• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    以硝基對苯二甲酸和4,4′-聯(lián)吡啶為配體的四個金屬Ag配合物的合成、結(jié)構(gòu)多樣性和電子光譜

    2015-12-05 10:25:21馬愛青朱龍觀
    無機化學學報 2015年8期
    關(guān)鍵詞:聯(lián)吡啶藥學院對苯二甲

    馬愛青 朱龍觀

    (1浙江大學化學系,杭州310027)

    (2廣東醫(yī)學院藥學院,東莞523808)

    以硝基對苯二甲酸和4,4′-聯(lián)吡啶為配體的四個金屬Ag配合物的合成、結(jié)構(gòu)多樣性和電子光譜

    馬愛青1,2朱龍觀*,1

    (1浙江大學化學系,杭州310027)

    (2廣東醫(yī)學院藥學院,東莞523808)

    由2-硝基-1,4-對苯二甲酸和4,4′-聯(lián)吡啶作為起始原料合成了4個金屬銀的配位聚合物,{[Ag(4,4′-bipy)]·2-Hnbdc·2H2O ·CH3OH}n(1),{[Ag(4,4′-bipy)(2-Hnbdc)]}n(2),{[Ag2(4,4′-bipy)2(2-nbdc)]·2H2O}n(3),和{[Ag2(4,4′-bipy)2(2-nbdc)(H2O)]·2H2O}n(4)。通過IR、元素分析、TG、UV和熒光光譜以及粉末衍射等手段,對配合物進行了表征和性質(zhì)研究。單晶衍射分析顯示,配合物1為1D陰-陽離子型聚合物,配合物2為1D雙鏈結(jié)構(gòu),且結(jié)構(gòu)中不存在溶劑分子。配合物3和4均為1D鏈狀結(jié)構(gòu)。結(jié)構(gòu)的多樣性主要是由配體構(gòu)象、硝基對苯二甲酸的配位模式以及弱作用(如π-π堆積、Ag…Ag作用以及氫鍵等)導致的。結(jié)構(gòu)的不同也使得它們的穩(wěn)定性、紫外吸收以及熒光光譜存在著差異。

    配位模式;結(jié)構(gòu)分析;銀(Ⅱ)配合物;硝基對苯二甲酸

    0Introduction

    Phenyldicarboxylate metal complexes in recent years have received much attention due to their potential applications in catalysis[1-3],adsorption[4-10], luminescent[11],and chemical sensors[12-14].With the deepen of the investigation in the 1,4-benzenedicarboxylate metal complexes,people have recognized that the functional groups on benzene ring are very important in the assembly of the structures and properties.The contribution of several functional groups is not simply linear sums of the pure components[15].In the large number of 1,4-benzenedicarboxylate derivatives,seldom metal complexes with 2-nitro-1,4-benzenedicarboxylic acid(2-H2nbdc)have been explored. Totally only 17 transition complexes with nbdc ligand including Zn,Cd,Cu,Bi,In,Pb,Mn,Sn,and U (CSD,Version 5.36-Feb 2015)[16]were synthesized.The 2-nbdc ligand can be used to form cation-cation interaction dimer[17],enhance the hydrophobic interaction in the cavities of MOF,and form hysteretic single-crystal to single crystal transform cycle[18].

    In addition,silver coordination polymers have attracted much attention not only because of the diverse coordination arrangement of the Ag(Ⅱ)ion varying from 2 to 6,but also the fascinating structural diversities(linearity,triangle,tetrahedron and trigonal -pyramid with occasional instances of square and octahedron)[19]and potential applications in many areas such as optics or electrical conductivity,magnetism, host-guest chemistry,and catalyst[20-21].The supramolecular chemistry of Ag(Ⅱ)coordination polymers represents a dynamic and thriving field which abounds with various supramolecular forces such as metal-ligand, metal-π,and metal-metal interactions,hydrogen bonds, π-π stacking,and anion interactions[22-23].Therefore the crystallization of Ag(Ⅱ)complexes would depend on the delicate balance of thermodynamic and kinetic contributionsconcerningsynergeticsupramolecular interactions,which may account for the fact that the structures and topologies of Ag(Ⅱ)complexes can be astonishingly varied even with same ligands.

    However,the investigation about silver-complexes is still very limited.So far there is no any report on the silver complex with nbdc ligand,and only one complex of the M/4,4-bipyridine(4,4′-bipy)/2-H2nbdc system was reported in our lab[24].In coordination chemistry,complexes with diverse structures can be easily synthesized due to the variable coordination modes of metal ions and ligands,while structures are in general strongly related to their properties.Therefore, the directional or rational synthesis is very important forthepotential applications of coordination compounds. Herein we present the synthesis,structures,and properties of four silver complexes with same components, namely{[Ag(4,4′-bipy)]·2-Hnbdc·2H2O·CH3OH)}n(1), {[Ag(4,4′-bipy)(2-Hnbdc)]}n(2),{[Ag2(4,4′-bipy)2(2-nbdc)]·2H2O}n(3),and{[Ag2(4,4′-bipy)2(2-nbdc)(H2O)] ·2H2O}n(4).

    1Experimental

    1.1 General information

    Chemicals and solvents were of analytical grade and purchased from commercial sources,used as obtainedwithoutfurtherpurification.Elemental analyses(C,H and N)were performed on a Elementar Vario EL III Elemental Analyzer.The infrared spectra (KBr pellets)were recorded on a Bruker VERTEX 70 spectrophotometer in the range of 400~4 000 cm-1. Thermal analyses were performed on a NETZSCH 409 F3 thermal analyzer at a heating rate of 10℃·min-1in flowing nitrogen atmosphere in the temperature range of 30~800℃using Al2O3crucibles.The UVVis spectra were recorded in methanol at room temperature with a Thermo Evolution 300 spectrophotometer.The fluorescence spectroscopic studies were carried out in methanol and in the solid state at room temperature with a RF-5301pc spectrophotometer(Shimadzu,Kyoto,Japan).The powder X-ray diffractions were measured by Rigaku D/MaX 2550PC with Cu Kα radiation.The simulated powder XRD patterns of complexes 1~4 were derived from single crystal X-ray data by Mercury program.

