• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    飛秒時(shí)間分辨的光電子譜對(duì)苯S2態(tài)的超快動(dòng)力學(xué)研究

    2015-12-05 06:29:43環(huán)
    物理化學(xué)學(xué)報(bào) 2015年9期
    關(guān)鍵詞:物理

    沈 環(huán) 張 冰

    (1華中農(nóng)業(yè)大學(xué)理學(xué)院, 武漢 430070;2中國(guó)科學(xué)院武漢物理與數(shù)學(xué)研究所, 波譜與原子分子物理國(guó)家重點(diǎn)實(shí)驗(yàn)室, 武漢 430071)

    飛秒時(shí)間分辨的光電子譜對(duì)苯S2態(tài)的超快動(dòng)力學(xué)研究

    沈 環(huán)1,*張 冰2

    (1華中農(nóng)業(yè)大學(xué)理學(xué)院, 武漢 430070;2中國(guó)科學(xué)院武漢物理與數(shù)學(xué)研究所, 波譜與原子分子物理國(guó)家重點(diǎn)實(shí)驗(yàn)室, 武漢 430071)

    結(jié)合飛秒時(shí)間分辨的質(zhì)譜技術(shù)與時(shí)間分辨的光電子影像技術(shù)對(duì)苯S2激發(fā)態(tài)的超快動(dòng)力學(xué)進(jìn)行了研究.苯分子吸收兩個(gè)400 nm的光子被激發(fā)到S2態(tài), 之后再用一個(gè)267 nm的光子對(duì)其進(jìn)行探測(cè). 獲得的母體離子產(chǎn)率隨泵浦探測(cè)時(shí)間延遲的變化曲線包含了兩個(gè)不同的時(shí)間壽命組分. 第一個(gè)時(shí)間壽命組分(90 ± 1) fs被歸納為S2態(tài)到S1/S0態(tài)的內(nèi)轉(zhuǎn)換過程; 第二個(gè)時(shí)間壽命組分(5.0 ± 0.2) ps被歸納為S1態(tài)的衰減過程. 實(shí)驗(yàn)中觀察到的第二個(gè)壽命組分小于早前的研究結(jié)果, 這表明了在S1態(tài)的衰減過程中還可能存在其他的過程. 從時(shí)間分辨的光電子影像提取得到的光電子能譜中發(fā)現(xiàn)了一個(gè)新的失活過程, 該過程被歸結(jié)為激發(fā)態(tài)S1的振動(dòng)態(tài)與“熱”三重態(tài)T3之間的系間交叉過程.

    時(shí)間分辨; 光電子能譜; 苯分子; 內(nèi)轉(zhuǎn)換; 系間交叉

    1 Introduction

    The excited-state dynamics of benzene have received a lot of attention since benzene is the prototype of aromatic molecules.1–16In the UV region, the first absorption band is locatedaround 250 nm. It consists of several separated peaks due to different vibronic transitions.17The second absorption band is located around 200 nm. It is a broad bump without distinguishable structure. The band origins of the first three singlet excited states were measured to be 4.76, 6.03, and 6.87 eV, respectively.17As well as the singlet states, the first three triplet states were also observed at 3.67, 4.59, and 5.47 eV by electron energy loss spectroscopy.18

    Compared to the steady state spectroscopy,17,18the ultrafast dynamics of benzene is relatively unclear. As early as the 1970s, Collomon et al.1found that the lifetime of S1state ranged between 60 and 120 ns. Later, this lifetime was also found to be dependent on the symmetry of the respective excited vibrational state.2,3When the excess energy was above 3000 cm–1, a step-like increase of the decay rate was found and this sudden change was referred as “channel 3”.19Initially, internal conversion from S1state to S0state was proposed to be responsible for the increasing decay.4,11Lately, intersystem crossing to triplet state was also found to be important in this decay process.12,13

    In addition to the S1state, S2state is another focus of the study. Radloff and coworkers14,15measured the lifetime of benzene on the S2state by time-resolved time-of-flight mass spectra and time-resolved photoelectron spectroscopy. They found two lifetime constants from the time-dependent yield of benzene ion. The dominant channel, which was responsible for > 90% of the decay, was due to the internal conversion from S2to S1/S0within ~50 fs. The minor component, which was relatively slow, was due to decay from S1to S0. Suzuki et al.16also studied the ultrafast decay of S2state. In order to learn the ultrafast decay of the internal conversion process, they pushed their time resolution to 22 fs and they found that the internal conversion process only took place within (48 ± 4) fs on the S2state.

    In this paper, we present the ultrafast dynamics study of benzene on the S2state. The molecule is excited to the S2state by two 400 nm photons, and probed subsequently by photoionization with a 267 nm photon. The photoion yield is recorded as the pump-probe delay. The generated photoelectrons are also measured using photoelectron imaging. The time-dependent ion yield and the time-dependent photoelectron spectra allow us to trace the evolution of the excited-state dynamics simultaneously.

    2 Experimental methods

    The experimental setup used here has been described in detail elsewhere.20,21In brief, ~5% benzene is seeded in He carrier gas. The mixture is expanded through a pulsed valve which operates at 10 Hz. After passing a skimmer, which separates the source chamber from the ionization chamber, the molecular beam is interacted by the collinearly propagated pump and probe laser beams at the midway between the repeller and the extractor plates of the electrostatic lens. The generated photoions and photoelectrons are accelerated in the electric field and detected by a two-dimensional position sensitive imaging detector. In order to minimize the effect of the earth's magnetic field on the photoelectron trajectory, a double-layer μ-metal shield is installed along the axis of the time-of-flight chamber. A photomultiplier tube and a 100 MHz digital oscilloscope (TDS 2012, Tektronix) is used to acquire the time-of-flight mass spectrum of the photoions, while a charge coupled device (CCD) camera is used to collect the photoelectron image.

