.J.Photochem.Photobiol.B 2013,118,58.doi:10.1016/j. jphotobiol.2012.11.002

    (24) Buxton,G.V.J.Phys.Chem.Ref.Data 1988,17,513.

    Radical-Induced Degradation of Fluoxetine in Aqueous Solution by Pulse and Steady-State Radiolysis Studies

    JI Tian-Yi1,2LIU Yan-Cheng2ZHAO Jian-Feng2,3XU Gang1WANG Wen-Feng2,*WU Ming-Hong1,*
    (1School of Environment and Chemical Engineering,Shanghai University,Shanghai 200444,P.R.China;2Shanghai Institute of Applied Physics,Chinese Academy of Sciences,Shanghai 201800,P.R.China;3University of Chinese Academy of Sciences,Beijing 100049,P.R.China)

    The reactions of the pharmaceutical fluoxetine(FLX)with different radicals were investigated by pulse radiolysis.The reaction of hydroxyl radical(·OH)with FLX formed hydroxylated adduct of the aromatic ring,while oxidation of FLX by sulfate radical anion(SO4·-)formed benzene radical cation that further reacted with H2O to yield the·OH adduct.The determined rate constants of·OH,hydrated electrons(e-aq),and SO4·-with FLX were 7.8×109,2.3×109,and 1.1×109mol·L-1·s-1,respectively.In the steady-state radiolysis study, the degradation of FLX in different radiolytic conditions by electron beam irradiation was detected by HPLC and UV-Vis spectra techniques.It was found that FLX concentration decreased by more than 90%in both N2O and air-saturated solutions after 1.5 kGy irradiation.In contrast,only 43%of FLX was decomposed in N2-saturated solution containing 0.1 mol·L-1tert-butanol.The degradation rates of FLX in acidic and neutral solutions were higher than those in alkaline solutions.Our results showed that the degradation of FLX is optimal in air-saturated neutral solution,and·OH-induced degradation is more efficient than SO4·-oxidation of FLX.The obtained kinetic data and optimal conditions give some hints to understand the degradation of FLX.

    O644

    Technol.2011,45,3341.

    10.1021/es200248d

    doi:10.3866/PKU.WHXB201701092

    Received:November 8,2016;Revised:January 9,2017;Published online:January 9,2017.

    *Corresponding authors.WANG Wen-Feng,Email:wangwenfeng@sinap.ac.cn.WU Ming-Hong,Email:mhwu@shu.edu.cn.國家自然科學基金(21173252,41430644,11675098)資助項目

    doi:10.1021/es501709a

    (3) Wawryniuk,M.;Pietrzak,A.;Nalecz-Jawecki,G.Ecotox.

    Environ.Safe 2015,115,144.doi:10.1016/j.ecoenv.2015.02.014 (4) Subedi,B.;Kannan,K.Sci.Total Environ.2015,514,273.

    doi:10.1016/j.scitotenv.2015.01.098

    (5) Kümmerer,K.J.Environ.Manage.2009,90,2354.

    doi:10.1016/j.jenvman.2009.01.023

    (6)Boxall,A.B.;Rudd,M.A.;Brooks,B.W.;Caldwell,D.J.;

    Choi,K.;Hickmann,S.;Innes,E.;Ostapyk,K.;Staveley,J.P.;

    Verslycke,T.Environ.Health Perspect.2012,120,1221.

    doi:10.1289/ehp.1104477

    (7)Santos,L.H.M.L.M.;Gros,M.;Rodriguez-Mozaz,S.;

    Delerue-Matos,C.;Pena,A.;Barcelo,D.;Montenegro,M.C.B.

    S.M.Sci.Total Environ.2013,461,302.doi:10.1016/j.

    scitotenv.2013.04.077

    (8)Kolpin,D.W.;Furlong,E.T.;Meyer,M.T.;Thurman,E.M.; Zaugg,S.D.;Barber,L.B.;Buxton,H.T.Environ.Sci.Technol. 2003,36,1202.doi:10.1021/es0202356

    (9) Metcalfe,C.D.;Miao,X.S.;Koenig,B.G.;Struger,J.Environ.

