• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Mapping of QTLs for Dehiscence Length at Basal Part of Thecae in Rice Based on TD70/Kasalath RIL Population

    2015-12-14 08:32:10LingZHAOYadongZHANGChunfangZHAOLihuiZHOUShuYAOXinYUDanDINGTsutomuMATSUICailinWANG
    Agricultural Science & Technology 2015年10期
    關(guān)鍵詞:江西農(nóng)業(yè)大學(xué)開花期結(jié)實率

    Ling ZHAO, Yadong ZHANG, Chunfang ZHAO, Lihui ZHOU, Shu YAO, Xin YU, Dan DING,Tsutomu MATSUI, Cailin WANG*

    1. Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Jiangsu High Quality Rice R&D Center/Nanjing Branch of China National Center for Rice Improvement, Nanjing 210014, China;

    2. Faculty of Applied Biological Science, Gifu University, Gifu 501-2354, Japan

    In recent years, the frequent occurrence of disasters caused by global warming and high temperature has resulted in serous loss to rice production in China, even all over the world. Particularly high temperature at booting and flowering stages significantly decreases rice yield and quality. In-depth study on rice tolerance to high temperature will provide theoretical basis for the development of rice cultivars with high-temperature tolerance at flowering stage.High-temperature tolerance is a quantitative trait which is difficult to be identified directly or indirectly. Direct identification of rice tolerance in field under natural high-temperature conditions is affected by various factors and hardly repeatable. The indirect method identified rice tolerance under simulated high-temperature conditions in greenhouse or artificial climate chamber, is accurate and repeatable, but expensive equipment was needed.Appropriate indices for evaluating rice tolerance to high temperature are important in both direct and indirect approaches. Among the various indices proposed in previous studies to determine high-temperature tolerance of rice at flowering stage, seed setting rate is the mostly used one[1]. Since it is difficult to identify seed setting rate under high-temperature conditions,some other indices such as the stress index of seed setting rate, percentage of unfilled grains, weight of filled grains, percentage of whole-kernel milled rice, chalkiness, the stress index of protein content, as well as the chlorophyll content, the free proline content, the ABA content and the pollen viability under high temperatureconditions were then proposed[2-3].Many QTL loci related to rice tolerance to high temperature have been identified based on different indices[4-11], but it is difficult to apply these indices directly in rice breeding. Therefore, it is urgent to find some indexes which closely related to high-temperature tolerance and easy to be identified at normal temperature for rice breeding.

    The correlation between the length of dehiscence at the basal part of thecae (LDBT) and high-temperature tolerance was confirmed by Matsui et al.[12-13],and the studies revealed that a large LDBT improved the seed setting rate of rice under high-temperature conditions (Fig.1). Subsequent studies showed that LDBT was a stable trait at both normal and high temperatures, and thus could be used as an index to identify rice tolerance to high temperature at flowering stage under normal temperature conditions[14-16].Three traits LDBT,flowering period and panicle temperature were found probably to be related to rice fertility at high temperature by Zhao et al.[17]seedling setting under high-temperature conditions had no significant correlation with flowering period and panicle temperature, but significant positive correlation with LDBT. The study of Jagadish et al.[6]also confirmed the correlation between LDBT and high-temperature tolerance of rice at flowering stage.

    In the present study, a population of recombinant inbred lines (RIL)with different LDBT was generated and their linkage map including 141 SSR markers was used to locate the QTLs controlling LDBT, with an attempt to reveal the correlations between LDBT and other agronomic traits and thus provide a theoretical basis for the study of high-temperature tolerance of rice at flowering stage.

    Materials and Methods

    Materials

    A combination was made between an Indica cultivar Kasalath and a Japonica cultivar TD70 which was derived from Swan Valley///9520//(72-496/Suyunuo).In the summer of 2005,a population of 240 recombinant inbred lines(RIL)was obtained from the F1generation by single seed descent breeding. In 2012, the 240 F6:7RILs and their parents were sown in the experimental field of Institute of Food Crops, Jiangsu Academy of Agricultural Sciences. 30-day-old seedlings were transplanted into plots. One cultivar was planted in four rows with 10 seedlings in each row, in a plot.Seedling spacing was 26.7 cm between rows and 16.7 cm within rows.The plots were ranged at random with two repetitions. After maturity, five plants randomly selected from each plot were separately harvested.

    Temperature measurement

    The temperature at rice canopy was measured using a temperature and humidity monitor (HOBO U23-001) once every hour throughout the whole growth period.

    Measurement items and methods

    Measurement of LDBT of RILs Five representative plants of each line were selected for the measurement of LDBT using a digital microscope(VHX-500,Keyence Corporation,Osaka,Japan).The LDBT of five anthers from each floret was measured and the average was calculated as the LDBT of the floret. The average LDBT of five florets from a plant was considered as LDBT of the plant.In the same way, the average LDBT of five plants of a line was taken as the LDBT of the line.

    Measurement of heading date of RILs The day when 50% plants in a plot already headed was considered as the heading date of the plot.For the calculation of correlation coefficients,this index was considered as the days from seed sowing to heading date.Heading period was defined as a period of 7 d from three days before heading date to three days after heading date.