    The laser source employed here is a regenerative amplified Ti:sapphire femtosecond laser system (coherent, Legend). The Ti:sapphire oscillator is pumped by the second harmonic of a CW Nd:YVO4 laser. A seed beam is generated and then amplified by a Nd:YLF laser pumped regenerative amplifier to generate a ~50 fs, 1 mJ pulse centered at 800 nm with a repetition rate of 1 kHz. The fundamental beam is split into two arms. One arm is frequency doubled to 400 nm with a bandwidth of 6 nm by a thin BBO (Beta BaB2O4) and it is used as the pump beam. The 267 nm probe beam is produced by sum frequency of the second harmonic and the fundamental. The probe beam is optically delayed with respect to the pump beam using a motorized linear translational stage (PI, M-126.CG1), which is controlled by a personal computer. The whole apparatus has a timeresolution of ~100 fs. The polarization of the pump and probe pulses is set to be vertical to the optical table and parallel to the face of the imaging detector. Both laser beams are focused using a 25-cm focal-length quartz lens. The typical power used was < 3 μJ for both beams. Each photoelectron image is accumulated over 40000 laser shots, and the background is removed by subtracting the signal at negative time delay. The photoelectron kinetic energy is calibrated using (2 + 1) resonance-enhanced multiphoton ionization of iodine atom.22

    3 Results and discussion

    3.1 Transient ion signal

    Fig.1 Yield of C6as the pump-probe time delay

    Fig.1 displays the time-dependent yield of the benzene parent ion while scanning the delay between the 400 and 267 nm femtosecond pulses. Positive time delay here means that the 400 nm pulse is ahead of the 267 nm pulse. It is very obvious that the time dependent trace consists of two components, oneis a fast decay and the other one is relatively slow. After a careful data fitting, we reconstruct the trace with two exponential decay functions, i.e., a fast decay with a lifetime of (90 ± 1) fs and a slow decay with a lifetime of (5.0 ± 0.2) ps.

    As shown in previous steady-state absorption measurement,17benzene did not have any absorption at 267 nm or after 300 nm. Thus, one photon excitation with either a 400 nm photon or a 267 nm photon is not going to populate the molecule to its electronic excited state. On the other hand, the ionization potential of benzene is only 9.24 eV.23Two 267 nm photons or three 400 nm photons are energetic enough to ionize the parent molecule. However, we barely find any parent ion with single pulse under our experimental condition. Therefore, we believe that exciting the molecule with two 400 nm photons followed by ionization with one 267 nm photon is the mechanism to produce the parent ion. This scheme is also supported by the excitedstate lifetime analysis and the photoelectron spectrum, as discussed in the following paragraphs.

    As shown by Hiraya and Shobatake,17the energy levels of the first three excited states of benzene were located at 4.76, 6.03, and 6.87 eV, respectively. After absorbing two photons at 400 nm (hv400nm= 3.10 eV), benzene molecule is excited to the S2state. For S2state excitation, Radloff et al.14,15found two decay constants, τ1= 50 fs and τ2= 7.6 ps. The authors claimed that S2state was immediately deactivated through a two-step deactivation mechanism. A direct internal conversion to either the S1state or the vibrationally hot ground state was the fast one. The slow one was attributed to the depopulation from the vibrational excited S1state to the ground state. For the fast component, both experiments find that it decays within 100 fs. The discrepancy is due to the limited time resolution of both experiments. However, the decay of the slow component is different. Their result is 1.5 times longer than ours. This difference is important since it implies that the depopulation of the vibrational excited S1state includes other mechanisms besides the internal conversion to the ground state. Due to the similarity of the detection scheme and the probe wavelength in both experiments, it is likely that the difference is induced by the pump scheme. The vibrational-state population on the S2state and the ionization continuum in our experiment are different from theirs because we use two-photon transition instead of one-photon transition.

    Fig.2 Transient photoelectron images in the (2 + 1') pump-probe process at different time delays

    3.2 Transient photoelectron images

    The photoelectron images resulted from (2 + 1') pump-probe process at different time delays are shown in Fig.2. The left part of each image is the two-dimensional (2D) raw image. These raw images are the two-dimensional projections of the three-dimensional (3D) speed and angular distributions of the photoelectrons. Giving the fact that the distributions of the photoelectrons have cylindrical symmetry around the polarization axis of the photolysis laser, a full three-dimensional photoelectron image can be reconstructed by using the basis-set expansion method (BASEX),24as shown in the right half of each image in Fig.2. Thus, the speed distributions of the photoelectrons P(υe-) are obtained from the angle integration of the reconstructed image as a function of the radial distance from the center, as shown in Fig.3. The observed images consist of two rings with differentradii. These rings are corresponding to the kinetic energy peaks that are located at 0.80 and 1.40 eV, named as peaks 1 and 2, respectively. Due to the limited S/N (signal-to-noise) ratio of photoelectron images, we neglect those peaks with photoelectron kinetic energy lower than 0.5 eV.