    Toxicol.Chem.2003,22,2881.doi:10.1897/02-627

    (10) Wu,M.H.;Xiang,J.J.;Que,C.J.;Chen,F.F.;Xu,G.

    Chemosphere 2015,138,486.doi:10.1016/j. chemosphere.2015.07.002

    (11)Ma,R.X.;Wang,B.;Lu,S.Y.;Zhang,Y.Z.;Yin,L.;Huang,J.; Deng,S.B.;Wang,Y.J.;Yu,G.Sci.Total Environ.2016,557, 268.doi:10.1016/j.scitotenv.2016.03.053

    (12) Ottmar,K.J.;Colosi,L.M.;Smith,J.A.B Environ.Contam.

    Tox.2010,84,507.doi:10.1007/s00128-010-9990-3

    (13) Cardoso,O.;Porcher,J.M.;Sanchez,W.Chemosphere 2014,

    115,20.doi:10.1016/j.chemosphere.2014.02.004

    (14) Schultz,M.M.;Painter,M.M.;Bartell,S.E.;Logue,A.;

    Furlong,E.T.;Werner,S.L.;Schoenfuss,H.L.Aquat.Toxicol. 2011,104,38.doi:10.1016/j.aquatox.2011.03.011

    (15) Mendez,N.;Barata,C.Ecotoxicology 2015,24,106.

    doi:10.1007/s10646-014-1362-z

    (16)Kwon,J.W.;Armbrust,K.L.Environ.Toxicol.Chem.2006,25, 2561.doi:10.1897/05-613r.1

    (17) Serna-Galvis,E.A.;Silva-Agredo,J.;Giraldo-Aguirre,A.L.; Torres-Palma,R.A.Sci.Total Environ.2015,524,354. doi:10.1016/j.scitotenv.2015.04.053

    (18) Paul,J.;Naik,D.B.;Bhardwaj,Y.K.;Varshney,L.Radiat. Phys.Chem.2014,100,38.doi:10.1016/j. radphyschem.2014.03.016

    (19) Kovacs,K.;Mile,V.;Csay,T.;Takacs,E.;Wojnarovits,L. Environ.Sci.Pollut.R 2014,21,12693.doi:10.1007/s11356-014-3197-9doi:10.1063/1.555805

    (25) Song,W.H.;Cooper,W.J.;Mezyk,S.P.;Greaves,J.;Peake,B. M.Environ.Sci.Technol.2008,42,1256.doi:10.1021/ es702245n

    (26)Wu,M.H.;Liu,N.;Xu,G.;Ma,J.;Tang,L.;Wang,L.;Fu,H. Y.Radiat.Phys.Chem.2011,80,420.doi:10.1016/j. radphyschem.2010.10.008

    (27) Czapski,G.;Peled,E.Isr.J.Chem.1968,6,421.doi:10.1002/ ijch.196800054

    (28) Spinks,J.W.T.;Woods,R.J.Introduction to Radiation Chemistry;Wiley:New York,1990.

    (29) Wolfenden,B.S.;Willson,R.L.J.Chem.Soc.Perkin Trans. 1982,2,805.doi:10.1039/P29820000805

    (30) Mendez-Arriaga,F.;Otsu,T.;Oyama,T.;Gimenez,J.;Esplugas, S.;Hidaka,H.;Serpone,N.Water.Res.2011,45,2782. doi:10.1016/j.watres.2011.02.030

    (31) Merga,G.;Rao,B.S.M.;Mohan,H.;Mittal,J.P.J.Phys. Chem.2002,98,9158.doi:10.1021/j100088a012

    (32)Lam,M.W.;Young,C.J.;Mabury,S.A.Environ.Sci.Tech. 2005,39,513.doi:10.1021/es0494757