    1.2 Syntheses of complexes 1~4

    1.2.1 Synthesis of{[Ag(4,4′-bipy)]·2-Hnbdc·2H2O· CH3OH)}n(1)

    Complex 1 was synthesized by layered-solution method in a tube with the diameter of 0.7 cm.The bottom layer was 5 mL aqueous solution containing 0.022 mol ·L-1of AgNO3and the upper layer was 10 mL methanol solution containing 0.011 mol·L-1of H2nbdc and 0.011 mol·L-1of 4,4′-bipy.After six days later,colorless block crystals were grown on the layered interface and were collected by filtration.Yield:68.3%.Anal.Calcd. for C19H20N3O9Ag(%):C 42.09,H 3.72,N 7.75.Found (%):C 42.21,H 3.66,N 7.72.IR(KBr,cm-1):1 702(s), 1 617(s),1 600(s),1 529(s),1 486(s),1 380(s),1 353(s), 1 310(s),1 288(s),1 253(s),1 219(m),1 153(m),1 064 (w),1 027(m),933(w),840(w),806(s),771(s),702(m), 623(w),515(w).

    1.2.2 Synthesis of{[Ag(4,4′-bipy)(2-Hnbdc)]}n(2)

    Complex 2 was synthesized by hydrothermal method.A mixture of AgNO3(0.050 0 g,0.29 mmol), 4,4′-bipy(0.038 g,0.24 mmol),and 2-H2nbdc(0.053 g 0.25 mmol)in water(15 mL)was sealed in a 25 mL Teflon-lined autoclave and heated to 130℃for 24 h, then cooled to room temperature.Resulting pale yellow block crystals were obtained.Yield:62.5%.Anal. Calcd.for C18H12N3O6Ag(%):C 45.59,H 2.55,N 8.86. Found(%):C 45.32,H 2.69,N 8.86.IR(KBr,cm-1): 1 676(m),1 605(s),1 523(s),1 488(s),1 382(s),1 339 (s),1 310(s),1 275(s),1 240(s),1 119(m),1 073(s), 1 058(m),911(w),864(w),828(m),815(s),780(s),738 (m),713(w),666(w),640(w),600(w),510(w),463(w).

    1.2.3 Synthesis of{[Ag2(4,4′-bipy)2(2-nbdc)]·2H2O}n(3)

    A mixture of AgNO3(0.083 g),H2nbdc(0.104 g), and 4,4′-bipy(0.080 g)in CH3OH(15 mL)and water (10 mL)was stirred and white precipitate occurred, then three drops of ammonia were added and most of white precipitate was dissolved,filtered and set aside at room temperature in dark,after about five weeks pale yellow block crystals were obtained.Yield: 56.2%.Anal.Calcd.for C28H23N5O8Ag2(%):C 43.49,H 3.00,N 9.06.Found(%):C 42.59,H 3.09,N 8.88.IR (KBr,cm-1):1 598(s),1 529(s),1 484(m),1 411(m), 1 355(s),1 219(w),1 126(w),1 070(w),1 006(w),913 (w),812(s),805(s),729(w),639(w),574(w),487(m).

    1.2.4 Synthesis of{[Ag2(4,4′-bipy)2(2-nbdc)(H2O)]· 2H2O}n(4)

    The synthesis of 4 was similar to that described for 3.The only difference was that we changed CH3OH in 3 to CH3CN(20 mL).After about five weeks,colorless block crystals were obtained.Yield:63.5%.Anal. Calcd.for C28H25N5O9Ag2(%):C 42.50,H 3.18,N 8.85. Found(%):C 42.61,H 2.97,N 8.81.IR(KBr,cm-1): 1 598(s),1 529(s),1 484(m),1 412(s),1 354(s),1 220 (m),1 069(m),1 004(w),912(w),815(s),727(w),635 (m),576(w),485(m).

    1.3 X-ray crystallographic determination

    Crystallographic data were collected at 296 K on an Oxford Diffraction Xcalibur CCD diffractometer using graphite monochromated Mo Kα radiation(λ= 0.071 073 nm).The frames were integrated with the CrysAlisPro package[25]and the data were corrected for absorptionusingtheprogramCrysAlisPro.The structures were solved by direct methods and refined byfull-matrixleast-squarestechniquesusingthe SHELXL-97 programs[26].All the non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms on carbons were put at the calculated positions,while other hydrogen atoms were found in the Fourier maps.All H atoms were refined with isotropicthermalparameters.Thegraphicswere drawn by the ORTEP and Olex2[27-28].Details of crystal data and structure refinements for the four complexes are listed in Table1 .

    CCDC:945166,1;945167,2;945168,3;945169, 4.

    2Results and discussion

    2.1 Synthesis

    Four complexes with structural diversity have been achieved by the different synthetic methods and variable solvents.Complex 1 was synthesized by the layered-solution method in a slender tube.Complex 2 was obtained using hydrothermal synthesis.Complexes 3 and 4 were synthesized in different mixed solvents through slow evaporation.Considering their structural diversity these complexes may be transformed under external stimulation.Therefore,complex 1 was heated at 130℃three hours and crystals were changed intopowder sample.The IR showed that the heated sample for 1 lost all solvents,while its spectrum is different from that of 2,indicating the simple heating did not transform the complex 1 into 2.The 2-Hnbdc ligands in 1 and 2 have largely different coordination modes and simple heating could not make these chemical bonding rearrangement.Similar experimental was done for complexes 3 and 4.And the desolvated 3 and 4 have same IR spectra,indicating the small different coordination modes in complexes 3 and 4 can be transformed due to their structural diversity is only controlled by the solvents.

    Based on the above information,we can conclude that solvents,temperature and synthetic methods are very important for structural diversity and thermal stability,since external stimuli may influence the coordination properties and abilities of the H2nbdc ligand,and also have effect on the participation of the solvents,which are helpful for the formation of weak bonds and supramolecular structure.

    Scheme 1Synthetic route of complexes 1~4

    2.2 Analysis of the structures of 1~4

    The powder XRD patterns of complexes 1~4 and their simulative patterns calculated by Mercury using single crystal data agree well with each other(see Supportinginformation),indicatingthebulksof samples are purity.

    In an asymmetrical unit for complex 1,the silver ion is four-coordinated with two longer distances (0.285 4(2)and 0.306 7(2)nm)of Ag-O representedby open bonds in Fig.1 .The geometry of the silver ion is a planar completed by two N atoms from two 4,4′-bipy and two O atoms from one water molecule and one nitro group(Table2 ).The 2-Hnbdc ligand is partlydeprotonatedanditscarboxylatesarenot coordinated to metal ion but form weak bond with Ag+using the nitro group.In general the nitro group on benzene ring is rare to coordinate with metal ion.Theunits form 1D chain structure(Fig.2 ) and the shortest Ag…Ag distance between chains is 0.532 9 nm,indicating there is no interaction between chains.

