• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    以硝基對苯二甲酸和4,4′-聯(lián)吡啶為配體的四個金屬Ag配合物的合成、結(jié)構(gòu)多樣性和電子光譜

    2015-12-05 10:25:21馬愛青朱龍觀
    無機化學學報 2015年8期
    關(guān)鍵詞:聯(lián)吡啶藥學院對苯二甲

    馬愛青 朱龍觀

    (1浙江大學化學系,杭州310027)

    (2廣東醫(yī)學院藥學院,東莞523808)

    以硝基對苯二甲酸和4,4′-聯(lián)吡啶為配體的四個金屬Ag配合物的合成、結(jié)構(gòu)多樣性和電子光譜

    馬愛青1,2朱龍觀*,1

    (1浙江大學化學系,杭州310027)

    (2廣東醫(yī)學院藥學院,東莞523808)

    由2-硝基-1,4-對苯二甲酸和4,4′-聯(lián)吡啶作為起始原料合成了4個金屬銀的配位聚合物,{[Ag(4,4′-bipy)]·2-Hnbdc·2H2O ·CH3OH}n(1),{[Ag(4,4′-bipy)(2-Hnbdc)]}n(2),{[Ag2(4,4′-bipy)2(2-nbdc)]·2H2O}n(3),和{[Ag2(4,4′-bipy)2(2-nbdc)(H2O)]·2H2O}n(4)。通過IR、元素分析、TG、UV和熒光光譜以及粉末衍射等手段,對配合物進行了表征和性質(zhì)研究。單晶衍射分析顯示,配合物1為1D陰-陽離子型聚合物,配合物2為1D雙鏈結(jié)構(gòu),且結(jié)構(gòu)中不存在溶劑分子。配合物3和4均為1D鏈狀結(jié)構(gòu)。結(jié)構(gòu)的多樣性主要是由配體構(gòu)象、硝基對苯二甲酸的配位模式以及弱作用(如π-π堆積、Ag…Ag作用以及氫鍵等)導致的。結(jié)構(gòu)的不同也使得它們的穩(wěn)定性、紫外吸收以及熒光光譜存在著差異。

    配位模式;結(jié)構(gòu)分析;銀(Ⅱ)配合物;硝基對苯二甲酸

    0Introduction

    Phenyldicarboxylate metal complexes in recent years have received much attention due to their potential applications in catalysis[1-3],adsorption[4-10], luminescent[11],and chemical sensors[12-14].With the deepen of the investigation in the 1,4-benzenedicarboxylate metal complexes,people have recognized that the functional groups on benzene ring are very important in the assembly of the structures and properties.The contribution of several functional groups is not simply linear sums of the pure components[15].In the large number of 1,4-benzenedicarboxylate derivatives,seldom metal complexes with 2-nitro-1,4-benzenedicarboxylic acid(2-H2nbdc)have been explored. Totally only 17 transition complexes with nbdc ligand including Zn,Cd,Cu,Bi,In,Pb,Mn,Sn,and U (CSD,Version 5.36-Feb 2015)[16]were synthesized.The 2-nbdc ligand can be used to form cation-cation interaction dimer[17],enhance the hydrophobic interaction in the cavities of MOF,and form hysteretic single-crystal to single crystal transform cycle[18].

    In addition,silver coordination polymers have attracted much attention not only because of the diverse coordination arrangement of the Ag(Ⅱ)ion varying from 2 to 6,but also the fascinating structural diversities(linearity,triangle,tetrahedron and trigonal -pyramid with occasional instances of square and octahedron)[19]and potential applications in many areas such as optics or electrical conductivity,magnetism, host-guest chemistry,and catalyst[20-21].The supramolecular chemistry of Ag(Ⅱ)coordination polymers represents a dynamic and thriving field which abounds with various supramolecular forces such as metal-ligand, metal-π,and metal-metal interactions,hydrogen bonds, π-π stacking,and anion interactions[22-23].Therefore the crystallization of Ag(Ⅱ)complexes would depend on the delicate balance of thermodynamic and kinetic contributionsconcerningsynergeticsupramolecular interactions,which may account for the fact that the structures and topologies of Ag(Ⅱ)complexes can be astonishingly varied even with same ligands.