    (33) Sehested,K.;Christensen,H.C.;Hart,E.J.;Corfitzen,H.J. Phys.Chem.-Us 1975,79,310.doi:10.1021/J100571a005

    (34)Neta,P.;Madhavan,V.;Zemel,H.;Fessenden,R.W. Chemischer Informationsdienst 1977,8,163.doi:10.1002/ chin.197714152

    (35) Hentz,R.R.;Farhataziz;Hansen,E.M.J.Chem.Phys.1972, 57,2959.doi:10.1063/1.1678690

    (36)Choure,S.C.;Bamatraf,M.M.M.;Rao,B.S.M.;Das,R.; Mohan,H.;Mittal,J.P.J.Phys.Chem.A 1997,101,9837. doi:10.1021/jp971986a

    (37)Shibin,N.B.;Sreekanth,R.;Aravind,U.K.;Mohammed,K.M. A.;Chandrashekhar,N.V.;Joseph,J.;Sarkar,S.K.;Naik,D.B.; Aravindakumar,C.T.J.Phys.Org.Chem.2014,27,478. doi:10.1002/poc.3285

    (38) Illes,E.;Takacs,E.;Dombi,A.;Gajda-Schrantz,K.;Racz,G.; Gonter,K.;Wojnarovits,L.Sci.Total Environ.2013,447,286. doi:10.1016/j.scitotenv.2013.01.007