    The kinetic energy of a photon-released electronis related to the photon energy and the corresponding internal energy of the related ion,

    where, hν is the photon energy of the pump (2 × 3.10 eV) or the probe (4.65 eV),is the internal energy of the benzene ion, and the IP is the ionization potential of benzene molecule (9.24 eV).23

    An energy scheme for the benzene molecule is illustrated in Fig.4. After absorbing two photons at 400 nm (6.20 eV, 0.17 eV above the band origin of the S2state), the benzene molecule is excited to the vibrational excited state of S2. After absorbing another photon at 267 nm, the maximum photoelectron kinetic energy that can be obtained by the photoelectron is 1.61 eV (2 × 3.10 + 4.65 – 9.24 = 1.61 eV). As show in Fig.3, peak 2 is centred at 1.40 eV. That means the parent ion has an internal energy of 0.21 eV. According to the Frank-Condon principle, molecule prefers to keep its nuclear geometry during the ionization process. Therefore, we attribute peak 2 to direct ionization from the vibrational excited state of S2. With increasing the time delay, the intensity of both peaks is decreasing. But peak 2shows a relative faster decay than peak 1. The faster decay of peak 2 has also been observed by Radloff et al.14,15using timeresolved photoelectron spectroscopy. They concluded that this process was the ultrafast internal conversion from S2to S1/S0state. Although the decay ratio of S2to S1is small, this ultrafast process can be observed by the time-dependent photoelectron spectroscopy.

    Fig.3 Distributions of the photoelectron kinetic energy obtained from photoelectron images at different time delays

    Fig.4 Schematic diagram of the relaxation dynamics for benzene with two photon excitation at 400 nm

    Besides peak 2, the other peak centred at 0.80 eV (peak 1) is newly observed in our current study. As already mentioned previously, peak 1 has a different decay tendency compared to peak 2, indicating that it is not derived from S2state. The excitation of the benzene molecule with a total photon energy of 6.20 eV leads to a vibrational energy of 1.44 eV in the S1state after internal conversion from the S2state. If peak 1 resulted from this hot S1state, the photoelectron kinetic energy should be around at 0.17 eV, which has been observed by Radloff et al.14,15Therefore, we exclude the probability that the peak 1comes from the hot S1state. On the other hand, the depopulation of the S2state with a time constant of (90 ± 1) fs is due to the internal conversion to the S1/S0state. But the hot S0state cannot be observed with our probe wavelength under the current experimental condition. Thus, we also excluded the probability that peak 1 comes from the hot S0state.

    Previously, the first three triplet states, T1, T2, and T3, have been observed at 3.67, 4.59, and 5.47 eV, respectively.18It is worth noticing that the ion corresponding to peak 1 has an internal energy of about 0.80 eV, which is almost equal to the interval between the total pump energy and the energy level of the T3state (2 × 3.10 – 5.47 = 0.73 eV). Thus, it is likely that peak 1 comes from ionization of the vibrational excited T3state.

    As mentioned in the last section, the long-lived component with a lifetime of (5.0 ± 0.2) ps displays a faster decay than that observed by Radloff et al. That means the depopulation of the hot S1state is not only caused by the internal conversion from S1to S0state as observed previously,11,13–15but also by other ultrafast processes which may promote the decay rate. The investigations of excited benzene have shown that the lifetime of S1state depends strongly on the vibronic excess energy, regardless of whether the energy was obtained by direct or indirect excitation. When molecules were excited to 3000 cm–1above the S1state, the decay rate had a sudden increase, which may be caused by a fast intramolecular vibrational redistribution or an intersystem crossing from the optical bright state to the dark state.1–5Recently, Parker et al.13,25studied the ultrafast dynamics of excited state S1of benzene using time-resolved photoelectron spectroscopy at the onset of “channel 3”. After exciting thebenzene molecule by one 243 nm photon, an ultrafast intersystem crossing from the initially populated S1state to the optical dark triplet states T1and T2has been observed. A fast component with a lifetime of 230 fs is assigned to the quick decay from the Franck-Condon region of S1state to those triplet states. In this work, the internal conversion from the initially excited S2state to the hot S1state leads to an excess energy of 1.45 eV above the S1state. With higher excess energy, the probability of intersystem crossing between the vibrational excited S1state and those triplet states is largely increased. Since the lifetime of the long-lived component is shorter than Radloff's results, we propose that this intersystem crossing process increases the decay rate of the vibrational excited S1state. Furthermore, the peak position of peak 1 agrees well with ionization of the hot triplet state T3. Therefore, we believe that an intersystem crossing from the vibrational excited S1state to the hot triplet state T3occurred in the depopulated process.

    4 Conclusions

    The ultrafast dynamics of benzene on the excited state S2have been studied by femto-second time-resolved photoelectron imaging. The benzene molecule is excited to the S2state by two 400 nm photons, and probed subsequently by photoionization with 267 nm photon. The time-dependent yield of benzene ion consists of two components. The fast component is assigned to the ultrafast internal conversion from S2state to the vibrational excited S1state and the hot ground state, while the slow component is attributed to the depopulation of S1state after conversion from S2state. Two photoelectron kinetic energy peaks are extracted from the photoelectron imaging. The higher kinetic energy peak with a relative faster decay is the ionization on the S2state, while the lower photoelectron kinetic energy with a relative slow decay is attributed to the ionization from the triplet state T3after an intersystem crossing from the vibrational excited S1state. The faster decay of the S1state is rationalized by the intersystem crossing of the vibrational excited S1state to the triplet state T3.