    Determination of agronomic traits of RILs The plant height, tiller number, flag leaf length, flag leaf width,seeding setting rate, kernel number,1 000-grain weight, grain width, grain length,grain thickness and awn length of five plants randomly selected from each plot were measured and the averages were taken for later analysis.

    Table 1 Phenotypic variation of LDBT among RILs and two parents

    Statistical analysis

    Molecular linkage map of the 240 recombinant inbred lines (RIL) were derived from the cross between TD70 and Kasalath included 141 markers[18].QTL IciMapping3.4 software was adopted to scan the QTLs controlling LDBT within whole genome sequences by inclusive composite interval mapping (ICIM)[19]. The QTLs having a LOD value above 2.5 were recorded and named after the nomenclature of McCouch et al[20].

    SPSS17.0 software was adopted for variance analysis and correlation analysis.

    Results and Analysis

    LDBT phenotypic variation among RILs and their parents

    As shown in Table 1, the LDBTs of TD70 and Kasalath were 590.5 and 342.4 μm on average, exhibiting extremely significant difference between them. The LDBT of the 240 RILs in repetition ranged from 247.6 to 864.4 μm, with an average of 446.4 μm, and a coefficient of variation of 81.43%,while that in repletion 2 ranged from 254.9 to 781.9 μm, with an average of 448.2 μm and a coefficient of variation of 79.49% (Table 1). There was no significant difference between the two repetitions.

    The results proved transgressive inheritance of LDBT in the RIL population.The LDBT showed a normal dis-tribution in the RILs, consistent with the inheritance of a quantitative trait(Fig.2).

    QTLs controlling LDBT of rice

    Two QTLs controlling LDBT were detected among the RIL population and fine mapped on chromosome 6 and 8, respectively (Fig.3). qLDBT6 was mapped within a 15.8-cM interval between RM3 and RM3628 markers on chromosome 6 with a LOD value of 3.23, contribution rate of 6.18% and additive effect of 17.74% . qLDBT8 was mapped within a 11.1-cM interval between RM1376 and RM4085 markers on chromosome 8 with a LOD value 2.95,contribution rate of 8.00%and additive effect of 20.09% . The increasing alleles at both QTL loci were from the female parent TD70 (Table 2).

    Table 2 Identification of QTLs for LDBT in RIL population

    Table 3 Correlation coefficients between LDBT and agronomic trait

    Temperature at late botting stage and flowering stage of RIL population

    August 9 and 11 were the heading dates of two parents Kasalath and TD70,while the heading dates of RILs distributed from July 25 and September 9.The daily maximum temperature and the daily average temperature from July 22 to September 9, 2012 were shown in Fig.4. The daily maximum temperature and the daily average temperature during this period peaked on July 30, up to 32.34 and 37.18 ℃; they reduced to the lowest level on September 9, only 20.39 and 21.08 ℃, respectively. The daily average temperature was above 30 ℃in 14 d from July 19 to September 12,even exceeded 32 ℃in 3 d, and the daily maximum temperature exceeded 37 ℃in only one day.

    Correlations between LDBT and other agronomic traits

    The LDBT of RIL population shared extremely significant positive correlations with flag leaf width,1 000-grain weight, grain length, grain width and grain thickness, but no significant correlations with heading date, plant height, tiller number, flag leaf length,kernel number, seed setting rate, the maximum temperature of heading date, average temperature during heading period,the maximum temperature during heading period and awn length(Table 3).

    Discussion

    Heat stress has become one of the main factors affecting rice production now, it is important to learn rice tolerance on high temperature. Previous studies revealed that LDBT was correlated to high-temperature tolerance of rice,and proposed that it could be used as an index for evaluating rice tolerance to high-temperature. Indepth study on LDBT of rice will provide more theoretical basis for this hypothesis.

    In the present study,qLDBT8 was fine mapped to a 1.28 -Mb domain between RM1376 and RM4085 markers on chromosome 8. According to the data from Graneme website, only four QTLs of rice had been mapped to this domain till January, 2014 (Fig.5).Among them, S8, a QTL locus related to rice sterility was detected in this domain using a F2 population of 240 lines generated from the cross between Peiai 64S and 8902S[21].S8 was fine mapped to a 0.57-Mb domain between RM885 and RM333s on chromosome 8, and it could be detected under natural long-day and short-day conditions, artificially simulated longday and high-temperature conditions,artificially simulated long-day and lowtemperature conditions,artificially simulated short-day and high-temperature conditions, indicating it was a stable QTL locus controlling rice sterility[22].As LDBT was proven to be related to rice fertility at high temperature, we speculated that the 1.28-Mb domain where qLDBT8 was located might closely related to rice sterility, which is expected to be studied in future.

    A major QTL Ghd8 which controls rice heading period also locates in the same domain with qLDBT8 on chromosome 8, from 4 331 109 to 4 333 832 bp, encodes the HAP3H subunit of a protein binding to CCAAT box transcription factor[23]. Ghd8, allelic to Hd5, can regulate the heading period,yield and plant height of rice[24-25].In addition, there are a QTL for rice biomass production (qpw)and a QTL for quantitative resistance to Pyricularia grisea(rbr8)locating in a 2.7-Mb domain between RG333 and RM25[26-27].