    猜你喜歡
    羥基自由基脈沖
    他們使阿秒光脈沖成為可能
    脈沖離散Ginzburg-Landau方程組的統(tǒng)計解及其極限行為
    自由基損傷與魚類普發(fā)性肝病
    自由基損傷與巴沙魚黃肉癥
    陸克定:掌控污染物壽命的自由基
    科學中國人(2018年8期)2018-07-23 02:26:46
    羥基喜樹堿PEG-PHDCA納米粒的制備及表征
    中成藥(2018年2期)2018-05-09 07:20:05
    黃芩苷脈沖片的制備
    中成藥(2017年12期)2018-01-19 02:06:54
    N,N’-二(2-羥基苯)-2-羥基苯二胺的鐵(Ⅲ)配合物的合成和晶體結構
    TEMPO催化合成3α-羥基-7-酮-5β-膽烷酸的研究
    檞皮苷及其苷元清除自由基作用的研究
    秋霞伦理黄片| 亚洲欧美成人精品一区二区| 91狼人影院| 亚洲第一区二区三区不卡| 日韩欧美精品v在线| 26uuu在线亚洲综合色| 亚洲自偷自拍三级| av在线播放精品| 人妻少妇偷人精品九色| 日本一本二区三区精品| h日本视频在线播放| 亚洲一区二区三区欧美精品 | 亚洲美女搞黄在线观看| 99re6热这里在线精品视频| 永久免费av网站大全| 日韩不卡一区二区三区视频在线| 大片免费播放器 马上看| 久久99热6这里只有精品| 国产色婷婷99| av在线蜜桃| 成人国产麻豆网| 中国国产av一级| 99久久精品国产国产毛片| 国产久久久一区二区三区| 不卡视频在线观看欧美| 日产精品乱码卡一卡2卡三| 亚州av有码| 91久久精品国产一区二区成人| 色视频www国产| 99久久精品一区二区三区| 一级毛片黄色毛片免费观看视频| 我的女老师完整版在线观看| 少妇猛男粗大的猛烈进出视频 | 亚洲伊人久久精品综合| 国产精品久久久久久av不卡| 日本三级黄在线观看| 日日摸夜夜添夜夜添av毛片| 欧美三级亚洲精品| 婷婷色麻豆天堂久久| av女优亚洲男人天堂| 91在线精品国自产拍蜜月| 欧美zozozo另类| 国产成人免费无遮挡视频| 欧美zozozo另类| 黄色怎么调成土黄色| 毛片一级片免费看久久久久| 国产精品熟女久久久久浪| 韩国av在线不卡| 18禁动态无遮挡网站| 国产大屁股一区二区在线视频| 一级毛片aaaaaa免费看小| 中文资源天堂在线| 岛国毛片在线播放| 波野结衣二区三区在线| 久久久久久九九精品二区国产| 少妇被粗大猛烈的视频| 好男人视频免费观看在线| 久久久久久久大尺度免费视频| 搞女人的毛片| 少妇人妻 视频| 91久久精品国产一区二区成人| 国产精品蜜桃在线观看| av福利片在线观看| 国产精品秋霞免费鲁丝片| av国产精品久久久久影院| a级毛色黄片| av专区在线播放| 亚洲第一区二区三区不卡| 一级毛片 在线播放| 天天躁日日操中文字幕| 精品亚洲乱码少妇综合久久| 精品熟女少妇av免费看| 国产国拍精品亚洲av在线观看| 亚洲四区av| av在线老鸭窝| 国产av码专区亚洲av| 亚洲av成人精品一二三区| 亚洲,一卡二卡三卡| 韩国高清视频一区二区三区| 久久亚洲国产成人精品v| 亚洲精品日韩在线中文字幕| 亚洲av男天堂| 王馨瑶露胸无遮挡在线观看| 精品99又大又爽又粗少妇毛片| 十八禁网站网址无遮挡 | 国产成人精品福利久久| 少妇被粗大猛烈的视频| 春色校园在线视频观看| 秋霞伦理黄片| 中文字幕av成人在线电影| 男女边吃奶边做爰视频| 人妻系列 视频| 免费看不卡的av| 国产乱人视频| 国产精品女同一区二区软件| 免费黄网站久久成人精品| 国产成人freesex在线| 国产极品天堂在线| 