    (1)Callomon, J. H.; Dunn, T. M.; Mills, I. M. Philos. Trans. R. Soc. London A 1966, 259, 499. doi: 10.1098/rsta.1966.0023

    (2)Spears, G. K.; Rice, S. J. Chem. Phys. 1971, 55, 5561. doi: 10.1063/1.1675724

    (3)Wunsch, L.; Neusser, H. J.; Schlag, E. W. Chem. Phys. Lett. 1975, 32, 210. doi: 10.1016/0009-2614(75)85105-0

    (4)Palmer, I. J.; Ragazos, I. N.; Bernardi, F.; Olivucci, M.; Robb, M. A. J. Am. Chem. Soc. 1993, 115, 673. doi: 10.1021/ja00055a042

    (5)Sauer, P.; Xie, J. R.; Dou, Y. J. Mod. Optic. 2006, 53, 2099. doi: 10.1080/09500340600917674

    (6)Worth, G. A.; Carley, R. E.; Fielding, H. H. Chem. Phys. 2007, 338, 220. doi: 10.1016/j.chemphys.2007.03.005

    (7)Kuzmin, S. L.; Wesolowski, M. J.; Duley, W. W. Applied Optics 2013, 52, 8169. doi: 10.1364/AO.52.008169

    (8)Qiu, X. J.; Qin, C. C.; W, J.; Zhang, B. Phys. Rev. A 2012, 86, 032505.

    (9)Yin, S. H.; Liu, H. P.; Zhang, J. Y.; Jiang, B.; Wang, L.; Sha, G. H.; Lou, N. Q. Chinese Journal of Chemical Physics 2003, 16, 171.

    (10)Yuan, L. W.; Zhu, J. Y.; Wang, Y. Q.; Wang, L.; Bai, J. L.; He, G. Z. Chem. Phys. Lett. 2005, 410, 352. doi: 10.1016/j.cplett. 2005.05.103

    (11)Clara, M.; Hellerer, T.; Neusser, H. J. Applied Physics B-Lasers and Optics 2000, 71, 431. doi: 10.1007/s003400000347

    (12)Cogan, S.; Haas, Y.; Zilberg, S. J. Photochem. Photobiol. A 2007, 190, 200. doi: 10.1016/j.jphotochem.2007.02.005

    (13)Minns, R. S.; Parker, D. S. N.; Penfold, T. J.; Worth, G. A.; Fielding, H. H. Phys. Chem. Chem. Phys. 2010, 12, 15607.

    (14)Radloff, W.; Freudenberg, T.; Ritze, H.; Stert, V.; Noack, F.; Hertel, I. V. Chem. Phys. Lett. 1996, 261, 301. doi: 10.1016/0009-2614(96)00972-4

    (15)Radloff, W.; Stert, V.; Freudenberg, T.; Hertel, I. V.; Jouvet, C.; Dedonder-Lardeux, C.; Solgadi, D. Chem. Phys. Lett. 1997, 281, 20. doi: 10.1016/S0009-2614(97)01142-1

    (16)Suzuki, Y. I.; Horio, T.; Fuji, T.; Suzuki, T. J. Chem. Phys. 2011, 134, 184313_1. doi: 10.1063/1.3586809

    (17)Hiraya, A.; Shobatake, K. J. Chem. Phys. 1991, 94, 7700. doi: 10.1063/1.460155

    (18)Swiderek, P.; Michaud, M.; Sanche, L. J. Chem. Phys. 1996, 105, 6724. doi: 10.1063/1.471852

    (19)Penfold, T. J.; Spesyvtsev, R.; Kirkby, O. M. J. Chem. Phys. 2012, 137, 204310. doi: 10.1063/1.4767054

    (20)Eppink, A. T. J. B.; Parker, D. H. Rev. Sci. Instrum. 1997, 68, 3477. doi: 10.1063/1.1148310

    (21)Hua, L. Q.; Shen, H.; Hu, C. J.; Zhang, B. J. Chem. Phys. 2008, 129, 244308. doi: 10.1063/1.3047756

    (22)Shen, H.; Hua, L.; Hu, C.; Zhang, B. Journal of Molecular Spectroscopy 2009, 257, 200. doi: 10.1016/j.jms.2009.08.003

    (23)Nemeth, G. I.; Selzle, H. L.; Schlag, E. W. Chem. Phys. Lett. 1993, 215, 151. doi: 10.1016/0009-2614(93)89279-Q

    (24)Dribinski, V.; Ossadtchi, A.; Mandelshtam, V. A.; Reisler, H. Rev. Sci. Instrum. 2002, 73, 2634. doi: 10.1063/1.1482156

    (25)Parker, D. S. N.; Minns, R. S.; Phefold, T. J.; Worth, G. A.; Fielding, H. H. Chem. Phys. Lett. 2009, 469, 43. doi: 10.1016/ j.cplett.2008.12.069

    Ultrafast Dynamics of Benzene on the S2State Investigated by Femtosecond Time-Resolved Photoelectron Spectroscopy

    SHEN Huan1,*ZHANG Bing2
    (1College of Science, Huazhong Agricultural University, Wuhan 430070, P. R. China;2State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China)

    The ultrafast dynamics of benzene on the S2state have been investigated by femtosecond time-resolved mass spectroscopy coupled with photoelectron imaging. The benzene molecule was excited to the S2state by two 400 nm photons, and subsequently probed by one 267 nm photon. The timedependent ion yield of the parent ion consists of two components with different lifetimes. The first component at (90 ± 1) fs is because of internal conversion from the S2state to the S1/S0state. The second one, i.e., (5.0 ± 0.2) ps, is due to decay of the S1state. The observed lifetime of the second component is shorter than previous results, indicating the existence of an additional decay process. With photoelectron spectra extracted from the time-resolved photoelectron imaging, this newly found deactivated process is assigned to intersystem crossing from the vibrational excited S1state to the hot triplet state T3.