    In complex 2,the silver ion is four-coordinated with a longer distance(0.292 2(2)nm)between the silver ion and nitro group.The deprotonated carboxylate coordinates to the silver ion.The coordination geometry of the silver ion is a planar environment completed by two N atoms from two 4,4′-bipy and twoO atoms from the carboxylate and nitro groups(Fig.3 and Table2 ).Complex 2 is a 1D double chain structure(Fig.4 ),which is different from complex 1.In 2,the shortest distance of Ag…Ag is 0.379 02(6)nm. Though it is shorter than that in 1,it is still longer than the van der Waals diameter of silver(0.344 nm), indicating no obvious interaction exists between them.

    Table2 Selected bond lengths(nm)and angles(°)for complexes 1~4

    Fig.1 View of the coordination environment in 1 with the numbering scheme

    Fig.2 View of the 1D chain formed by[Ag(4,4′-bipy)]+in 1

    Fig.3 View of the coordination environment in 2 with the numbering scheme

    Fig.4 View of the 1D double chain in 2

    In 3,the Ag1 is four coordinated with a longer Ag1-O2w being 0.307(3)nm(Fig.5 ).The Ag2 is also four coordinated with two longer distances of 0.293 0(18) and 0.304 7(12)nm.The 2-nbdc ligand is monodentately coordinated to silver ion as a terminal ligand.If we ignore the bond lengths over 0.30 nm,the molecular structure of 3 is a 1D chain(Fig.6 );if we consider all bonds,the molecular structure is a 2D layer and further interpenetrates into a 3D network.The Ag…Ag distance in the double chain is 0.359 30(17)nm, which is shorter than those of in 1 and 2.

    Fig.5 View of the coordination environment for complex 3 with the numbering scheme

    Fig.6 View of 1D chain for 3

    In 4,the Ag1 is four coordinated and the Ag2 is five coordinated with two longer bond lengths(Fig.7 ). The distance of Ag1…Ag2iis 0.342 75(6)nm,which is similar to the sum of van der Waals radius of two silver ions.The molecular structure of 4 is a 1D molecular ladder combined by Ag-Ag interaction in adjacentchains,which is different from 2 and 3(Fig.8 ).

    Fig.7 View of the coordination environment in 4 with the numbering scheme

    Fromaboveinformation,wecanknowthat complex 2 has no any lattice solvent or coordinated water molecule,while other three contain coordinatedwater molecules or solvents.The basic structures for these four complexes are 1D architectures formed by [Ag(bipy)]+unit.Under the considering of the weak interactions,complex 1 is a 1D chain,1D double chain for 2,1D chain or extended 2D layer for 3,1D ladder chain for 4.

    Fig.8 View of 1D chain for 4

    In 1,solvents and anionic 2-Hnbdc form 1D hydrogen-bonding structure(Fig.9 ).Complex 2 is a 2D hydrogen-bondinglayerassembledthroughthe connection of 1D chains between 2-Hnbdc ligands.In 3,lattice water molecules and carboxylates form hydrogen bonds,generating a 2D hydrogen-bonding layer.For 4,water molecules and 2-Hnbdc form a 2D hydrogen-bonding layer.

    Fig.9 1D hydrogen bonding structure formed by solvents and anionic 2-Hnbdc in 1

    In these complexes there are some π-π interactions between pyridine rings of 4,4′-bipyridine ligands. In 1,the interactions are strong with the centroid to centroid distances of 0.349 75(13)nm and 0.345 16(13) nm between rings of N2C6~C10.In 2 the centroid to centroiddistancesare0.370 94(18)nm and 0.387 85(18) nm between Cg1 and Cg2 where Cg1 is N1C1~5 and Cg2 is N2C6~C10.In 3 the centroid-to-centroid distances are 0.376 4(8)nm between Cg1 and Cg2, 0.369 4(9)nm between Cg1 and Cg3,and 0.372 7(8) nm between Cg3 and Cg4 where Cg1 is N1C1~C5, Cg2 is N3C11~C15,Cg 3 is N4C16~C20,and Cg4 is N2C6~C10.In 4,the centroid-to-centroid distances is 0.369 4(4)nm between Cg1 and Cg2,0.370 9(4)nm between Cg3 and Cg4,0.388 6(4)nm between Cg2 and Cg3 where Cg1 is N1C1~C5,Cg2 is N4C16~C20,Cg3 is N2C6~C10,and Cg4 is N3C11~C15.In 1 there is the shortest stacking interaction distance and complexes 2 and 4 are weaker than those of complexes 1 and 3.

    These four complexes exhibit structural diversity with same components of Ag+,nbdc,and 4,4′-bipy. The solvents,interaction between silver ion and nitro group,and the positions of two pyridine rings in each 4,4′-bipy influence the assembly of the structures. The conformations of 4,4′-bipy ligands in 1~4 are listed in Table3 .In the free ligand the dihedral angles are 17°and 34°[25].

    Table3 Dihedral angles of pyridine rings in each 4,4′-bipyridine

    Fig.1 0TG curves of complexes 1~4

    2.3 Analysis of TG

    To understand the thermal stabilities of the four silver(Ⅱ)coordination polymers,the samples were analyzed by TGA,as shown in Fig.1 0.The curves of complexes 1,3 and 4 all show instability from room temperature,since they have solvent molecules in the structures.And complexes 3 and 4 have similar weight loss way since they show same structures after losing the solvent molecules.TG analysis for1 showed that the weight loss of two water molecules and one methanol from room temperature to 110℃is 11.56%(Calcd.12.56%).With a short platform,complex 1 rapidly disrupts at 220℃.For complex 3, the weight loss of 4.83%from 35 to 139℃corresponds to the release of two water molecules(Calcd.4.66%). Without a clear platform,complex 3 began to decompose slowly from 156 to 230℃,and then the structure quickly collapsed.Similar to complex 3,complex 4 released three water molecules in the range of room temperature to 139℃(Calcd.6.83%,Obsd.6.84%), and the decomposition temperature is also 156℃. Different from complexes 1 and 3~4,complex 2 shows good thermal stability.It is characterized by only one abrupt weight loss step(64.81%)from 220~350℃and then no obvious change occurred till 800℃.

    Upon comparison to complexes 1~4,the products of complexes 1 and 2 after losing their solvents are more stable than those of 3 and 4.The reason maybe that in complex 1 the carboxylate does not coordinate to the silver,the coordination of the nitro group is less strong than that of the carboxylate.In complex 2,in the double chain Ag…Ag distance is longer than those of complexes 3 and 4.All the above information clearly reflects the structural stability of complex 2.