一级二级三级毛片免费看| 麻豆乱淫一区二区| 国产白丝娇喘喷水9色精品| 少妇被粗大猛烈的视频| 热99国产精品久久久久久7| av在线老鸭窝| 在线观看av片永久免费下载| 丰满乱子伦码专区| 狂野欧美白嫩少妇大欣赏| 亚洲三级黄色毛片| 免费看a级黄色片| 成人特级av手机在线观看| 国产人妻一区二区三区在| 国产91av在线免费观看| 国产免费福利视频在线观看| av国产免费在线观看| 搡老乐熟女国产| 18禁在线无遮挡免费观看视频| 午夜激情福利司机影院| 久久久久国产网址| 欧美bdsm另类| 婷婷色综合www| 青春草视频在线免费观看| 男女啪啪激烈高潮av片| 综合色av麻豆| 国产精品国产三级国产专区5o| kizo精华| 精品国产乱码久久久久久小说| 女人十人毛片免费观看3o分钟| 女的被弄到高潮叫床怎么办| 国产有黄有色有爽视频| a级毛片免费高清观看在线播放| 一级黄片播放器| 国产精品国产av在线观看| 午夜福利在线在线| 亚洲aⅴ乱码一区二区在线播放| 亚洲精品乱码久久久v下载方式| 夫妻性生交免费视频一级片| 又粗又硬又长又爽又黄的视频| 简卡轻食公司| 内射极品少妇av片p| 精品久久久久久久久亚洲| 少妇猛男粗大的猛烈进出视频 | 在线观看三级黄色| 国产视频内射| 99re6热这里在线精品视频| 国产一区二区在线观看日韩| 2021少妇久久久久久久久久久| 免费人成在线观看视频色| 成人毛片a级毛片在线播放| 亚洲最大成人av| 国产69精品久久久久777片| 亚洲欧美日韩东京热| 一区二区av电影网| 国产亚洲av嫩草精品影院| 天堂网av新在线| 男的添女的下面高潮视频| 国产精品爽爽va在线观看网站| 国产亚洲一区二区精品| 老司机影院毛片| 欧美精品国产亚洲| 如何舔出高潮| 1000部很黄的大片| 一二三四中文在线观看免费高清| 老师上课跳d突然被开到最大视频| 亚洲欧美精品自产自拍| 麻豆国产97在线/欧美| 少妇人妻精品综合一区二区| 成人亚洲欧美一区二区av| 一级片'在线观看视频| 亚洲欧美日韩另类电影网站 | 三级男女做爰猛烈吃奶摸视频| xxx大片免费视频| 狂野欧美白嫩少妇大欣赏| 在线精品无人区一区二区三 | 性插视频无遮挡在线免费观看| 男女那种视频在线观看| 国产爱豆传媒在线观看| 69av精品久久久久久| av在线app专区| 亚洲欧美一区二区三区黑人 | 精品久久久久久电影网| 久久久久久久午夜电影| av在线播放精品| 精品久久久精品久久久| 国语对白做爰xxxⅹ性视频网站| 干丝袜人妻中文字幕| 黄色配什么色好看| 日日撸夜夜添| 熟女人妻精品中文字幕| 欧美激情久久久久久爽电影| 亚洲内射少妇av| 性色av一级| 免费av不卡在线播放| 亚州av有码| 99热这里只有是精品在线观看| 精品酒店卫生间| 亚洲av福利一区| 国产乱来视频区| 五月开心婷婷网| 日韩大片免费观看网站| 日本黄色片子视频| 亚洲电影在线观看av| 老女人水多毛片| 身体一侧抽搐| 一边亲一边摸免费视频| 熟妇人妻不卡中文字幕| 日韩av不卡免费在线播放| 黄色怎么调成土黄色| 国产日韩欧美在线精品| 少妇被粗大猛烈的视频| 秋霞在线观看毛片| 精品熟女少妇av免费看| 成人漫画全彩无遮挡| 久久久久久久大尺度免费视频| 制服丝袜香蕉在线| 国精品久久久久久国模美| 国产免费又黄又爽又色| 亚洲欧美成人综合另类久久久| 成年人午夜在线观看视频| 国产成人一区二区在线| 自拍欧美九色日韩亚洲蝌蚪91 | 国产美女午夜福利| 国产老妇女一区| 成人特级av手机在线观看| 成年av动漫网址| 国产精品一区二区性色av| 超碰av人人做人人爽久久| 丝瓜视频免费看黄片| 国产乱人视频| 