    Time-resolved; Photoelectron spectroscopy; Benzene molecule; Internal conversion; Intersystem crossing

    O644

    10.3866/PKU.WHXB201507061

    Received: April 10, 2015; Revised: July 2, 2015; Published on Web: July 6, 2015.

    *Corresponding author. Email: shenhuan@mail.hzau.edu.cn; Tel: +86-27-87282197.

    The project was supported by the National Natural Science Foundation of China (21403080).

    國(guó)家自然科學(xué)基金(21403080)資助項(xiàng)目

    ? Editorial office of Acta Physico-Chimica Sinica

    猜你喜歡
    物理
    物理中的影和像
    只因是物理
    井岡教育(2022年2期)2022-10-14 03:11:44
    高考物理模擬試題(五)
    高考物理模擬試題(二)
    高考物理模擬試題(四)
    高考物理模擬試題(三)
    留言板
    如何打造高效物理復(fù)習(xí)課——以“壓強(qiáng)”復(fù)習(xí)課為例
    處處留心皆物理
    我心中的物理
    国产精品一区二区在线不卡| 热99久久久久精品小说推荐| 天堂俺去俺来也www色官网| 精品免费久久久久久久清纯 | 亚洲一卡2卡3卡4卡5卡精品中文| cao死你这个sao货| 亚洲第一青青草原| 国产91精品成人一区二区三区 | 午夜福利免费观看在线| 日韩视频在线欧美| 日韩电影二区| 男女午夜视频在线观看| 在线 av 中文字幕| 精品久久久精品久久久| 欧美激情久久久久久爽电影 | 欧美精品人与动牲交sv欧美| 51午夜福利影视在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲av日韩精品久久久久久密| 亚洲精品国产精品久久久不卡| 国内毛片毛片毛片毛片毛片| 成人免费观看视频高清| 国产免费现黄频在线看| 老汉色av国产亚洲站长工具| 黑丝袜美女国产一区| 精品一区二区三卡| 午夜影院在线不卡| 欧美午夜高清在线| 两个人免费观看高清视频| 一个人免费看片子| av天堂在线播放| 丝瓜视频免费看黄片| 女人高潮潮喷娇喘18禁视频| tube8黄色片| 久久亚洲精品不卡| 亚洲精品美女久久av网站| 国产精品国产av在线观看| 国产一区二区三区综合在线观看| 国产欧美亚洲国产| 日本黄色日本黄色录像| 久久精品人人爽人人爽视色| 欧美日本中文国产一区发布| 啦啦啦 在线观看视频| 国产成人精品在线电影| 亚洲五月色婷婷综合| 啪啪无遮挡十八禁网站| 最近最新中文字幕大全免费视频| 后天国语完整版免费观看| 久久久精品国产亚洲av高清涩受| 久久综合国产亚洲精品| 国产精品熟女久久久久浪| 97人妻天天添夜夜摸| 2018国产大陆天天弄谢| 日本精品一区二区三区蜜桃| 国产亚洲精品久久久久5区| 国产色视频综合| 日韩一卡2卡3卡4卡2021年| av一本久久久久| 91精品国产国语对白视频| 亚洲avbb在线观看| 日韩欧美一区视频在线观看| 欧美精品亚洲一区二区| 成年av动漫网址| 久久久精品免费免费高清| 女人久久www免费人成看片| 啪啪无遮挡十八禁网站| 国产成人av教育| 欧美另类一区| 99久久99久久久精品蜜桃| 99热全是精品| 免费黄频网站在线观看国产| 亚洲成av片中文字幕在线观看| 国产免费福利视频在线观看| 麻豆国产av国片精品| 美女扒开内裤让男人捅视频| 国产免费视频播放在线视频| 水蜜桃什么品种好| 人人妻,人人澡人人爽秒播| 亚洲精品一二三| 国产精品av久久久久免费| 欧美日韩成人在线一区二区| 女人精品久久久久毛片| 黄色a级毛片大全视频| 五月天丁香电影| 成年av动漫网址| 久久亚洲国产成人精品v| 久久人妻熟女aⅴ| 波多野结衣一区麻豆| 美女扒开内裤让男人捅视频| 王馨瑶露胸无遮挡在线观看| 国产精品一二三区在线看| 免费少妇av软件| 国产精品.