    Our early work proved that LDBT had certain correlation with seed setting rate of rice under high-temperature conditions. The existing studies about rice LDBT mostly focused on its correlations with high-temperature tolerance. The correlations between LDBT and other agronomic traits were analyzed for the first time in the present study. TD70 is a large-grain Japonica rice cultivar,with 1 000-grain weight up to 70 g.It has long and wide grains and large LDBT, and thus was considered as an perfect material for the study on rice LDBT. The study showed that there was no significant correlation between rice LDBT and seed setting rate, which may be related to the air temperature during heading period in the summer of 2012. Shi et al.[28]found that air temperature below 33 ℃had no significant influence on the seed setting rate of Huajing 1 and Teyou 559. By studying the effects of high temperature at flowering stage on rice yield, Shi et al.[29]discovered that compared with air temperature of 35 ℃, high temperature between 35 and 39 ℃had no significant influence on rice yield, while extreme temperature above 39 ℃significantly reduced rice yield by 13%. The study of Wang et al.[30]revealed that pollination of rice was affected if the daily average temperature at flowering stage exceeded 32 ℃. From July 25 to September 9, 2012, the daily average temperature exceeded 32 ℃in only 3 d,and the daily maximum temperature exceeded 37 ℃in only one day (July 30). Among the 240 RILs we tested,the heading dates of 16 lines were before August 5, and the maximum temperature in following days was below 37 ℃.The air temperature at flowering stage was not too high,which might be the reason why no significant correlation between LDBT and seed setting rate was observed among the RILs we tested.

    [1]YANG YJ (楊永杰), FU GF (符冠富),XIONG J (熊杰), et al. Effects of high temperature on rice and evaluation on rice tolerance to high temperature(高溫對水稻的影響及水稻耐熱性測評方法研究)[J].China Rice(中國稻米),2012,18(1):39-40.

    [2]HUANG YJ(黃英金),YANG ZY(楊芝燕),RAO ZM (饒志明),et al.Active oxygen damage effect and regulation of chlorophyll degradation in rice leaves at filling stage under high temperature stress(灌漿期高溫脅迫下水稻葉片葉綠素降解的活性氧損傷及調(diào)控研究)[J].Acta Agriculturae Universitatis Jiangxiensis(江西農(nóng)業(yè)大學(xué)學(xué)報),2000,22(5):1-6.

    [3]LEI DY(雷東陽), CHEN LY(陳立云), LI WX (李穩(wěn)香),et al. Effect of high temperature on physiology difference of flowering among different hybrid rice(高溫對不同雜交稻開花期影響的生理差異) [J]. Research of Agricultural Modernization (農(nóng)業(yè)現(xiàn)代化研究), 2005, 26(5):397-400.

    [4]YANG TF (楊梯豐),ZHANG SH (張少紅),WANG XF (王曉飛),et al.Screening for germplasm with heat tolerance at flowering stage in Oryza sativa (水稻抽穗開花期耐熱種質(zhì)資源的篩選鑒定)[J].Journal of South China Agricultural University(華南農(nóng)業(yè)大學(xué)學(xué)報),2012,33(4):585-589.

    [5]ZHANG GL, CHEN LY, XIAO GY, et al.Bulked segregant analysis to detect QTL related to heat tolerance in rice(Oryza sativa L.) using SSR markers[J]. Agricultural Sciences in China,2009,8(4):482-487.

    [6]JAGADISH S, CAIRNS J, LAFITTE R,et al.Genetic analysis of heat tolerance at anthesis in rice [J]. Crop Science,2010,50:1633-1641.

    [7]PAN Y(盤毅), LUO LH(羅麗華), DENG HB(鄧化冰),et al.Quantitative trait Loci associated with pollen fertility under high temperature stress at flowering stage in rice (水稻開花期高溫脅迫下的花粉育性QTL 定位)[J].Chinese Journal of Rice Science (中國水稻科學(xué)),2011,25(1):99-102.

    [8]XIAO YH, PAN Y, LUO L. Quantitative trait loci associated with seed set under high temperature stress at the flowering stage in rice [J]. Euphytica, 2011, 178:331-338.

    [9]YE CR, ARGAYOSO MA, REDONA ED, et al. Mapping QTL for heat tolerance at flowering stage in rice using SNP markers [J]. Plant Breeding, 2012,131:33-41.

    [10]CHENG L, WANG JM, VERONICA U,et al.Genetic analysis of cold anthesis in rice tolerance at seedling stage and heat tolerance at anthesis in rice(Oryza sativa L.) [J]. Journal of Integrative Agriculture,2012,1(3):359-367.

    [11]LEI DY,TAN LB,LIU FX,et al.Identification of heat-sensitive QTL derived from common wild rice (Oryza rufipogon Griff.) [J].Plant Science,2013,201-202:121-127.

    [12]MATSUI T,OMASA K,HORIE T.High temperature at flowering inhibits swelling of pollen grains,a driving force for thecae dehiscence in rice(Oryza sativa L.)[J]. Plant Production Science,2000,3:430-434.

    [13]MATSUI T,KOBAZSAI K,KAGATA H,et al. Correlation between viability of pollination and length of basal dehiscence of the theca in rice under a hot and humid condition[J].Plant Production Science,2005,8(2):109-114.

    [14]MATSUI T. Function of long basal dehiscence of the thecae in rice(Oryza sativa L.)pollination under hot and humid condition [J]. Phyton, 2005, 45:401-407.