大香蕉97超碰在线| 女人久久www免费人成看片| 亚洲国产欧美在线一区| 别揉我奶头 嗯啊视频| 夜夜看夜夜爽夜夜摸| 国产精品爽爽va在线观看网站| 国产乱人偷精品视频| 成人毛片60女人毛片免费| 综合色丁香网| 秋霞伦理黄片| 日韩大片免费观看网站| 99热这里只有精品一区| 国产精品国产三级专区第一集| 欧美zozozo另类| 一级毛片aaaaaa免费看小| 国内揄拍国产精品人妻在线| 青春草国产在线视频| 在线天堂最新版资源| 青春草亚洲视频在线观看| 真实男女啪啪啪动态图| 又大又黄又爽视频免费| 亚洲精品成人av观看孕妇| 久久久久久久久久人人人人人人| 校园人妻丝袜中文字幕| 国产精品人妻久久久久久| 九九久久精品国产亚洲av麻豆| 欧美xxxx性猛交bbbb| 99精国产麻豆久久婷婷| 日日摸夜夜添夜夜爱| 波多野结衣巨乳人妻| 亚洲国产精品专区欧美| 九九爱精品视频在线观看| 国产乱人视频| 中文乱码字字幕精品一区二区三区| 国产成人精品福利久久| 欧美少妇被猛烈插入视频| 直男gayav资源| 免费看a级黄色片| 一本一本综合久久| 黄色日韩在线| 欧美日韩视频高清一区二区三区二| 日韩视频在线欧美| 亚洲国产精品专区欧美| 成年av动漫网址| 国产精品偷伦视频观看了| 国产亚洲精品久久久com| 亚洲国产日韩一区二区| 超碰av人人做人人爽久久| 中文字幕久久专区| 亚洲av.av天堂| 啦啦啦啦在线视频资源| 亚洲激情五月婷婷啪啪| 久久久久精品性色| 欧美xxⅹ黑人| 97热精品久久久久久| 国产毛片在线视频| eeuss影院久久| 日韩欧美精品免费久久| 亚洲国产成人一精品久久久| 高清视频免费观看一区二区| 日本午夜av视频| 国产成人免费无遮挡视频| 最近最新中文字幕大全电影3| 午夜日本视频在线| 久久人人爽av亚洲精品天堂 | 嘟嘟电影网在线观看| 国产精品.久久久| 精品一区二区免费观看| 婷婷色综合www| 可以在线观看毛片的网站| 日韩av在线免费看完整版不卡| 超碰av人人做人人爽久久| 狠狠精品人妻久久久久久综合| 成人亚洲欧美一区二区av| 在线观看三级黄色| 51国产日韩欧美| 日日摸夜夜添夜夜添av毛片| 看非洲黑人一级黄片| 亚洲国产最新在线播放| 国产伦精品一区二区三区四那| 少妇人妻久久综合中文| 成年av动漫网址| 街头女战士在线观看网站| 国产精品久久久久久精品电影小说 | www.av在线官网国产| a级毛片免费高清观看在线播放| 又黄又爽又刺激的免费视频.| 少妇丰满av| 欧美丝袜亚洲另类| 欧美精品一区二区大全| 在现免费观看毛片| 美女脱内裤让男人舔精品视频| 国产av国产精品国产| 另类亚洲欧美激情| 国产国拍精品亚洲av在线观看| 亚洲天堂国产精品一区在线| 亚洲国产精品专区欧美| 亚洲精品一区蜜桃| 成人国产麻豆网| 美女视频免费永久观看网站| 自拍偷自拍亚洲精品老妇| 麻豆成人午夜福利视频| 91久久精品电影网| 久久久久网色| 成人毛片60女人毛片免费| 久久久久九九精品影院| 最近中文字幕2019免费版| 亚洲国产精品成人综合色| 麻豆成人av视频| 欧美另类一区| 中文字幕人妻熟人妻熟丝袜美| 亚洲精品亚洲一区二区| av一本久久久久| 成人国产av品久久久| 久久久久网色| 在线播放无遮挡| 国产成人91sexporn| 丝袜脚勾引网站| 不卡视频在线观看欧美| 亚洲伊人久久精品综合| 国产老妇伦熟女老妇高清| 小蜜桃在线观看免费完整版高清| 哪个播放器可以免费观看大片| 国产黄色视频一区二区在线观看| 国产精品人妻久久久久久| 在线观看一区二区三区| 毛片女人毛片| 尾随美女入室| 日本wwww免费看| 黄色视频在线播放观看不卡| 