久久久| 又大又爽又粗| 各种免费的搞黄视频| av国产精品久久久久影院| 下体分泌物呈黄色| 精品亚洲乱码少妇综合久久| 精品乱码久久久久久99久播| 亚洲七黄色美女视频| 免费在线观看黄色视频的| 成人影院久久| 国产精品久久久久成人av| 丝袜在线中文字幕| 欧美黑人精品巨大| 国产精品av久久久久免费| 麻豆国产av国片精品| √禁漫天堂资源中文www| 精品国产国语对白av| 不卡一级毛片| 人妻 亚洲 视频| 俄罗斯特黄特色一大片| 欧美日韩福利视频一区二区| 菩萨蛮人人尽说江南好唐韦庄| 法律面前人人平等表现在哪些方面 | 久久av网站| 国产伦人伦偷精品视频| av福利片在线| 国产日韩一区二区三区精品不卡| 老司机亚洲免费影院| 18禁观看日本| 国产精品二区激情视频| 啪啪无遮挡十八禁网站| 亚洲精品乱久久久久久| 亚洲成人手机| 黄色 视频免费看| 午夜福利一区二区在线看| 精品国产乱码久久久久久男人| 精品熟女少妇八av免费久了| 欧美大码av| 亚洲午夜精品一区,二区,三区| 日本五十路高清| 亚洲国产日韩一区二区| 久久精品成人免费网站| 精品久久蜜臀av无| 丝袜美足系列| 韩国高清视频一区二区三区| 久热这里只有精品99| 肉色欧美久久久久久久蜜桃| 热99re8久久精品国产| 精品国产乱子伦一区二区三区 | 色精品久久人妻99蜜桃| 久久久久国产一级毛片高清牌| 美女福利国产在线| 婷婷成人精品国产| 亚洲成人国产一区在线观看| 亚洲成人国产一区在线观看| 中亚洲国语对白在线视频| 国产成人啪精品午夜网站| 99久久综合免费| 岛国在线观看网站| av在线app专区| 国产在线免费精品| 亚洲熟女精品中文字幕| 国产高清国产精品国产三级| 亚洲一区中文字幕在线| 波多野结衣av一区二区av| 天天添夜夜摸| 国产极品粉嫩免费观看在线| 色视频在线一区二区三区| 侵犯人妻中文字幕一二三四区| 美女午夜性视频免费| 日韩欧美免费精品| 精品久久久久久电影网| 国产1区2区3区精品| 欧美日韩黄片免| 18禁国产床啪视频网站| 电影成人av| 精品欧美一区二区三区在线| 91九色精品人成在线观看| 欧美+亚洲+日韩+国产| 黄色视频不卡| 国产欧美日韩一区二区精品| 9色porny在线观看| a 毛片基地| 美女午夜性视频免费| 天堂中文最新版在线下载| 桃花免费在线播放| 老熟妇仑乱视频hdxx| 国产成人av激情在线播放| 80岁老熟妇乱子伦牲交| 久久久国产精品麻豆| 丝袜美腿诱惑在线| 亚洲色图 男人天堂 中文字幕| 国产精品亚洲av一区麻豆| 日日夜夜操网爽| 精品少妇一区二区三区视频日本电影| 亚洲国产毛片av蜜桃av| 国产一区二区三区综合在线观看| 久久久久久久久久久久大奶| 亚洲精品乱久久久久久| 国精品久久久久久国模美| 久久女婷五月综合色啪小说| 一本色道久久久久久精品综合| 人人澡人人妻人| 丝袜脚勾引网站| 黑人巨大精品欧美一区二区蜜桃| 日本五十路高清| 国产精品自产拍在线观看55亚洲 | 久久这里只有精品19| 日本vs欧美在线观看视频| 欧美日韩亚洲国产一区二区在线观看 | 国产精品香港三级国产av潘金莲| 啦啦啦 在线观看视频| 国产成人影院久久av| 国产精品免费大片| 亚洲中文日韩欧美视频| 悠悠久久av| 亚洲精品一二三| 麻豆av在线久日| 一级毛片电影观看| 色老头精品视频在线观看| 国产精品麻豆人妻色哟哟久久| 亚洲中文av在线| 亚洲美女黄色视频免费看| 国产成人啪精品午夜网站| 一区二区三区乱码不卡18| 极品少妇高潮喷水抽搐| 一个人免费在线观看的高清视频 | 十分钟在线观看高清视频www| 久久青草综合色| 国产精品国产三级国产专区5o| 在线观看免费视频网站a站| 中文字幕人妻丝袜制服| 亚洲天堂av无毛| 久久人人爽av亚洲精品天堂| 超碰成人久久| av在线老鸭窝| 俄罗斯特黄特色一大片| 老司机午夜福利在线观看视频 | 亚洲第一欧美日韩一区二区三区 | 中文字幕最新亚洲高清| 日韩 亚洲 欧美在线| 人妻一区二区av| 久久香蕉激情| 一区二区三区四区激情视频| 亚洲国产欧美日韩在线播放| 在线精品无人区一区二区三| 久9热在线精品视频| 国产1区2区3区精品| 99国产极品粉嫩在线观看| 肉色欧美久久久久久久蜜桃| 十八禁人妻一区二区| 成人18禁高潮啪啪吃奶动态图| 九色亚洲精品在线播放| 啦啦啦免费观看视频1| 中文字幕另类日韩欧美亚洲嫩草| 一本—道久久a久久精品蜜桃钙片| 精品少妇内射三级| 日韩制服丝袜自拍偷拍| 亚洲av日韩精品久久久久久密| 三级毛片av免费| 午夜91福利影院| 午夜免费成人在线视频| 一个人免费在线观看的高清视频 | 在线观看舔阴道视频| av在线app专区| 成年美女黄网站色视频大全免费| 99久久精品国产亚洲精品| 亚洲成人手机| 涩涩av久久男人的天堂| 大陆偷拍与自拍| 欧美成狂野欧美在线观看| 丰满人妻熟妇乱又伦精品不卡| 老熟妇乱子伦视频在线观看 | 69av精品久久久久久 | 亚洲欧洲日产国产| 久久久久网色| 日韩精品免费视频一区二区三区| 欧美精品一区二区大全| 黑人猛操日本美女一级片| 秋霞在线观看毛片| 人妻 亚洲 视频| 丝袜人妻中文字幕| 久久影院123| 激情视频va一区二区三区| 久久久水蜜桃国产精品网| 久久精品久久久久久噜噜老黄| 热re99久久国产66热| 