    [15]MATSUI T, OMASA K, HORIE T. The difference in sterility due to high temperature during the flowering period among japonica-rice varieties [J].Plant Production Science,2001,4:90-93.

    [16]TIAN X,MATSUI T,LI S,et al.Heat induced floret sterility of hybrid rice(Oryza sativa L.)cultivars under humid and low wind conditions in the field of Jianghan Basin, China [J]. Plant Production Science,2010,13:243-251.

    [17]ZHAO L, KOBAYASI K, HASEGAWA T,et al.Traits responsible for variation in pollination and seed set among six rice cultivars grown in a miniature paddy field with free air at a hot, humid spot in China [J]. Agriculture, Ecosystems and Environment, 2010, 139:110-115.

    [18]DONG SL(董少玲), ZHANG YH(張穎慧),ZHANG YD (張亞東),et al.Construction of molecular genetic linkage map based on a rice RIL population and detection of QTL for tiller angle(水稻重組自交系分子遺傳圖譜構(gòu)建及分蘗角的QTL 檢測)[J].Jiangsu Journal of Agricultural Sciences (江蘇農(nóng)業(yè)學(xué)報),2012,28(2):236-242.

    [19]WANG JK (王建康).Inclusive composite interval mapping of quantitative trait genes (數(shù)量性狀基因的完備區(qū)間作圖方法) [J]. Acta Agronomica Sinica(作物學(xué)報),2009,35(2):239-245.

    [20]MCCOUCH SR, CHO YG, YANO M,et al. Report on QTL nomenclature[J].Rice Genet Newsl,1997,14:11-13.

    [21]HE Y Q, YANG J, XU CG, et al. Genetic bases of instability of male sterility and fertility reversibility in photoperiod-sensitive genic male-sterile rice[J].Theoretical and Applied Genetics,1999,99:683-693.

    [22]WEI X J, XU J F, GUO H N, et al.DTH8 suppresses flowering in rice,influencing plant height and yield potential simultaneously [J]. Plant Physiology,2010,153(4):1747-1758.

    [23]YAN W H,WANG P,CHEN H X, et al.A major QTL, Ghd8, plays pleiotropic roles in regulating grain productivity,plant height, and heading date in rice[J].Molecular Plant,2011,4 (2):319-330.

    [24]DAI XD, DING YN, TAN L B, et al.LHD1, an allele of DTH8/Ghd8, controls late heading date in common wild rice(Oryza rufipogon)[J].Journal of Integrative Plant Biology, 2012, 54(10):790-799.

    [25]SHIBAYA T, NONOUE Y, ONO N, et al. Genetic interactions involved in the inhibition of heading by heading date QTL,Hd2 in rice under long-day conditions [J]. Theoretical and Applied Genetics,2011,123:1133-1143.

    [26]LIAN X, XING Y, YAN H, et al. QTLs for low nitrogen tolerance at seedling stage identified using a recombinant inbred line population derived from an elite rice hybrid [J]. Theoretical and Applied Genetics,2005,112:85-96.

    [27]CHEN H, WANG S, XING Y, et al.Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley [J].Proceedings of the National Academy of Sciences of the United States of America,2003,100(5):2544-2549.

    [28]SHI CL (石春林), JIN ZQ (金之慶),ZHENG JC(鄭建初),et al.Quantitative analysis on the effects of high temperature at meiosis stage on seed-setting rate of rice florets (減數(shù)分裂期高溫對水稻穎花結(jié)實率影響的定量分析) [J].Acta Agronomica Sinica (作物學(xué)報),2008,34(4):627-631.

    [29]SHI KY(時寬玉),CUI YW(崔永偉),HU RF (胡瑞法).Impact of high temperature at flowering on midseason rice yield(水稻花期高溫對產(chǎn)量的影響研究)[J].Journal of Agricultural Science and Technology(中國農(nóng)業(yè)科技導(dǎo)報),2009,2:78-83.

    [30]WANG CL(王才林),ZHONG WG(仲維功). Effects of high temperature on seed setting rate of rice and its prevention(高溫對水稻結(jié)實率的影響及其防御對策) [J]. Jiangsu Agricultural Sciences(江蘇農(nóng)業(yè)科學(xué)),2004,1:15-18.