    However,the investigation about silver-complexes is still very limited.So far there is no any report on the silver complex with nbdc ligand,and only one complex of the M/4,4-bipyridine(4,4′-bipy)/2-H2nbdc system was reported in our lab[24].In coordination chemistry,complexes with diverse structures can be easily synthesized due to the variable coordination modes of metal ions and ligands,while structures are in general strongly related to their properties.Therefore, the directional or rational synthesis is very important forthepotential applications of coordination compounds. Herein we present the synthesis,structures,and properties of four silver complexes with same components, namely{[Ag(4,4′-bipy)]·2-Hnbdc·2H2O·CH3OH)}n(1), {[Ag(4,4′-bipy)(2-Hnbdc)]}n(2),{[Ag2(4,4′-bipy)2(2-nbdc)]·2H2O}n(3),and{[Ag2(4,4′-bipy)2(2-nbdc)(H2O)] ·2H2O}n(4).

    1Experimental

    1.1 General information

    Chemicals and solvents were of analytical grade and purchased from commercial sources,used as obtainedwithoutfurtherpurification.Elemental analyses(C,H and N)were performed on a Elementar Vario EL III Elemental Analyzer.The infrared spectra (KBr pellets)were recorded on a Bruker VERTEX 70 spectrophotometer in the range of 400~4 000 cm-1. Thermal analyses were performed on a NETZSCH 409 F3 thermal analyzer at a heating rate of 10℃·min-1in flowing nitrogen atmosphere in the temperature range of 30~800℃using Al2O3crucibles.The UVVis spectra were recorded in methanol at room temperature with a Thermo Evolution 300 spectrophotometer.The fluorescence spectroscopic studies were carried out in methanol and in the solid state at room temperature with a RF-5301pc spectrophotometer(Shimadzu,Kyoto,Japan).The powder X-ray diffractions were measured by Rigaku D/MaX 2550PC with Cu Kα radiation.The simulated powder XRD patterns of complexes 1~4 were derived from single crystal X-ray data by Mercury program.

    1.2 Syntheses of complexes 1~4

    1.2.1 Synthesis of{[Ag(4,4′-bipy)]·2-Hnbdc·2H2O· CH3OH)}n(1)

    Complex 1 was synthesized by layered-solution method in a tube with the diameter of 0.7 cm.The bottom layer was 5 mL aqueous solution containing 0.022 mol ·L-1of AgNO3and the upper layer was 10 mL methanol solution containing 0.011 mol·L-1of H2nbdc and 0.011 mol·L-1of 4,4′-bipy.After six days later,colorless block crystals were grown on the layered interface and were collected by filtration.Yield:68.3%.Anal.Calcd. for C19H20N3O9Ag(%):C 42.09,H 3.72,N 7.75.Found (%):C 42.21,H 3.66,N 7.72.IR(KBr,cm-1):1 702(s), 1 617(s),1 600(s),1 529(s),1 486(s),1 380(s),1 353(s), 1 310(s),1 288(s),1 253(s),1 219(m),1 153(m),1 064 (w),1 027(m),933(w),840(w),806(s),771(s),702(m), 623(w),515(w).

    1.2.2 Synthesis of{[Ag(4,4′-bipy)(2-Hnbdc)]}n(2)

    Complex 2 was synthesized by hydrothermal method.A mixture of AgNO3(0.050 0 g,0.29 mmol), 4,4′-bipy(0.038 g,0.24 mmol),and 2-H2nbdc(0.053 g 0.25 mmol)in water(15 mL)was sealed in a 25 mL Teflon-lined autoclave and heated to 130℃for 24 h, then cooled to room temperature.Resulting pale yellow block crystals were obtained.Yield:62.5%.Anal. Calcd.for C18H12N3O6Ag(%):C 45.59,H 2.55,N 8.86. Found(%):C 45.32,H 2.69,N 8.86.IR(KBr,cm-1): 1 676(m),1 605(s),1 523(s),1 488(s),1 382(s),1 339 (s),1 310(s),1 275(s),1 240(s),1 119(m),1 073(s), 1 058(m),911(w),864(w),828(m),815(s),780(s),738 (m),713(w),666(w),640(w),600(w),510(w),463(w).