久久久久久九九精品二区国产| 99久国产av精品国产电影| 欧美最新免费一区二区三区| 成人无遮挡网站| 成人免费观看视频高清| 午夜老司机福利剧场| 国产精品一区二区在线观看99| 久久精品久久精品一区二区三区| 久久亚洲国产成人精品v| 麻豆国产97在线/欧美| 亚洲三级黄色毛片| 国产男人的电影天堂91| 成人综合一区亚洲| 精品午夜福利在线看| 国产大屁股一区二区在线视频| 最新中文字幕久久久久| 亚洲av不卡在线观看| av免费观看日本| 麻豆精品久久久久久蜜桃| 两个人的视频大全免费| 亚洲欧美中文字幕日韩二区| 国产精品一区二区性色av| 亚洲综合精品二区| 国产男女超爽视频在线观看| 一区二区三区免费毛片| 美女脱内裤让男人舔精品视频| 国模一区二区三区四区视频| 欧美日韩综合久久久久久| 欧美xxxx黑人xx丫x性爽| 成人免费观看视频高清| 亚洲综合精品二区| 免费观看av网站的网址| 日韩免费高清中文字幕av| 99视频精品全部免费 在线| 天天躁日日操中文字幕| 网址你懂的国产日韩在线| 亚洲aⅴ乱码一区二区在线播放| 一个人看视频在线观看www免费| 欧美一区二区亚洲| 一个人看视频在线观看www免费| 久久综合国产亚洲精品| 在线精品无人区一区二区三 | 亚洲精品成人av观看孕妇| 婷婷色麻豆天堂久久| 久久久久性生活片| 街头女战士在线观看网站| 国产精品一二三区在线看| 男人舔奶头视频| 秋霞在线观看毛片| av播播在线观看一区| 99热这里只有是精品在线观看| 亚洲精品久久久久久婷婷小说| 在线免费观看不下载黄p国产| 日日啪夜夜撸| 嘟嘟电影网在线观看| 黄片wwwwww| 成人亚洲精品av一区二区| 精品国产乱码久久久久久小说| 91精品国产九色| 精品久久久久久久久亚洲| 成年av动漫网址| 精品久久久久久电影网| 国产 一区 欧美 日韩| 日韩制服骚丝袜av| 涩涩av久久男人的天堂| 午夜激情久久久久久久| 赤兔流量卡办理| 在线观看国产h片| 色5月婷婷丁香| 中国国产av一级| 人人妻人人爽人人添夜夜欢视频 | 久久精品人妻少妇| 一级黄片播放器| 欧美亚洲 丝袜 人妻 在线| 一级黄片播放器| 国产极品天堂在线| 如何舔出高潮| 亚洲av男天堂| 欧美潮喷喷水| 激情五月婷婷亚洲| 久久亚洲国产成人精品v| 日本av手机在线免费观看| 久久鲁丝午夜福利片| 国产精品久久久久久av不卡| 九九在线视频观看精品| 一本一本综合久久| 神马国产精品三级电影在线观看| 香蕉精品网在线| 久久精品国产自在天天线| 亚洲国产成人一精品久久久| 99久久中文字幕三级久久日本| 男女那种视频在线观看| 麻豆国产97在线/欧美| 亚洲欧美成人精品一区二区| 天美传媒精品一区二区| 亚洲av二区三区四区| 欧美成人一区二区免费高清观看| 国产免费福利视频在线观看| 狂野欧美白嫩少妇大欣赏| 2022亚洲国产成人精品| 欧美 日韩 精品 国产| 国产成人免费观看mmmm| 免费看a级黄色片| 一本久久精品| 91精品一卡2卡3卡4卡| 国内揄拍国产精品人妻在线| 国产片特级美女逼逼视频| 18+在线观看网站| 日本猛色少妇xxxxx猛交久久| 天堂网av新在线| 五月伊人婷婷丁香| 久久精品久久久久久久性| 午夜日本视频在线| 午夜激情福利司机影院| 男的添女的下面高潮视频| 热99国产精品久久久久久7| 熟女电影av网| 丝袜美腿在线中文| 岛国毛片在线播放| 最近中文字幕高清免费大全6| 赤兔流量卡办理| 日韩伦理黄色片| 国产片特级美女逼逼视频| 五月开心婷婷网| 99久久中文字幕三级久久日本| 美女视频免费永久观看网站| 亚洲一区二区三区欧美精品 | 国产伦精品一区二区三区四那| 美女主播在线视频| 