    猜你喜歡
    江西農(nóng)業(yè)大學(xué)開花期結(jié)實率
    高寒草原針茅牧草花期物候變化特征及其影響因子分析
    江西農(nóng)業(yè)大學(xué)獸醫(yī)院
    江西農(nóng)業(yè)大學(xué)設(shè)計作品選登
    江西農(nóng)業(yè)大學(xué)建校115周年歷史回眸
    江西農(nóng)業(yè)大學(xué)獸醫(yī)院
    秈稻兩用核不育系異交結(jié)實率與花器官性狀的相關(guān)性分析
    利用野栽雜交分離群體定位水稻結(jié)實率QTLs
    不同品種油用型牡丹的光合與生理特性及其與結(jié)實率的相關(guān)性分析
    SOLVABILITY OF A PARABOLIC-HYPERBOLIC TYPE CHEMOTAXIS SYSTEM IN 1-DIMENSIONAL DOMAIN?
    初春氣象條件對蘋果開花期的影響分析
    国国产精品蜜臀av免费| 我的老师免费观看完整版| 免费黄网站久久成人精品| 亚洲av不卡在线观看| 51国产日韩欧美| 国产淫片久久久久久久久| 亚洲欧美日韩另类电影网站| 欧美 日韩 精品 国产| 狠狠精品人妻久久久久久综合| 国产乱来视频区| 国产老妇伦熟女老妇高清| 一边亲一边摸免费视频| 偷拍熟女少妇极品色| 国产精品三级大全| 十分钟在线观看高清视频www | 欧美三级亚洲精品| 国产淫语在线视频| 一级黄片播放器| 国产亚洲精品久久久com| 99久国产av精品国产电影| 中文字幕精品免费在线观看视频 | 男女免费视频国产| 大话2 男鬼变身卡| 亚洲av日韩在线播放| 国产精品一区二区性色av| 欧美日韩综合久久久久久| 大陆偷拍与自拍| 伦理电影大哥的女人| 老司机影院毛片| 亚洲精品视频女| 国产精品国产三级国产av玫瑰| 少妇裸体淫交视频免费看高清| 人妻人人澡人人爽人人| 亚洲国产成人一精品久久久| 亚洲国产日韩一区二区| 五月伊人婷婷丁香| 黄色怎么调成土黄色| 亚洲欧美中文字幕日韩二区| 一个人免费看片子| av有码第一页| 婷婷色综合大香蕉| 亚洲欧美日韩卡通动漫| 亚洲国产欧美日韩在线播放 | 日本av手机在线免费观看| 简卡轻食公司| 日韩精品免费视频一区二区三区 | 国产乱人偷精品视频| 亚洲性久久影院| 天天操日日干夜夜撸| 极品人妻少妇av视频| 日韩成人av中文字幕在线观看| 免费黄色在线免费观看| 国产在线男女| 91午夜精品亚洲一区二区三区| 一本—道久久a久久精品蜜桃钙片| 国产黄片视频在线免费观看| 国产精品伦人一区二区| 十八禁网站网址无遮挡 | 一级av片app| 国产精品久久久久久精品电影小说| av线在线观看网站| 性高湖久久久久久久久免费观看| 26uuu在线亚洲综合色| 99九九线精品视频在线观看视频| 熟女人妻精品中文字幕| 欧美97在线视频| 大陆偷拍与自拍| 深夜a级毛片| 亚洲精品国产成人久久av| 国内精品宾馆在线| 亚洲av在线观看美女高潮| 亚洲久久久国产精品| 亚洲真实伦在线观看| 日本猛色少妇xxxxx猛交久久| 性色avwww在线观看| 中文字幕免费在线视频6| 日日摸夜夜添夜夜添av毛片| 这个男人来自地球电影免费观看 | 在线 av 中文字幕| 精品视频人人做人人爽| 亚洲精品乱码久久久久久按摩| 精品午夜福利在线看| 午夜91福利影院| 亚洲国产成人一精品久久久| 国产精品一区二区在线观看99| 欧美日韩视频精品一区| 中文字幕av电影在线播放| 啦啦啦啦在线视频资源| 精品少妇黑人巨大在线播放| 欧美日韩精品成人综合77777| av一本久久久久| 麻豆成人午夜福利视频| 亚洲精品久久午夜乱码| 一本大道久久a久久精品| av线在线观看网站| 亚洲成色77777| 最黄视频免费看| 嫩草影院新地址| 少妇熟女欧美另类| 久久精品熟女亚洲av麻豆精品| 中文字幕人妻丝袜制服| 久久人人爽人人爽人人片va| 欧美xxxx性猛交bbbb| 久久精品熟女亚洲av麻豆精品| 国产精品一区二区性色av| 大码成人一级视频| 久久久久精品性色| 久久亚洲国产成人精品v| 久久久亚洲精品成人影院| 国产亚洲欧美精品永久| 最近的中文字幕免费完整| 精品视频人人做人人爽| 欧美亚洲 丝袜 人妻 在线| 丰满乱子伦码专区| 最近2019中文字幕mv第一页| 两个人免费观看高清视频 | 国产成人aa在线观看| 久久狼人影院| 亚洲av中文av极速乱| 菩萨蛮人人尽说江南好唐韦庄| 亚洲高清免费不卡视频| 国产高清三级在线| 亚洲av欧美aⅴ国产| 国产男女内射视频| 热99国产精品久久久久久7| 