    1.2.3 Synthesis of{[Ag2(4,4′-bipy)2(2-nbdc)]·2H2O}n(3)

    A mixture of AgNO3(0.083 g),H2nbdc(0.104 g), and 4,4′-bipy(0.080 g)in CH3OH(15 mL)and water (10 mL)was stirred and white precipitate occurred, then three drops of ammonia were added and most of white precipitate was dissolved,filtered and set aside at room temperature in dark,after about five weeks pale yellow block crystals were obtained.Yield: 56.2%.Anal.Calcd.for C28H23N5O8Ag2(%):C 43.49,H 3.00,N 9.06.Found(%):C 42.59,H 3.09,N 8.88.IR (KBr,cm-1):1 598(s),1 529(s),1 484(m),1 411(m), 1 355(s),1 219(w),1 126(w),1 070(w),1 006(w),913 (w),812(s),805(s),729(w),639(w),574(w),487(m).

    1.2.4 Synthesis of{[Ag2(4,4′-bipy)2(2-nbdc)(H2O)]· 2H2O}n(4)

    The synthesis of 4 was similar to that described for 3.The only difference was that we changed CH3OH in 3 to CH3CN(20 mL).After about five weeks,colorless block crystals were obtained.Yield:63.5%.Anal. Calcd.for C28H25N5O9Ag2(%):C 42.50,H 3.18,N 8.85. Found(%):C 42.61,H 2.97,N 8.81.IR(KBr,cm-1): 1 598(s),1 529(s),1 484(m),1 412(s),1 354(s),1 220 (m),1 069(m),1 004(w),912(w),815(s),727(w),635 (m),576(w),485(m).

    1.3 X-ray crystallographic determination

    Crystallographic data were collected at 296 K on an Oxford Diffraction Xcalibur CCD diffractometer using graphite monochromated Mo Kα radiation(λ= 0.071 073 nm).The frames were integrated with the CrysAlisPro package[25]and the data were corrected for absorptionusingtheprogramCrysAlisPro.The structures were solved by direct methods and refined byfull-matrixleast-squarestechniquesusingthe SHELXL-97 programs[26].All the non-hydrogen atoms were refined with anisotropic thermal parameters. Hydrogen atoms on carbons were put at the calculated positions,while other hydrogen atoms were found in the Fourier maps.All H atoms were refined with isotropicthermalparameters.Thegraphicswere drawn by the ORTEP and Olex2[27-28].Details of crystal data and structure refinements for the four complexes are listed in Table1 .

    CCDC:945166,1;945167,2;945168,3;945169, 4.

    2Results and discussion

    2.1 Synthesis

    Four complexes with structural diversity have been achieved by the different synthetic methods and variable solvents.Complex 1 was synthesized by the layered-solution method in a slender tube.Complex 2 was obtained using hydrothermal synthesis.Complexes 3 and 4 were synthesized in different mixed solvents through slow evaporation.Considering their structural diversity these complexes may be transformed under external stimulation.Therefore,complex 1 was heated at 130℃three hours and crystals were changed intopowder sample.The IR showed that the heated sample for 1 lost all solvents,while its spectrum is different from that of 2,indicating the simple heating did not transform the complex 1 into 2.The 2-Hnbdc ligands in 1 and 2 have largely different coordination modes and simple heating could not make these chemical bonding rearrangement.Similar experimental was done for complexes 3 and 4.And the desolvated 3 and 4 have same IR spectra,indicating the small different coordination modes in complexes 3 and 4 can be transformed due to their structural diversity is only controlled by the solvents.

    Based on the above information,we can conclude that solvents,temperature and synthetic methods are very important for structural diversity and thermal stability,since external stimuli may influence the coordination properties and abilities of the H2nbdc ligand,and also have effect on the participation of the solvents,which are helpful for the formation of weak bonds and supramolecular structure.

    Scheme 1Synthetic route of complexes 1~4

    2.2 Analysis of the structures of 1~4

    The powder XRD patterns of complexes 1~4 and their simulative patterns calculated by Mercury using single crystal data agree well with each other(see Supportinginformation),indicatingthebulksof samples are purity.

    In an asymmetrical unit for complex 1,the silver ion is four-coordinated with two longer distances (0.285 4(2)and 0.306 7(2)nm)of Ag-O representedby open bonds in Fig.1 .The geometry of the silver ion is a planar completed by two N atoms from two 4,4′-bipy and two O atoms from one water molecule and one nitro group(Table2 ).The 2-Hnbdc ligand is partlydeprotonatedanditscarboxylatesarenot coordinated to metal ion but form weak bond with Ag+using the nitro group.In general the nitro group on benzene ring is rare to coordinate with metal ion.Theunits form 1D chain structure(Fig.2 ) and the shortest Ag…Ag distance between chains is 0.532 9 nm,indicating there is no interaction between chains.