    Fig.1 1UV spectra of complexes 1~4 at room temperature in methanol

    2.4 UV-Vis property

    UV-Vis spectra for complexes 1~4 and corresponding ligands were measured in methanol with the concentration of 1.015×10-5mol·L-1at room temperature and shown in Fig.1 1.As they are composed by the same ligands,the complexes show similar absorption peaks at about 235 nm and 200 nm,which mainly come from the H2nbdc and 4,4′-bipyridine(Table4 ). Though the UV-Vis absorption bands for these complexes are ascribed to π-π*intraligand(IL)transition, the absorptions are slightly stronger than those of ligands,suggesting the coordination can strengthen the absorption.The strongest absorption occurs in the complex 2 and the absorption strength order is 2〉4〉3〉1,indicating that configuration ofcomplexes, coordinating modes of ligands and solvents all can influence the absorptions.

    Table4 UV-Vis absorption spectral data of complexes 1~4 in CH3OH(C=1.015×10-5mol·L-1)

    Fig.1 2Fluorescent spectra of complexes 1~4 in the methanol at room temperature(λex=315 nm)

    2.5 Fluorescence property

    Both fluorescence spectra in methanol and in solid state were measured at room temperature as shown in Fig.1 2 and 13,respectively.In methanol,the λexis 315 nm and they show two extinct emission peaks at about 350 and 400 nm,which are from the H2nbdc ligand(351 nm and 407 nm).Therefore the solution spectra showed the ligand emission character. In the solid state,the λexis 240 nm,and they also showed two emission peaks.They are located at about 290 and 390 nm,somewhat blue-shift compared to the 416 nm for H2nbdc[17].The stronger peaks for four complexes are about 390 nm,and solvation may take a role for the maximum emission location,since 10nm blue-shift occurs in solid state,compared with the spectra in methanol.In the reference the existence of solventmoleculescanpromotethefluorescence emission intensity[26],but for our system both kinds of spectra show that complex 2 has the strongest emission peak,while complex 2 has no solvent but with the most co-planar 4,4′-bipyridine ligand,probably leading to the intense emission.

    Fig.1 3Fluorescent spectra of complexes 1~4 in solid state at room temperature(λex=240 nm)

    3Conclusions

    We have synthesized four diverse silver coordination polymers with same components.The structural transform between complexes 1 and 2 can not be achieved by simple heating due to in complex 1 the 2-Hnbdc coordinates to the silver ions.However, desolvated complexes 3 and 4 have same structural character,indicating the solvents can mediate the conversion of complexes 3 and 4.In these four complexes there are abundant weak interactions,such as weak bond,π-π aromatic stacking effect,and hydrogen bonding interactions.In complexes 1,2,and 4,the nitro groups of 2-Hnbdc ligands weakly coordinate with silver ions,which is rarely reported.An another interesting structural information is that in some transition metal complexes with nbdc the nitro group exists as disordered form,while in our four silver complexes all nitro groups are normal without any disorder.Complex 2 has the highest thermal stability,the strongest electronic absorption,and the strongest fluorescence emission.

    Acknowledgements:The authors thank the National Natural Science Foundation of China(No.21073157).

    Supporting information is available at http://www.wjhxxb.cn

    [1]Kim S N,Kim H Y,Cho H Y,et al.Catal.Today,2013,204: 85-93

    [2]Opanasenko M,Shamzhy M,Lamac M,et al.Catal.Today, 2013,204:94-100

    [3]Wan Y,Chen C,Xiao W M,et al.Microporous Mesoporous Mater.,2013,171:9-13

    [4]Hu X F,Lu Y K,Dai F N,et al.Microporous Mesoporous Mater.,2013,170:36-44

    [5]Mendes P A P,Ragon F,Rodrigues A E,et al.Microporous Mesoporous Mater.,2013,170:251-258

    [6]Brand S K,Colon Y J,Getman R B,et al.Microporous Mesoporous Mater.,2013,171:103-109

    [7]Yang J,Grzech A,Mulder F M,et al.Microporous Mesoporous Mater.,2013,171:65-71

    [8]Duan L H,Dong X Y,Wu Y Y,et al.J.Porous Mater.,2013, 20:431-440

    [9]Liu H,Zhao Y G,Zhang Z J,et al.Chem.Asian J.,2013,8: 778-785

    [10]Zheng B S,Yun R R,Bai J F,et al.Inorg.Chem.,2013,52: 2823-2829

    [11](a)Chen Y M,Cao Q,Gao D D,et al.J.Coord.Chem.,2013, 66:3829-3838

    (b)Allendorf M D,Bauer C A,Bhakta R K,et al.Chem. Soc.Rev.,2009,38:1330-1352

    [12]Wang Y,Wu Y C,Xie J,et al.Sens.Actuators B,2013, 177:1161-1166

    [13]Robinson A L,Stavila V,Zeitler T R,et al.Anal.Chem., 2012,84:7043-7051

    [14]Kreno L E,Leong K,Farha O K,et al.Chem.Rev.,2012, 112:1105-1125

    [15]Deng H X,Doonan C J,Furukawa H,et al.M.Science, 2010,327:846-850

    [16]Allen F H.Acta Crystallogr.,Sect.B:Struct.Sci.,2002,58: 380-388

    [17]Severance R C,Smith M D,zur Loye H C.Inorg.Chem., 2011,50:7931-7933

    [18]Wang X F,Wang Y,Zhang Y B,et al.Chem.Commun., 2012,48:133-135

    [19](a)Chen C L,Kang B S,Su C Y.Aust.J.Chem.,2006,59:3-18

    (b)Ma A Q,Zhu L G.RSC Adv.,2014,4:14691-14699

    (c)Hakimi M,Moeini K,Mardani Z,et al.J.Coord.Chem.,2013,66:1129-1141

    [20](a)Uchida S,Kawamoto R,Tagami H,et al.J.Am.Chem. Soc.,2008,130:12370-12376

    (b)Coleman K S,Chamberlayne H T,Turberville S,et al. Dalton Trans.,2003,14:2917-2922

    [21](a)Fujii Y,Terao J,Kambe N.Chem.Commun.,2009,9: 1115-1117

    (b)Genuis E D,Kelly J A,Patel M,et al.Inorg.Chem.,

    2008,47:6184-6194

    (c)Seward C,Chan J,Song D,et al.Inorg.Chem.,2003,42: 1112-1120

    [22]Akhbari K,Morsali A,Zhu L G.J.Mol.Struct.,2008,891: 132-137

    [23]Khlobystov A N,Blake A J,Champness N R,et al.Coord. Chem.Rev.,2001,222:155-192

    [24]He H Y,Zhu L G,Ng S W.Acta Crystallogr.,2005,E61: m601-m602

    [25]CrysAlisPro,Version 1.171.33.52,Oxford Diffraction Ltd., 2009.