免费黄频网站在线观看国产| 亚洲欧美精品自产自拍| 久久人人爽人人爽人人片va| 亚洲精品第二区| 国产在线男女| 国产熟女午夜一区二区三区 | 在线亚洲精品国产二区图片欧美 | 欧美变态另类bdsm刘玥| 精品久久久精品久久久| 麻豆成人午夜福利视频| 亚洲精品日本国产第一区| 精品人妻熟女av久视频| videossex国产| 午夜91福利影院| 2021少妇久久久久久久久久久| 国产日韩欧美视频二区| 亚洲国产成人一精品久久久| 老女人水多毛片| 久久婷婷青草| 内射极品少妇av片p| 久久久久国产网址| 全区人妻精品视频| 22中文网久久字幕| 汤姆久久久久久久影院中文字幕| 又大又黄又爽视频免费| 日本wwww免费看| 18禁在线播放成人免费| 一区二区三区免费毛片| tube8黄色片| 三级国产精品欧美在线观看| 噜噜噜噜噜久久久久久91| 国产乱来视频区| 国产成人一区二区在线| av福利片在线| 能在线免费看毛片的网站| 十八禁高潮呻吟视频 | 亚洲av免费高清在线观看| 男女无遮挡免费网站观看| 亚洲av欧美aⅴ国产| 有码 亚洲区| 少妇熟女欧美另类| 久久女婷五月综合色啪小说| 国产亚洲欧美精品永久| 欧美3d第一页| 国产av精品麻豆| 国产精品人妻久久久影院| 中文乱码字字幕精品一区二区三区| 日韩精品免费视频一区二区三区 | 国产在线一区二区三区精| 性高湖久久久久久久久免费观看| 国产精品人妻久久久影院| 日韩 亚洲 欧美在线| 午夜福利,免费看| 免费观看a级毛片全部| 亚洲欧美日韩卡通动漫| 美女中出高潮动态图| 天天躁夜夜躁狠狠久久av| 男女国产视频网站| 中文字幕亚洲精品专区| 在线天堂最新版资源| 国产精品国产三级国产av玫瑰| av女优亚洲男人天堂| 赤兔流量卡办理| 男女免费视频国产| 如日韩欧美国产精品一区二区三区 | 男女无遮挡免费网站观看| 内射极品少妇av片p| 国产有黄有色有爽视频| 久久人妻熟女aⅴ| 精品久久久久久久久亚洲| 极品人妻少妇av视频| 国产亚洲最大av| 各种免费的搞黄视频| 精品久久国产蜜桃| 视频区图区小说| 亚洲av.av天堂| 一区二区三区四区激情视频| 午夜激情福利司机影院| 成人综合一区亚洲| 亚洲中文av在线| 免费观看在线日韩| 亚洲av成人精品一二三区| 女人久久www免费人成看片| 日韩一本色道免费dvd| 久久99蜜桃精品久久| www.色视频.com| 精品一区在线观看国产| 一级毛片我不卡| 超碰97精品在线观看| 青春草视频在线免费观看| 老司机影院毛片| 欧美日韩精品成人综合77777| 我要看日韩黄色一级片| av不卡在线播放| 内地一区二区视频在线| 人人妻人人爽人人添夜夜欢视频 | 免费久久久久久久精品成人欧美视频 | 能在线免费看毛片的网站| 欧美成人午夜免费资源| 亚洲一区二区三区欧美精品| 嫩草影院入口| a级片在线免费高清观看视频| 看非洲黑人一级黄片| 我要看黄色一级片免费的| 日韩欧美一区视频在线观看 | 精品亚洲乱码少妇综合久久| 在线看a的网站| 一级毛片久久久久久久久女| 在线观看人妻少妇| 日本av免费视频播放| 六月丁香七月| 免费看不卡的av| 精品久久久久久久久亚洲| 国产精品久久久久成人av| kizo精华| 我的老师免费观看完整版| 偷拍熟女少妇极品色| 天堂俺去俺来也www色官网| 十八禁网站网址无遮挡 | 久久久久久久亚洲中文字幕| 日韩视频在线欧美| 丰满迷人的少妇在线观看| 午夜老司机福利剧场| 丰满少妇做爰视频| 国产视频内射| h视频一区二区三区| 亚洲精品久久久久久婷婷小说| 国产亚洲91精品色在线| 青春草亚洲视频在线观看| 一二三四中文在线观看免费高清| 最近的中文字幕免费完整| 在线观看免费视频网站a站| 日本-黄色视频高清免费观看| 一区二区av电影网| 国产av国产精品国产| 中文字幕亚洲精品专区| 国产在线视频一区二区| 亚洲熟女精品中文字幕| 亚洲av电影在线观看一区二区三区| 久久精品夜色国产| 秋霞伦理黄片| 永久免费av网站大全| 又粗又硬又长又爽又黄的视频| 午夜福利影视在线免费观看| 国产成人精品一,二区| 欧美日韩综合久久久久久| 日韩强制内射视频| 国产色爽女视频免费观看| 久久99蜜桃精品久久| 最近手机中文字幕大全| 精品人妻熟女毛片av久久网站| 黑人高潮一二区| 韩国高清视频一区二区三区| 制服丝袜香蕉在线| 男男h啪啪无遮挡| 中文字幕久久专区| 国产精品秋霞免费鲁丝片| 午夜激情福利司机影院| 制服丝袜香蕉在线| 精品卡一卡二卡四卡免费| av专区在线播放| 少妇人妻 视频| 97精品久久久久久久久久精品| 成人亚洲精品一区在线观看| 成人18禁高潮啪啪吃奶动态图 | 