    In complex 2,the silver ion is four-coordinated with a longer distance(0.292 2(2)nm)between the silver ion and nitro group.The deprotonated carboxylate coordinates to the silver ion.The coordination geometry of the silver ion is a planar environment completed by two N atoms from two 4,4′-bipy and twoO atoms from the carboxylate and nitro groups(Fig.3 and Table2 ).Complex 2 is a 1D double chain structure(Fig.4 ),which is different from complex 1.In 2,the shortest distance of Ag…Ag is 0.379 02(6)nm. Though it is shorter than that in 1,it is still longer than the van der Waals diameter of silver(0.344 nm), indicating no obvious interaction exists between them.

    Table2 Selected bond lengths(nm)and angles(°)for complexes 1~4

    Fig.1 View of the coordination environment in 1 with the numbering scheme

    Fig.2 View of the 1D chain formed by[Ag(4,4′-bipy)]+in 1

    Fig.3 View of the coordination environment in 2 with the numbering scheme

    Fig.4 View of the 1D double chain in 2

    In 3,the Ag1 is four coordinated with a longer Ag1-O2w being 0.307(3)nm(Fig.5 ).The Ag2 is also four coordinated with two longer distances of 0.293 0(18) and 0.304 7(12)nm.The 2-nbdc ligand is monodentately coordinated to silver ion as a terminal ligand.If we ignore the bond lengths over 0.30 nm,the molecular structure of 3 is a 1D chain(Fig.6 );if we consider all bonds,the molecular structure is a 2D layer and further interpenetrates into a 3D network.The Ag…Ag distance in the double chain is 0.359 30(17)nm, which is shorter than those of in 1 and 2.

    Fig.5 View of the coordination environment for complex 3 with the numbering scheme

    Fig.6 View of 1D chain for 3

    In 4,the Ag1 is four coordinated and the Ag2 is five coordinated with two longer bond lengths(Fig.7 ). The distance of Ag1…Ag2iis 0.342 75(6)nm,which is similar to the sum of van der Waals radius of two silver ions.The molecular structure of 4 is a 1D molecular ladder combined by Ag-Ag interaction in adjacentchains,which is different from 2 and 3(Fig.8 ).

    Fig.7 View of the coordination environment in 4 with the numbering scheme

    Fromaboveinformation,wecanknowthat complex 2 has no any lattice solvent or coordinated water molecule,while other three contain coordinatedwater molecules or solvents.The basic structures for these four complexes are 1D architectures formed by [Ag(bipy)]+unit.Under the considering of the weak interactions,complex 1 is a 1D chain,1D double chain for 2,1D chain or extended 2D layer for 3,1D ladder chain for 4.

    Fig.8 View of 1D chain for 4

    In 1,solvents and anionic 2-Hnbdc form 1D hydrogen-bonding structure(Fig.9 ).Complex 2 is a 2D hydrogen-bondinglayerassembledthroughthe connection of 1D chains between 2-Hnbdc ligands.In 3,lattice water molecules and carboxylates form hydrogen bonds,generating a 2D hydrogen-bonding layer.For 4,water molecules and 2-Hnbdc form a 2D hydrogen-bonding layer.

    Fig.9 1D hydrogen bonding structure formed by solvents and anionic 2-Hnbdc in 1

    In these complexes there are some π-π interactions between pyridine rings of 4,4′-bipyridine ligands. In 1,the interactions are strong with the centroid to centroid distances of 0.349 75(13)nm and 0.345 16(13) nm between rings of N2C6~C10.In 2 the centroid to centroiddistancesare0.370 94(18)nm and 0.387 85(18) nm between Cg1 and Cg2 where Cg1 is N1C1~5 and Cg2 is N2C6~C10.In 3 the centroid-to-centroid distances are 0.376 4(8)nm between Cg1 and Cg2, 0.369 4(9)nm between Cg1 and Cg3,and 0.372 7(8) nm between Cg3 and Cg4 where Cg1 is N1C1~C5, Cg2 is N3C11~C15,Cg 3 is N4C16~C20,and Cg4 is N2C6~C10.In 4,the centroid-to-centroid distances is 0.369 4(4)nm between Cg1 and Cg2,0.370 9(4)nm between Cg3 and Cg4,0.388 6(4)nm between Cg2 and Cg3 where Cg1 is N1C1~C5,Cg2 is N4C16~C20,Cg3 is N2C6~C10,and Cg4 is N3C11~C15.In 1 there is the shortest stacking interaction distance and complexes 2 and 4 are weaker than those of complexes 1 and 3.