    [26]Sheldrick G M.SHELXL-97,Program for the Refinement of Crystal Structure,University of G?ttingen,Germany,1997.

    [27]Farrugia L J.J.Appl.Cryst.,1999,32:837-838

    [28]Dolomanov O V,Bourhis L J,Gildea R J,et al.J.Appl. Cryst.,2009,42:339-341

    Structural Diversity,Supramolecular Assembly,and Electronic Spectra of Four Silver Coordination Polymers with Same Components of 2-Nitro-1,4-benzenedicarboxylate and 4,4′-Bipyridine

    MA Ai-Qing1,2ZHU Long-Guan*,1
    (1Department of Chemistry,Zhejiang University,Hangzhou 310027,China)
    (2School of Pharmacy,Guangdong Medical University,Dongguan,Guangdong 523808,China)

    Four diverse silver coordination polymers with the same components of silver,4,4′-bipyridine(4,4′-bipy), and 2-nitro-1,4-benzenedicarboxylic acid(2-H2nbdc)have been synthesized,namely{[Ag(4,4′-bipy)]·2-Hnbdc· 2H2O·CH3OH}n(1),{[Ag(4,4′-bipy)(2-Hnbdc)]}n(2),{[Ag2(4,4′-bipy)2(2-nbdc)]·2H2O}n(3),and{[Ag2(4,4′-bipy)2(2-nbdc)(H2O)]·2H2O}n(4),and characterized by IR,elemental analysis,TG,UV,fluorescence spectra,and powder X-ray analysis.The single crystal X-ray analysis showed that complex 1 is a 1D cation-anionic polymer,complex 2 is a 1D double chain without any solvent,and complexes 3 and 4 are 1D chain structures.Diverse structures differ with respect to molecular conformation,coordination modes of 2-Hnbdc,and weak interactions.In these complexes there are weak bonds,π-π aromatic stacking interactions,Ag…Ag interaction,and hydrogen bonding. The diverse structures are related to the thermal stability,UV absorptions,and fluorescence emissions.CCDC: 945166,1;945167,2;945168,3;945169,4.

    coordination modes;structure elucidation;silver coordination compound;nitrobenzenedicarboxylate