啦啦啦啦在线视频资源| av网站免费在线观看视频| 91久久精品国产一区二区成人| 精品一区二区三卡| 亚洲av男天堂| 欧美成人精品欧美一级黄| 国产精品一区二区性色av| 久久99蜜桃精品久久| 亚洲精品视频女| 涩涩av久久男人的天堂| 久久久久久久久久人人人人人人| 中国三级夫妇交换| 亚洲四区av| 亚洲无线观看免费| 五月伊人婷婷丁香| 成人无遮挡网站| 国产高清有码在线观看视频| 午夜福利影视在线免费观看| 日本欧美视频一区| 国产精品一区二区性色av| 午夜免费鲁丝| 久久精品国产亚洲网站| 国产黄片美女视频| 一级a做视频免费观看| 久久99热6这里只有精品| 人妻制服诱惑在线中文字幕| 哪个播放器可以免费观看大片| 18禁在线无遮挡免费观看视频| 国产日韩欧美亚洲二区| 国产熟女欧美一区二区| 2018国产大陆天天弄谢| 少妇 在线观看| a级一级毛片免费在线观看| 日日啪夜夜撸| 啦啦啦视频在线资源免费观看| 国产精品麻豆人妻色哟哟久久| 亚洲精品日韩在线中文字幕| 亚洲av电影在线观看一区二区三区| 国产欧美日韩一区二区三区在线 | 国产亚洲91精品色在线| 精品少妇内射三级| 一级爰片在线观看| 中文天堂在线官网| av一本久久久久| 三级国产精品片| 黄色配什么色好看| 成人国产麻豆网| 五月天丁香电影| 免费看光身美女| 亚洲国产av新网站| 美女福利国产在线| 丁香六月天网| 永久网站在线| 18禁在线播放成人免费| 亚洲av不卡在线观看| 日韩,欧美,国产一区二区三区| 国产成人91sexporn| 国产免费视频播放在线视频| 中文字幕免费在线视频6| 欧美日韩一区二区视频在线观看视频在线| 精品久久国产蜜桃| 日本黄色片子视频| 色网站视频免费| 高清av免费在线| 性色av一级| 久久久久久久久久久免费av| 欧美xxⅹ黑人| 亚洲电影在线观看av| 午夜激情久久久久久久| 少妇 在线观看| 国产av码专区亚洲av| 成人18禁高潮啪啪吃奶动态图 | 最近中文字幕高清免费大全6| 日日啪夜夜爽| 男女啪啪激烈高潮av片| 久久综合国产亚洲精品| 久久久久久久国产电影| 日韩欧美 国产精品| 男男h啪啪无遮挡| 久久久欧美国产精品| 日本91视频免费播放| 午夜精品国产一区二区电影| 精品人妻偷拍中文字幕| 久久国产亚洲av麻豆专区| 观看免费一级毛片| 亚洲精品日韩在线中文字幕| 免费观看性生交大片5| 精品99又大又爽又粗少妇毛片| 久久久国产精品麻豆| 国产一区亚洲一区在线观看| 国产精品嫩草影院av在线观看| 久热这里只有精品99| 这个男人来自地球电影免费观看 | 久久99精品国语久久久| 校园人妻丝袜中文字幕| 国产在线一区二区三区精| 高清黄色对白视频在线免费看 | 日本91视频免费播放| 男女啪啪激烈高潮av片| 一级二级三级毛片免费看| 亚洲av成人精品一区久久| 国产精品秋霞免费鲁丝片| 亚洲国产成人一精品久久久| 少妇被粗大猛烈的视频| 中文字幕免费在线视频6| 一区在线观看完整版| 免费在线观看成人毛片| 免费高清在线观看视频在线观看| 亚洲欧美一区二区三区国产| 亚洲精品乱码久久久久久按摩| 国产精品久久久久久精品电影小说| 天堂中文最新版在线下载| 人妻人人澡人人爽人人| 欧美日韩一区二区视频在线观看视频在线| 亚洲va在线va天堂va国产| 国产白丝娇喘喷水9色精品| 高清不卡的av网站| 日韩熟女老妇一区二区性免费视频| 日本爱情动作片www.在线观看| 亚洲,欧美,日韩| 搡老乐熟女国产| 人人妻人人看人人澡| 欧美另类一区| 97超碰精品成人国产| 精品午夜福利在线看| 国产一区有黄有色的免费视频| 国产精品国产三级国产av玫瑰| 免费黄网站久久成人精品| 少妇丰满av| 在线亚洲精品国产二区图片欧美 | 中文字幕av电影在线播放| 成年人免费黄色播放视频 | 日韩电影二区| 国产国拍精品亚洲av在线观看| 欧美精品高潮呻吟av久久| 黑人高潮一二区| 午夜影院在线不卡| 亚洲国产欧美在线一区| 欧美一级a爱片免费观看看| 一本—道久久a久久精品蜜桃钙片| 国产日韩欧美亚洲二区| 黑人高潮一二区| 又黄又爽又刺激的免费视频.| 亚州av有码| 在线观看人妻少妇| 777米奇影视久久| 夜夜爽夜夜爽视频| 夫妻午夜视频| 中国美白少妇内射xxxbb| 久久ye,这里只有精品| 80岁老熟妇乱子伦牲交| 伦理电影免费视频| 人人妻人人爽人人添夜夜欢视频 | 久久久精品免费免费高清| 多毛熟女@视频| 少妇被粗大的猛进出69影院 | 只有这里有精品99| 丝袜在线中文字幕| 视频区图区小说| 久久精品国产亚洲av天美| www.