    These four complexes exhibit structural diversity with same components of Ag+,nbdc,and 4,4′-bipy. The solvents,interaction between silver ion and nitro group,and the positions of two pyridine rings in each 4,4′-bipy influence the assembly of the structures. The conformations of 4,4′-bipy ligands in 1~4 are listed in Table3 .In the free ligand the dihedral angles are 17°and 34°[25].

    Table3 Dihedral angles of pyridine rings in each 4,4′-bipyridine

    Fig.1 0TG curves of complexes 1~4

    2.3 Analysis of TG

    To understand the thermal stabilities of the four silver(Ⅱ)coordination polymers,the samples were analyzed by TGA,as shown in Fig.1 0.The curves of complexes 1,3 and 4 all show instability from room temperature,since they have solvent molecules in the structures.And complexes 3 and 4 have similar weight loss way since they show same structures after losing the solvent molecules.TG analysis for1 showed that the weight loss of two water molecules and one methanol from room temperature to 110℃is 11.56%(Calcd.12.56%).With a short platform,complex 1 rapidly disrupts at 220℃.For complex 3, the weight loss of 4.83%from 35 to 139℃corresponds to the release of two water molecules(Calcd.4.66%). Without a clear platform,complex 3 began to decompose slowly from 156 to 230℃,and then the structure quickly collapsed.Similar to complex 3,complex 4 released three water molecules in the range of room temperature to 139℃(Calcd.6.83%,Obsd.6.84%), and the decomposition temperature is also 156℃. Different from complexes 1 and 3~4,complex 2 shows good thermal stability.It is characterized by only one abrupt weight loss step(64.81%)from 220~350℃and then no obvious change occurred till 800℃.

    Upon comparison to complexes 1~4,the products of complexes 1 and 2 after losing their solvents are more stable than those of 3 and 4.The reason maybe that in complex 1 the carboxylate does not coordinate to the silver,the coordination of the nitro group is less strong than that of the carboxylate.In complex 2,in the double chain Ag…Ag distance is longer than those of complexes 3 and 4.All the above information clearly reflects the structural stability of complex 2.

    Fig.1 1UV spectra of complexes 1~4 at room temperature in methanol

    2.4 UV-Vis property

    UV-Vis spectra for complexes 1~4 and corresponding ligands were measured in methanol with the concentration of 1.015×10-5mol·L-1at room temperature and shown in Fig.1 1.As they are composed by the same ligands,the complexes show similar absorption peaks at about 235 nm and 200 nm,which mainly come from the H2nbdc and 4,4′-bipyridine(Table4 ). Though the UV-Vis absorption bands for these complexes are ascribed to π-π*intraligand(IL)transition, the absorptions are slightly stronger than those of ligands,suggesting the coordination can strengthen the absorption.The strongest absorption occurs in the complex 2 and the absorption strength order is 2〉4〉3〉1,indicating that configuration ofcomplexes, coordinating modes of ligands and solvents all can influence the absorptions.

    Table4 UV-Vis absorption spectral data of complexes 1~4 in CH3OH(C=1.015×10-5mol·L-1)

    Fig.1 2Fluorescent spectra of complexes 1~4 in the methanol at room temperature(λex=315 nm)

    2.5 Fluorescence property

    Both fluorescence spectra in methanol and in solid state were measured at room temperature as shown in Fig.1 2 and 13,respectively.In methanol,the λexis 315 nm and they show two extinct emission peaks at about 350 and 400 nm,which are from the H2nbdc ligand(351 nm and 407 nm).Therefore the solution spectra showed the ligand emission character. In the solid state,the λexis 240 nm,and they also showed two emission peaks.They are located at about 290 and 390 nm,somewhat blue-shift compared to the 416 nm for H2nbdc[17].The stronger peaks for four complexes are about 390 nm,and solvation may take a role for the maximum emission location,since 10nm blue-shift occurs in solid state,compared with the spectra in methanol.In the reference the existence of solventmoleculescanpromotethefluorescence emission intensity[26],but for our system both kinds of spectra show that complex 2 has the strongest emission peak,while complex 2 has no solvent but with the most co-planar 4,4′-bipyridine ligand,probably leading to the intense emission.