    O614.122

    A

    1001-4861(2015)08-1651-10

    10.11862/CJIC.2015.227

    2015-05-04。收修改稿日期:2015-06-04。

    國家自然科學基金(No.21073157)資助項目。

    *通訊聯(lián)系人。E-mail:chezlg@zju.edu.cn;會員登記號:S06N0578M1207。

    猜你喜歡
    聯(lián)吡啶藥學院對苯二甲
    蘭州大學藥學院簡介
    四氯對苯二甲腈含量分析方法
    擴鏈劑對聚對苯二甲酸乙二醇酯流變性能和發(fā)泡性能影響
    中國塑料(2015年5期)2015-10-14 00:59:48
    純手性的三聯(lián)吡啶氨基酸—汞(II)配合物的合成與表征
    功能化三聯(lián)吡啶衍生物的合成及其對Fe2+識別研究
    咪唑-多聯(lián)吡啶釕配合物的合成、晶體結(jié)構(gòu)和性能研究
    基于四溴代對苯二甲酸構(gòu)筑的兩個Cu(Ⅱ)配位聚合物的合成與晶體結(jié)構(gòu)
    1,10-鄰菲咯啉和四氟對苯二甲酸構(gòu)建的兩個鎳(Ⅱ)的配合物:合成和晶體結(jié)構(gòu)
    基于環(huán)己烷甲酸根和2,2′-聯(lián)吡啶配體的雙核錳(Ⅱ)配合物的合成與表征
    HSCCC-ELSD法分離純化青葙子中的皂苷
    亚洲自偷自拍图片 自拍| 午夜福利乱码中文字幕| 亚洲欧洲精品一区二区精品久久久| 99riav亚洲国产免费| aaaaa片日本免费| 婷婷丁香在线五月| 亚洲av成人av| 免费一级毛片在线播放高清视频 | 激情在线观看视频在线高清 | 午夜日韩欧美国产| 亚洲精品乱久久久久久| 99riav亚洲国产免费| 两性夫妻黄色片| 亚洲精品中文字幕一二三四区| 中文字幕人妻丝袜一区二区| 精品国产一区二区三区四区第35| 建设人人有责人人尽责人人享有的| 午夜福利影视在线免费观看| 成人18禁高潮啪啪吃奶动态图| 国精品久久久久久国模美| 欧美日韩国产mv在线观看视频| 亚洲精品一卡2卡三卡4卡5卡| 手机成人av网站| 午夜免费鲁丝| 久久 成人 亚洲| 在线观看免费高清a一片| 亚洲avbb在线观看| 亚洲国产中文字幕在线视频| 欧美最黄视频在线播放免费 | 一级片免费观看大全| 大香蕉久久网| 一二三四社区在线视频社区8| 亚洲七黄色美女视频| 国产精品成人在线| 亚洲欧美激情综合另类| 成年女人毛片免费观看观看9 | 欧美人与性动交α欧美软件| 热99国产精品久久久久久7| 精品久久久久久久久久免费视频 | 老汉色av国产亚洲站长工具| 亚洲欧洲精品一区二区精品久久久| 高清av免费在线| 极品人妻少妇av视频| 精品国产乱码久久久久久男人| 亚洲欧美激情在线| 国产成人精品久久二区二区免费| 日日爽夜夜爽网站| 岛国在线观看网站| 国产精品一区二区精品视频观看| 精品福利观看| 黑人巨大精品欧美一区二区mp4| 欧美成人午夜精品| 黑人操中国人逼视频| 中文字幕高清在线视频| 手机成人av网站| 日韩欧美国产一区二区入口| 一a级毛片在线观看| av有码第一页| 国产av又大| www.精华液| 亚洲午夜理论影院| 日韩免费高清中文字幕av| 午夜激情av网站| 黄色 视频免费看| 国产又色又爽无遮挡免费看| 日韩三级视频一区二区三区| 亚洲精品美女久久av网站| 视频区欧美日本亚洲| 免费观看人在逋| 在线观看午夜福利视频| videosex国产| 亚洲aⅴ乱码一区二区在线播放 | 成人av一区二区三区在线看| 国产乱人伦免费视频| 婷婷精品国产亚洲av在线 | 国产熟女午夜一区二区三区| 国产男女超爽视频在线观看| 欧美日韩乱码在线| 满18在线观看网站| 大香蕉久久成人网| 亚洲人成伊人成综合网2020| 很黄的视频免费| 亚洲一区高清亚洲精品| 老汉色av国产亚洲站长工具| 国产精品.久久久| 午夜福利乱码中文字幕| 动漫黄色视频在线观看| 久久精品亚洲精品国产色婷小说| 久久中文字幕一级| 精品免费久久久久久久清纯 | 欧美精品亚洲一区二区| 国产成人欧美| 久久国产精品男人的天堂亚洲| av天堂在线播放| 亚洲第一av免费看| 99re6热这里在线精品视频| 亚洲精品中文字幕一二三四区| 在线观看免费日韩欧美大片| x7x7x7水蜜桃| 黄色丝袜av网址大全| 人妻丰满熟妇av一区二区三区 | 婷婷精品国产亚洲av在线 | 99久久99久久久精品蜜桃| 亚洲三区欧美一区| 波多野结衣av一区二区av| 老汉色av国产亚洲站长工具| 18禁裸乳无遮挡免费网站照片 | 狠狠狠狠99中文字幕| 日韩精品免费视频一区二区三区| 人妻 亚洲 视频| 成在线人永久免费视频| 老鸭窝网址在线观看| 99热国产这里只有精品6| 18禁裸乳无遮挡动漫免费视频| 免费av中文字幕在线| 91九色精品人成在线观看| 亚洲专区国产一区二区| 精品电影一区二区在线| 国产精品久久久人人做人人爽| 国产精品一区二区在线观看99| 国产国语露脸激情在线看| 交换朋友夫妻互换小说| 丝瓜视频免费看黄片| 91九色精品人成在线观看| 国产99久久九九免费精品| 两性午夜刺激爽爽歪歪视频在线观看 | 超碰97精品在线观看| 女同久久另类99精品国产91| 久久久久国产精品人妻aⅴ院 | 99国产精品免费福利视频| 欧美精品高潮呻吟av久久| 国产主播在线观看一区二区| 91麻豆精品激情在线观看国产 | 欧美激情 高清一区二区三区| 久久久水蜜桃国产精品网| 亚洲一区二区三区欧美精品| 亚洲综合色网址| 亚洲欧洲精品一区二区精品久久久| 亚洲一区二区三区不卡视频| av天堂在线播放| 午夜福利免费观看在线| 亚洲一卡2卡3卡4卡5卡精品中文| 久久国产精品人妻蜜桃| 色尼玛亚洲综合影院| av网站在线播放免费| 亚洲综合色网址| 国产精品久久电影中文字幕 | 超碰成人久久| 欧美精品啪啪一区二区三区| av免费在线观看网站| 亚洲国产精品sss在线观看 | 国产一区在线观看成人免费| 久久久水蜜桃国产精品网| 丝袜人妻中文字幕| 色精品久久人妻99蜜桃| 黄频高清免费视频| 国产成人影院久久av| 性色av乱码一区二区三区2| 午夜福利在线观看吧| 99久久精品国产亚洲精品| 精品第一国产精品| 又紧又爽又黄一区二区| videos熟女内射| www.999成人在线观看| 性色av乱码一区二区三区2| 久久久国产成人免费| 国产97色在线日韩免费| 国内久久婷婷六月综合欲色啪| 亚洲色图综合在线观看| 