色视频.com| 高清视频免费观看一区二区| 午夜日本视频在线| 性色av一级| 成人黄色视频免费在线看| 亚洲成人一二三区av| 欧美精品一区二区免费开放| 国产精品伦人一区二区| 最新中文字幕久久久久| 国产日韩欧美亚洲二区| av在线app专区| 国产精品国产三级专区第一集| 国产成人aa在线观看| 这个男人来自地球电影免费观看 | 亚洲欧美成人精品一区二区| 成人漫画全彩无遮挡| 久久av网站| 人人澡人人妻人| 亚洲久久久国产精品| 啦啦啦中文免费视频观看日本| 伦理电影大哥的女人| 日日摸夜夜添夜夜爱| 久久久国产精品麻豆| av国产久精品久网站免费入址| 在线天堂最新版资源| 2021少妇久久久久久久久久久| 两个人的视频大全免费| 最近2019中文字幕mv第一页| 婷婷色麻豆天堂久久| 欧美丝袜亚洲另类| 免费播放大片免费观看视频在线观看| 中文字幕人妻熟人妻熟丝袜美| av又黄又爽大尺度在线免费看| 黄色欧美视频在线观看| 日本vs欧美在线观看视频 | 天堂中文最新版在线下载| 岛国毛片在线播放| 日韩精品有码人妻一区| 我要看黄色一级片免费的| 国产在线免费精品| 我的女老师完整版在线观看| 久久久久久人妻| 日本色播在线视频| 亚洲精品成人av观看孕妇| 国产有黄有色有爽视频| 国产成人免费无遮挡视频| 国产成人午夜福利电影在线观看| 中文精品一卡2卡3卡4更新| 国产色爽女视频免费观看| www.色视频.com| 99热这里只有精品一区| 91久久精品电影网| 春色校园在线视频观看| 成人亚洲欧美一区二区av| 99久久综合免费| 国产精品99久久久久久久久| 久久ye,这里只有精品| 丁香六月天网| av福利片在线| 国产片特级美女逼逼视频| 少妇的逼水好多| www.色视频.com| 免费看日本二区| 日日啪夜夜撸| 简卡轻食公司| 高清午夜精品一区二区三区| 日韩中字成人| 亚洲欧美清纯卡通| 少妇高潮的动态图| 中国国产av一级| 精品一品国产午夜福利视频| 99热网站在线观看| 亚洲精品国产av蜜桃| 深夜a级毛片| 国产精品国产三级国产专区5o| 九九在线视频观看精品| 偷拍熟女少妇极品色| 午夜影院在线不卡| av福利片在线| 嘟嘟电影网在线观看| 亚洲精品乱码久久久久久按摩| 在线 av 中文字幕| 一区二区av电影网| 性色av一级| 国产 一区精品| 久久久久国产精品人妻一区二区| 久久免费观看电影| 中文字幕精品免费在线观看视频 | 亚洲精品日本国产第一区| 精品熟女少妇av免费看| 热99国产精品久久久久久7| 肉色欧美久久久久久久蜜桃| 国语对白做爰xxxⅹ性视频网站| 亚洲电影在线观看av| 女性被躁到高潮视频| 高清黄色对白视频在线免费看 | 国产午夜精品一二区理论片| a级毛片免费高清观看在线播放| 午夜免费男女啪啪视频观看| 久久ye,这里只有精品| 国产精品人妻久久久久久| 搡老乐熟女国产| 日韩成人伦理影院| 久久人人爽av亚洲精品天堂| 欧美老熟妇乱子伦牲交| 多毛熟女@视频| 精品视频人人做人人爽| 免费不卡的大黄色大毛片视频在线观看| 妹子高潮喷水视频| 国产精品偷伦视频观看了| 国产中年淑女户外野战色| 国产精品一区二区性色av| 热99国产精品久久久久久7| 中文字幕人妻丝袜制服| 精品卡一卡二卡四卡免费| 久久女婷五月综合色啪小说| 国精品久久久久久国模美| 国产欧美亚洲国产| 最近中文字幕高清免费大全6| 99国产精品免费福利视频| 久久久精品94久久精品| tube8黄色片| 菩萨蛮人人尽说江南好唐韦庄| 香蕉精品网在线| 欧美日韩在线观看h| 99热这里只有是精品在线观看| 汤姆久久久久久久影院中文字幕| 亚洲美女搞黄在线观看| 国产亚洲91精品色在线| 不卡视频在线观看欧美| 亚洲四区av| 婷婷色麻豆天堂久久| 99久久人妻综合| 成人特级av手机在线观看| 国产探花极品一区二区| av国产久精品久网站免费入址| 91午夜精品亚洲一区二区三区| 免费黄网站久久成人精品| 国产男女内射视频| 欧美激情极品国产一区二区三区 | 久久6这里有精品| 欧美三级亚洲精品| 超碰97精品在线观看| 日韩三级伦理在线观看| 亚洲,欧美,日韩| 国产亚洲精品久久久com| 欧美日韩在线观看h| 亚洲国产毛片av蜜桃av| 视频中文字幕在线观看| 一级毛片黄色毛片免费观看视频| 国产精品一二三区在线看| 成人国产av品久久久| 日韩欧美一区视频在线观看 | 三级国产精品欧美在线观看| 91精品国产九色| 啦啦啦在线观看免费高清www| 麻豆成人av视频| 一区二区三区乱码不卡18| 免费人妻精品一区二区三区视频| 亚洲国产精品国产精品| 我要看日韩黄色一级片| 一级毛片黄色毛片免费观看视频| 日本黄色片子视频| 亚洲精品色激情综合| 亚洲欧美日韩东京热|