在线免费观看不下载黄p国产| 免费观看在线日韩| 免费观看性生交大片5| 小蜜桃在线观看免费完整版高清| 97超视频在线观看视频| 亚洲美女搞黄在线观看| 美女主播在线视频| 日韩一区二区三区影片| 日本-黄色视频高清免费观看| 免费观看性生交大片5| 欧美日本视频| 日本wwww免费看| 亚洲精品成人av观看孕妇| 交换朋友夫妻互换小说| 日本欧美国产在线视频| 九九在线视频观看精品| 天天躁日日操中文字幕| 国产成人freesex在线| 国产精品爽爽va在线观看网站| 老女人水多毛片| 亚洲av男天堂| 狠狠精品人妻久久久久久综合| 少妇人妻一区二区三区视频| 久久人人爽人人片av| 国产成人精品久久久久久| 六月丁香七月| 伊人久久精品亚洲午夜| 国产精品精品国产色婷婷| 少妇的逼水好多| 又粗又硬又长又爽又黄的视频| 亚洲天堂国产精品一区在线| 视频区图区小说| 特大巨黑吊av在线直播| 欧美丝袜亚洲另类| 国内少妇人妻偷人精品xxx网站| 2021少妇久久久久久久久久久| 最近中文字幕2019免费版| 在线观看免费高清a一片| 日韩,欧美,国产一区二区三区| 在线观看美女被高潮喷水网站| 国产毛片在线视频| 少妇裸体淫交视频免费看高清| 欧美变态另类bdsm刘玥| 日本猛色少妇xxxxx猛交久久| 在线精品无人区一区二区三 | 国产中年淑女户外野战色| 成人黄色视频免费在线看| 九九爱精品视频在线观看| 国产精品人妻久久久影院| 亚洲欧美成人精品一区二区| 精品久久久久久久久av| 色5月婷婷丁香| 久久久精品欧美日韩精品| 美女被艹到高潮喷水动态| 欧美一区二区亚洲| 亚洲欧美日韩东京热| 日韩亚洲欧美综合| 成年av动漫网址| 久久久久久久久久人人人人人人| 欧美精品人与动牲交sv欧美| 精品久久久精品久久久| 看黄色毛片网站| 亚洲国产欧美人成| 观看免费一级毛片| 97人妻精品一区二区三区麻豆| 蜜桃亚洲精品一区二区三区| 日本色播在线视频| 男男h啪啪无遮挡| 精品酒店卫生间| 国产精品秋霞免费鲁丝片| 在线亚洲精品国产二区图片欧美 | 午夜亚洲福利在线播放| 麻豆成人av视频| 亚洲精品色激情综合| 国产亚洲av片在线观看秒播厂| 国产黄色免费在线视频| 秋霞在线观看毛片| 欧美亚洲 丝袜 人妻 在线| 春色校园在线视频观看| 久久这里有精品视频免费| 99热国产这里只有精品6| 国产老妇伦熟女老妇高清| 精品少妇黑人巨大在线播放| 一级二级三级毛片免费看| 精品少妇黑人巨大在线播放| 高清av免费在线| 男女无遮挡免费网站观看| 视频区图区小说| 日韩一区二区视频免费看| 欧美激情在线99| 岛国毛片在线播放| 麻豆成人午夜福利视频| 日韩中字成人| 日韩一区二区三区影片| 亚洲av.av天堂| 中文资源天堂在线| 五月伊人婷婷丁香| 亚洲精品乱码久久久v下载方式| 黄色日韩在线| 神马国产精品三级电影在线观看| 国产亚洲av嫩草精品影院| 国产高清不卡午夜福利| 国产欧美另类精品又又久久亚洲欧美| 观看免费一级毛片| 免费高清在线观看视频在线观看| 免费黄色在线免费观看| 99热这里只有是精品50| 精品国产露脸久久av麻豆| 亚洲色图综合在线观看| 欧美人与善性xxx| 男女国产视频网站| 亚洲国产精品999| 精品一区二区免费观看| 国产高清三级在线| 国产精品人妻久久久影院| 久久精品国产a三级三级三级| 亚州av有码| videos熟女内射| 国产男人的电影天堂91| 高清毛片免费看| 自拍欧美九色日韩亚洲蝌蚪91 | 久久久久久久久久人人人人人人| 在线观看美女被高潮喷水网站| 午夜免费观看性视频| 欧美日韩在线观看h| 亚洲欧美日韩另类电影网站 | 成年av动漫网址| 亚洲av免费在线观看|