少妇猛男粗大的猛烈进出视频| 香蕉久久夜色| 黄网站色视频无遮挡免费观看| 国产无遮挡羞羞视频在线观看| 男女午夜视频在线观看| 亚洲久久久国产精品| 亚洲熟女精品中文字幕| 久久影院123| 丝袜在线中文字幕| 久久久国产精品麻豆| 亚洲avbb在线观看| 久久久久久久国产电影| 十八禁人妻一区二区| 美女福利国产在线| 国产欧美日韩一区二区三| 午夜老司机福利片| 欧美精品亚洲一区二区| 99精国产麻豆久久婷婷| 丰满人妻熟妇乱又伦精品不卡| 12—13女人毛片做爰片一| 日韩欧美免费精品| 国产在线精品亚洲第一网站| 中文亚洲av片在线观看爽 | 亚洲国产精品一区二区三区在线| 国产亚洲一区二区精品| 久久香蕉精品热| 少妇粗大呻吟视频| 日韩欧美一区视频在线观看| 日本精品一区二区三区蜜桃| 欧美激情高清一区二区三区| 99香蕉大伊视频| 自拍欧美九色日韩亚洲蝌蚪91| 久久精品国产综合久久久| 黄色成人免费大全| 亚洲国产精品sss在线观看 | 亚洲国产欧美网| 亚洲专区中文字幕在线| 亚洲中文av在线| x7x7x7水蜜桃| 看片在线看免费视频| 麻豆乱淫一区二区| 国产成人系列免费观看| 亚洲精品国产精品久久久不卡| 日本a在线网址| 精品久久久久久电影网| 国产成人精品久久二区二区免费| 国产高清视频在线播放一区| 80岁老熟妇乱子伦牲交| 亚洲av日韩精品久久久久久密| 久久久久久久午夜电影 | videosex国产| 亚洲色图 男人天堂 中文字幕| 久久 成人 亚洲| 好男人电影高清在线观看| 亚洲第一青青草原| 69av精品久久久久久| 欧美日韩亚洲综合一区二区三区_| 亚洲欧美一区二区三区黑人| 欧美在线一区亚洲| 大片电影免费在线观看免费| 亚洲av成人一区二区三| 又黄又粗又硬又大视频| 少妇粗大呻吟视频| av在线播放免费不卡| 亚洲九九香蕉| 午夜福利在线观看吧| 可以免费在线观看a视频的电影网站| 搡老乐熟女国产| 王馨瑶露胸无遮挡在线观看| 激情在线观看视频在线高清 | 制服诱惑二区| 国产精品一区二区在线不卡| 一二三四在线观看免费中文在| 国产又色又爽无遮挡免费看| 一级片免费观看大全| 亚洲 欧美一区二区三区| 精品久久久久久,| 欧美人与性动交α欧美精品济南到| 欧美精品啪啪一区二区三区| 欧美日韩亚洲综合一区二区三区_| 国产在线精品亚洲第一网站| 久久天堂一区二区三区四区| 精品欧美一区二区三区在线| 91成人精品电影| 免费观看a级毛片全部| av不卡在线播放| 日本精品一区二区三区蜜桃| 国产亚洲欧美精品永久| 精品亚洲成a人片在线观看| 久久性视频一级片| 国产亚洲av高清不卡| 男女之事视频高清在线观看| 天天躁日日躁夜夜躁夜夜| 欧美黑人欧美精品刺激| 久久影院123| 美女午夜性视频免费| 女警被强在线播放| 国产一区二区三区视频了| 母亲3免费完整高清在线观看| 亚洲欧美一区二区三区久久| 国产精品二区激情视频| 正在播放国产对白刺激| 久久精品熟女亚洲av麻豆精品| 69精品国产乱码久久久| 亚洲午夜精品一区,二区,三区| 老司机影院毛片| 怎么达到女性高潮| 99精品欧美一区二区三区四区| 欧美成人免费av一区二区三区 | 午夜亚洲福利在线播放| 色尼玛亚洲综合影院| 欧美av亚洲av综合av国产av| 亚洲人成电影免费在线| 欧美日韩黄片免| 久久天躁狠狠躁夜夜2o2o| 美国免费a级毛片| 国产不卡av网站在线观看| aaaaa片日本免费| 久久香蕉精品热| 免费人成视频x8x8入口观看| 亚洲一区二区三区不卡视频| 黄色视频,在线免费观看| 欧美精品av麻豆av| 在线观看免费视频网站a站| 日韩一卡2卡3卡4卡2021年| 悠悠久久av| 久久精品成人免费网站| a级毛片黄视频| 久久人妻福利社区极品人妻图片| 真人做人爱边吃奶动态| 五月开心婷婷网| 777米奇影视久久| 啦啦啦视频在线资源免费观看| 在线视频色国产色| av超薄肉色丝袜交足视频| 中出人妻视频一区二区| 在线观看www视频免费| 亚洲av日韩精品久久久久久密| 高清在线国产一区| 亚洲 国产 在线| 精品免费久久久久久久清纯 | 男女床上黄色一级片免费看| 美女 人体艺术 gogo| 亚洲专区国产一区二区| 91麻豆精品激情在线观看国产 | 99久久精品国产亚洲精品| 侵犯人妻中文字幕一二三四区| 久久久水蜜桃国产精品网| 国产男女内射视频| 超碰97精品在线观看| 99精国产麻豆久久婷婷| 成人18禁在线播放| 好男人电影高清在线观看| 国产精品一区二区在线观看99| 日韩欧美在线二视频 | 最近最新免费中文字幕在线| 一级毛片女人18水好多| 亚洲av成人不卡在线观看播放网| 久久精品成人免费网站| 成人精品一区二区免费| 国产高清视频在线播放一区| 欧美日韩乱码在线| 色尼玛亚洲综合影院| 国产乱人伦免费视频| 在线看a的网站| 国产人伦9x9x在线观看| 亚洲少妇的诱惑av| 两个人免费观看高清视频| 别揉我奶头~嗯~啊~动态视频| 成人精品一区二区免费| 日韩精品免费视频一区二区三区| 99香蕉大伊视频| 色婷婷久久久亚洲欧美| 久久精品熟女亚洲av麻豆精品| av福利片在线| 国产成人免费无遮挡视频| 另类亚洲欧美激情| 欧美一级毛片孕妇| 18禁观看日本| 51午夜福利影视在线观看| 久久午夜综合久久蜜桃| 天天躁狠狠躁夜夜躁狠狠躁| 久久香蕉激情| 亚洲精品久久午夜乱码| 精品国产亚洲在线| 91字幕亚洲| 99国产综合亚洲精品| 国产在线精品亚洲第一网站| 美女午夜性视频免费| 一进一出抽搐动态| 午夜激情av网站| 国产精品一区二区在线观看99| 国产精品久久电影中文字幕 | 久久天堂一区二区三区四区| 亚洲成a人片在线一区二区| 黄网站色视频无遮挡免费观看| 91av网站免费观看| 精品久久久久久久久久免费视频 | 妹子高潮喷水视频| 叶爱在线成人免费视频播放| 久久ye,这里只有精品| 国产野战对白在线观看| 久久午夜亚洲精品久久| a级毛片黄视频| 91成年电影在线观看| 国产高清videossex| 波多野结衣av一区二区av| 免费在线观看黄色视频的| 极品少妇高潮喷水抽搐| av片东京热男人的天堂| 涩涩av久久男人的天堂| 国产单亲对白刺激| 国产一区在线观看成人免费| 欧美国产精品一级二级三级| 欧美午夜高清在线| 制服人妻中文乱码| 亚洲精品美女久久av网站| 高潮久久久久久久久久久不卡| 99精品欧美一区二区三区四区| 夜夜躁狠狠躁天天躁| 高清视频免费观看一区二区| 日日摸夜夜添夜夜添小说| 成人亚洲精品一区在线观看| 久久精品亚洲精品国产色婷小说| 欧美在线一区亚洲| 