日韩制服丝袜自拍偷拍| 最近中文字幕2019免费版| 在线观看舔阴道视频| 丝袜脚勾引网站| 国产又色又爽无遮挡免| 亚洲五月婷婷丁香| 脱女人内裤的视频| 日本91视频免费播放| 国产成人精品无人区| 国产激情久久老熟女| 亚洲五月色婷婷综合| 高清视频免费观看一区二区| 国产一区二区三区av在线| 国产成人av激情在线播放| 在线亚洲精品国产二区图片欧美| 真人做人爱边吃奶动态| 色老头精品视频在线观看| 久久精品aⅴ一区二区三区四区| 亚洲精品久久久久久婷婷小说| 亚洲色图综合在线观看| 亚洲全国av大片| 成年美女黄网站色视频大全免费| av一本久久久久| 久热爱精品视频在线9| 国产在线免费精品| 日韩中文字幕视频在线看片| 久久青草综合色| 欧美乱码精品一区二区三区| 蜜桃在线观看..| 99国产精品一区二区蜜桃av | 老鸭窝网址在线观看| 国产免费视频播放在线视频| 精品人妻在线不人妻| 精品久久久久久电影网| 国产亚洲av高清不卡| 国产av精品麻豆| 丰满迷人的少妇在线观看| 欧美精品高潮呻吟av久久| 桃红色精品国产亚洲av| 精品久久久精品久久久| av视频免费观看在线观看| 99热网站在线观看| 丰满饥渴人妻一区二区三| 亚洲性夜色夜夜综合| 伦理电影免费视频| 久久人人97超碰香蕉20202| 国产欧美亚洲国产| 国产成人啪精品午夜网站| 97在线人人人人妻| 欧美成狂野欧美在线观看| 不卡av一区二区三区| 人妻 亚洲 视频| 午夜免费成人在线视频| 亚洲男人天堂网一区| 精品久久久久久电影网| 一本大道久久a久久精品| 久热这里只有精品99| 两性夫妻黄色片| 国产免费视频播放在线视频| 丝袜喷水一区| 亚洲av国产av综合av卡| 脱女人内裤的视频| 99国产极品粉嫩在线观看| 国产av精品麻豆| 大片电影免费在线观看免费| 麻豆乱淫一区二区| 国产在线视频一区二区| 亚洲精品乱久久久久久| 国产亚洲一区二区精品| 日韩视频一区二区在线观看| 欧美日韩亚洲国产一区二区在线观看 | 精品久久久精品久久久| 另类亚洲欧美激情| 欧美日韩福利视频一区二区| 国产老妇伦熟女老妇高清| 在线精品无人区一区二区三| 两人在一起打扑克的视频| 亚洲专区字幕在线| 欧美激情 高清一区二区三区| 极品人妻少妇av视频| 男人添女人高潮全过程视频| 亚洲国产看品久久| 久久久久国内视频| 精品卡一卡二卡四卡免费| 国产av一区二区精品久久| 久久香蕉激情| 精品福利观看| 亚洲av电影在线进入| 欧美中文综合在线视频| 久久久久久久国产电影| 美女脱内裤让男人舔精品视频| 亚洲精品国产色婷婷电影| 嫩草影视91久久| 日韩人妻精品一区2区三区| 我的亚洲天堂| 亚洲成人免费av在线播放| 午夜福利在线观看吧| 在线观看舔阴道视频| 成人三级做爰电影| 日韩中文字幕欧美一区二区| 一个人免费在线观看的高清视频 | 黄色视频在线播放观看不卡| 日本黄色日本黄色录像| 色综合欧美亚洲国产小说| 欧美 日韩 精品 国产| 高清黄色对白视频在线免费看| 精品一区二区三区av网在线观看 | 欧美成人午夜精品| 视频区欧美日本亚洲| 午夜激情久久久久久久| 美女视频免费永久观看网站| 亚洲欧美一区二区三区黑人| 91老司机精品| 午夜影院在线不卡| 亚洲天堂av无毛| 水蜜桃什么品种好| 国产亚洲欧美在线一区二区| 午夜久久久在线观看| 亚洲精品中文字幕在线视频| 国产成人精品久久二区二区91| 中文字幕av电影在线播放| 在线观看免费视频网站a站| 国产精品秋霞免费鲁丝片| 亚洲精品成人av观看孕妇| 精品国产乱码久久久久久男人| 青青草视频在线视频观看| 久热这里只有精品99| 18禁黄网站禁片午夜丰满| 曰老女人黄片| 一二三四社区在线视频社区8| 在线观看免费日韩欧美大片| 免费在线观看视频国产中文字幕亚洲 | 最近最新中文字幕大全免费视频| 国产1区2区3区精品| 久久天堂一区二区三区四区| 99热网站在线观看| 天堂俺去俺来也www色官网| 精品国产乱码久久久久久男人| 黄色怎么调成土黄色| 久热这里只有精品99| 日韩一卡2卡3卡4卡2021年| 午夜两性在线视频| 国产男女超爽视频在线观看| 久久热在线av| 精品国产一区二区三区四区第35| 国产极品粉嫩免费观看在线| 黑人巨大精品欧美一区二区mp4| 国产一区二区三区在线臀色熟女 | 国产成+人综合+亚洲专区| 国产一卡二卡三卡精品| 狂野欧美激情性xxxx| 伊人久久大香线蕉亚洲五| 麻豆av在线久日| 黑人操中国人逼视频| 美女高潮喷水抽搐中文字幕| 可以免费在线观看a视频的电影网站| 国产高清视频在线播放一区 | 一级黄色大片毛片| 精品国产一区二区三区久久久樱花| 黑人欧美特级aaaaaa片| 欧美97在线视频| 日本一区二区免费在线视频| 侵犯人妻中文字幕一二三四区| 五月开心婷婷网| 多毛熟女@视频| 亚洲欧美色中文字幕在线| 三级毛片av免费| 国产精品久久久久久精品古装| 中亚洲国语对白在线视频| 无限看片的www在线观看| 国产成人精品在线电影| 久久午夜综合久久蜜桃| 99国产极品粉嫩在线观看| 亚洲五月色婷婷综合| 亚洲精品中文字幕一二三四区 | 人妻人人澡人人爽人人| 十八禁网站网址无遮挡| 欧美国产精品一级二级三级| 国产亚洲av片在线观看秒播厂| 国产成人av教育| 妹子高潮喷水视频| 欧美精品人与动牲交sv欧美| 高清欧美精品videossex| 国产免费现黄频在线看| 久久久久久久精品精品| 蜜桃在线观看..