国产视频一区二区在线看| 在线观看免费日韩欧美大片| 纯流量卡能插随身wifi吗| 制服诱惑二区| 日韩欧美国产一区二区入口| 老司机午夜福利在线观看视频| 精品国产一区二区三区四区第35| 免费久久久久久久精品成人欧美视频| 黄色女人牲交| 黄色怎么调成土黄色| 老汉色av国产亚洲站长工具| 9191精品国产免费久久| 国产伦人伦偷精品视频| 国产精品99久久99久久久不卡| 这个男人来自地球电影免费观看| 精品一区二区三区视频在线观看免费 | 国产一区二区三区综合在线观看| 午夜日韩欧美国产| 久久精品国产亚洲av高清一级| 成年版毛片免费区| 中文欧美无线码| ponron亚洲| 国产国语露脸激情在线看| 女人高潮潮喷娇喘18禁视频| 亚洲第一欧美日韩一区二区三区| 国产精品久久久人人做人人爽| 在线播放国产精品三级| 深夜精品福利| 在线国产一区二区在线| 午夜亚洲福利在线播放| 久热爱精品视频在线9| 这个男人来自地球电影免费观看| 飞空精品影院首页| 两人在一起打扑克的视频| tube8黄色片| 狂野欧美激情性xxxx| 国产主播在线观看一区二区| 91老司机精品| 亚洲人成77777在线视频| 国产精品久久久久成人av| av网站免费在线观看视频| 黑人巨大精品欧美一区二区mp4| 男人的好看免费观看在线视频 | 美女高潮到喷水免费观看| 欧美另类亚洲清纯唯美| 国产又色又爽无遮挡免费看| 久久热在线av| 久久香蕉国产精品| 国产精品久久久久成人av| 电影成人av| 一边摸一边做爽爽视频免费| 日本一区二区免费在线视频| 国产一区有黄有色的免费视频| 法律面前人人平等表现在哪些方面| 黄片小视频在线播放| 免费在线观看日本一区| 久久中文字幕一级| 曰老女人黄片| 国产精品成人在线| av天堂在线播放| 国产亚洲欧美精品永久| 中文字幕人妻丝袜一区二区| 韩国av一区二区三区四区| 国产成人精品无人区| 久久国产精品影院| 国产极品粉嫩免费观看在线| 无遮挡黄片免费观看| 熟女少妇亚洲综合色aaa.| 午夜福利欧美成人| 国产精品亚洲av一区麻豆| 久久人人97超碰香蕉20202| 国产在线观看jvid| 亚洲一码二码三码区别大吗| 超碰成人久久| 国产伦人伦偷精品视频| 亚洲午夜理论影院| 啦啦啦 在线观看视频| 人妻丰满熟妇av一区二区三区 | 黄片小视频在线播放| 欧美大码av| 日韩欧美三级三区| 欧美久久黑人一区二区| 久久精品国产清高在天天线| svipshipincom国产片| 欧美av亚洲av综合av国产av| 欧美精品一区二区免费开放| 欧美国产精品va在线观看不卡| 欧美日本中文国产一区发布| 久久热在线av| 欧美av亚洲av综合av国产av| 美女扒开内裤让男人捅视频| 久热这里只有精品99| 国产人伦9x9x在线观看| 成人av一区二区三区在线看| 久久午夜亚洲精品久久| 黑人巨大精品欧美一区二区mp4| 欧美精品人与动牲交sv欧美| 欧美不卡视频在线免费观看 | videos熟女内射| 国产麻豆69| 日韩成人在线观看一区二区三区| bbb黄色大片| 激情视频va一区二区三区| 狠狠婷婷综合久久久久久88av| 久久ye,这里只有精品| 80岁老熟妇乱子伦牲交| svipshipincom国产片| 18禁国产床啪视频网站| 欧美日韩亚洲国产一区二区在线观看 | 天天躁夜夜躁狠狠躁躁| 欧美日韩一级在线毛片| 悠悠久久av| 国产色视频综合| 亚洲欧美日韩另类电影网站| 免费女性裸体啪啪无遮挡网站| 岛国在线观看网站| 久久久久久久精品吃奶| 97人妻天天添夜夜摸| 亚洲七黄色美女视频| 国产精品乱码一区二三区的特点 | 99国产精品一区二区三区| 亚洲精品美女久久久久99蜜臀| 国产1区2区3区精品| 超碰97精品在线观看| 国产熟女午夜一区二区三区| 老熟妇仑乱视频hdxx| 国产精品 国内视频| 亚洲中文字幕日韩| 久9热在线精品视频| 久久香蕉精品热| 国产成人影院久久av| 一二三四在线观看免费中文在| 精品免费久久久久久久清纯 | 久久久国产精品麻豆| 香蕉久久夜色| 狠狠婷婷综合久久久久久88av| 91精品国产国语对白视频| 视频区欧美日本亚洲| 久久人人爽av亚洲精品天堂| 午夜福利免费观看在线| 50天的宝宝边吃奶边哭怎么回事| 成年女人毛片免费观看观看9 | 免费女性裸体啪啪无遮挡网站| 一级毛片精品| 视频区欧美日本亚洲| 欧美大码av| tube8黄色片| 91麻豆av在线| 亚洲国产毛片av蜜桃av| 国产成人影院久久av| 精品少妇一区二区三区视频日本电影| 大香蕉久久成人网| 美女视频免费永久观看网站| 亚洲欧美激情综合另类| 午夜福利视频在线观看免费| 精品欧美一区二区三区在线| 久热这里只有精品99| 精品国产乱子伦一区二区三区| 黄色视频,在线免费观看| 777久久人妻少妇嫩草av网站| 成年人黄色毛片网站| 18禁观看日本| 精品午夜福利视频在线观看一区| 国产91精品成人一区二区三区| 啦啦啦在线免费观看视频4| 欧美日韩亚洲综合一区二区三区_| 欧美日韩精品网址| 最新的欧美精品一区二区| 18禁观看日本| 人妻久久中文字幕网| 国产欧美日韩一区二区三| 久久青草综合色| 欧美日韩中文字幕国产精品一区二区三区 | 妹子高潮喷水视频| 国产成人av教育| 午夜福利欧美成人| 亚洲欧美日韩高清在线视频| 国产男女超爽视频在线观看| 欧美国产精品va在线观看不卡| 18禁裸乳无遮挡免费网站照片 | 国产精品免费视频内射| 丝袜人妻中文字幕| 午夜精品国产一区二区电影| 欧美丝袜亚洲另类 | 深夜精品福利| 亚洲中文日韩欧美视频| 久久中文字幕人妻熟女| 国产成人免费无遮挡视频| 国产一区二区三区综合在线观看| 欧美乱色亚洲激情| 又大又爽又粗| 国产激情欧美一区二区| 国产一区在线观看成人免费| 国产单亲对白刺激| 国精品久久久久久国模美| 精品国产一区二区三区四区第35| 日韩欧美国产一区二区入口| 午夜福利,免费看| 91精品国产国语对白视频| 亚洲熟妇熟女久久| 久久青草综合色| 国产亚洲精品久久久久5区| 777久久人妻少妇嫩草av网站| 欧美色视频一区免费| 免费看a级黄色片| 黑人猛操日本美女一级片| 亚洲男人天堂网一区| 91九色精品人成在线观看| 电影成人av| 三上悠亚av全集在线观看| 亚洲免费av在线视频| 一进一出好大好爽视频| 日日摸夜夜添夜夜添小说| 亚洲av日韩在线播放| 动漫黄色视频在线观看| 最新在线观看一区二区三区| 欧美精品高潮呻吟av久久| 久久国产精品人妻蜜桃| 高清视频免费观看一区二区| 午夜91福利影院| 欧美精品人与动牲交sv欧美|