| 成年女人毛片免费观看观看9 | a级毛片在线看网站| www日本在线高清视频| 午夜福利在线免费观看网站| 制服人妻中文乱码| 巨乳人妻的诱惑在线观看| av片东京热男人的天堂| 好男人电影高清在线观看| 成人手机av| 国产亚洲av高清不卡| 纵有疾风起免费观看全集完整版| 91九色精品人成在线观看| 日本黄色日本黄色录像| 国产日韩一区二区三区精品不卡| 热99久久久久精品小说推荐| 极品人妻少妇av视频| 一级a爱视频在线免费观看| 精品人妻熟女毛片av久久网站| 国产极品粉嫩免费观看在线| 中文字幕精品免费在线观看视频| 搡老岳熟女国产| 老鸭窝网址在线观看| 久久久久国产一级毛片高清牌| 免费日韩欧美在线观看| 男女无遮挡免费网站观看| 最近最新中文字幕大全免费视频| 午夜激情久久久久久久| 老司机亚洲免费影院| 性高湖久久久久久久久免费观看| 91大片在线观看| 在线永久观看黄色视频| 一级毛片电影观看| 精品视频人人做人人爽| 人妻久久中文字幕网| tube8黄色片| 国产区一区二久久| 伊人久久大香线蕉亚洲五| 如日韩欧美国产精品一区二区三区| 日韩 亚洲 欧美在线| 精品福利永久在线观看| 精品久久久精品久久久| 亚洲av日韩精品久久久久久密| 亚洲色图综合在线观看| 日本黄色日本黄色录像| 亚洲av电影在线观看一区二区三区| av视频免费观看在线观看| 91麻豆av在线| 精品人妻1区二区| 99热国产这里只有精品6| 亚洲全国av大片| 国产极品粉嫩免费观看在线| 在线亚洲精品国产二区图片欧美| 中文欧美无线码| 亚洲精品在线美女| 一区二区三区精品91| 少妇 在线观看| 男女边摸边吃奶| 侵犯人妻中文字幕一二三四区| 一级片免费观看大全| 手机成人av网站| 男女免费视频国产| 国产精品熟女久久久久浪| 日本a在线网址| 在线 av 中文字幕| 亚洲欧美一区二区三区黑人| 不卡av一区二区三区| 黄频高清免费视频| 午夜福利影视在线免费观看| 91成年电影在线观看| 王馨瑶露胸无遮挡在线观看| 日韩欧美免费精品| 热99国产精品久久久久久7| 亚洲精品中文字幕一二三四区 | 欧美激情久久久久久爽电影 | 狠狠精品人妻久久久久久综合| 久久香蕉激情| 成年av动漫网址| 人人妻人人澡人人看| 亚洲精品一区蜜桃| 又大又爽又粗| 侵犯人妻中文字幕一二三四区| 一级片免费观看大全| 九色亚洲精品在线播放| 男女边摸边吃奶| 亚洲成人免费电影在线观看| 丝袜人妻中文字幕| 热re99久久精品国产66热6| 日本av免费视频播放| 亚洲精品国产区一区二| 亚洲美女黄色视频免费看| 一边摸一边做爽爽视频免费| 亚洲五月婷婷丁香| 久久久久久免费高清国产稀缺| 一区二区三区精品91| 另类精品久久| 免费观看a级毛片全部| 悠悠久久av| 99香蕉大伊视频| 老熟妇仑乱视频hdxx| 国产精品秋霞免费鲁丝片| 韩国精品一区二区三区| 精品久久久久久电影网| 国产亚洲精品第一综合不卡| 可以免费在线观看a视频的电影网站| 丝袜喷水一区| 亚洲综合色网址| 80岁老熟妇乱子伦牲交| 欧美大码av| 中文字幕人妻丝袜一区二区| 一级毛片精品| 成在线人永久免费视频| 99国产精品一区二区三区| 51午夜福利影视在线观看| a 毛片基地| 国产成人影院久久av| 国产视频一区二区在线看| 国产色视频综合| 999久久久国产精品视频| 99久久精品国产亚洲精品| 日本欧美视频一区| 国产激情久久老熟女| 欧美老熟妇乱子伦牲交| 脱女人内裤的视频| 亚洲av电影在线进入| 99国产精品一区二区三区| 视频在线观看一区二区三区| 国产精品久久久久久精品古装| 午夜精品久久久久久毛片777| 天天躁夜夜躁狠狠躁躁| 国产麻豆69| 少妇精品久久久久久久| 大片电影免费在线观看免费| 国产精品久久久人人做人人爽| 亚洲综合色网址| 亚洲视频免费观看视频| 天堂8中文在线网| 十八禁网站网址无遮挡| 美女福利国产在线| 性色av乱码一区二区三区2| 成年人午夜在线观看视频| 最近中文字幕2019免费版| 国产99久久九九免费精品| 日韩熟女老妇一区二区性免费视频| 91精品国产国语对白视频| 亚洲国产精品999| 9色porny在线观看| 久久中文看片网| 9色porny在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 在线十欧美十亚洲十日本专区|