    Fig.1 3Fluorescent spectra of complexes 1~4 in solid state at room temperature(λex=240 nm)

    3Conclusions

    We have synthesized four diverse silver coordination polymers with same components.The structural transform between complexes 1 and 2 can not be achieved by simple heating due to in complex 1 the 2-Hnbdc coordinates to the silver ions.However, desolvated complexes 3 and 4 have same structural character,indicating the solvents can mediate the conversion of complexes 3 and 4.In these four complexes there are abundant weak interactions,such as weak bond,π-π aromatic stacking effect,and hydrogen bonding interactions.In complexes 1,2,and 4,the nitro groups of 2-Hnbdc ligands weakly coordinate with silver ions,which is rarely reported.An another interesting structural information is that in some transition metal complexes with nbdc the nitro group exists as disordered form,while in our four silver complexes all nitro groups are normal without any disorder.Complex 2 has the highest thermal stability,the strongest electronic absorption,and the strongest fluorescence emission.

    Acknowledgements:The authors thank the National Natural Science Foundation of China(No.21073157).

    Supporting information is available at http://www.wjhxxb.cn

    [1]Kim S N,Kim H Y,Cho H Y,et al.Catal.Today,2013,204: 85-93

    [2]Opanasenko M,Shamzhy M,Lamac M,et al.Catal.Today, 2013,204:94-100

    [3]Wan Y,Chen C,Xiao W M,et al.Microporous Mesoporous Mater.,2013,171:9-13

    [4]Hu X F,Lu Y K,Dai F N,et al.Microporous Mesoporous Mater.,2013,170:36-44

    [5]Mendes P A P,Ragon F,Rodrigues A E,et al.Microporous Mesoporous Mater.,2013,170:251-258

    [6]Brand S K,Colon Y J,Getman R B,et al.Microporous Mesoporous Mater.,2013,171:103-109

    [7]Yang J,Grzech A,Mulder F M,et al.Microporous Mesoporous Mater.,2013,171:65-71

    [8]Duan L H,Dong X Y,Wu Y Y,et al.J.Porous Mater.,2013, 20:431-440

    [9]Liu H,Zhao Y G,Zhang Z J,et al.Chem.Asian J.,2013,8: 778-785

    [10]Zheng B S,Yun R R,Bai J F,et al.Inorg.Chem.,2013,52: 2823-2829

    [11](a)Chen Y M,Cao Q,Gao D D,et al.J.Coord.Chem.,2013, 66:3829-3838

    (b)Allendorf M D,Bauer C A,Bhakta R K,et al.Chem. Soc.Rev.,2009,38:1330-1352

    [12]Wang Y,Wu Y C,Xie J,et al.Sens.Actuators B,2013, 177:1161-1166

    [13]Robinson A L,Stavila V,Zeitler T R,et al.Anal.Chem., 2012,84:7043-7051

    [14]Kreno L E,Leong K,Farha O K,et al.Chem.Rev.,2012, 112:1105-1125

    [15]Deng H X,Doonan C J,Furukawa H,et al.M.Science, 2010,327:846-850

    [16]Allen F H.Acta Crystallogr.,Sect.B:Struct.Sci.,2002,58: 380-388

    [17]Severance R C,Smith M D,zur Loye H C.Inorg.Chem., 2011,50:7931-7933

    [18]Wang X F,Wang Y,Zhang Y B,et al.Chem.Commun., 2012,48:133-135

    [19](a)Chen C L,Kang B S,Su C Y.Aust.J.Chem.,2006,59:3-18

    (b)Ma A Q,Zhu L G.RSC Adv.,2014,4:14691-14699

    (c)Hakimi M,Moeini K,Mardani Z,et al.J.Coord.Chem.,2013,66:1129-1141

    [20](a)Uchida S,Kawamoto R,Tagami H,et al.J.Am.Chem. Soc.,2008,130:12370-12376

    (b)Coleman K S,Chamberlayne H T,Turberville S,et al. Dalton Trans.,2003,14:2917-2922

    [21](a)Fujii Y,Terao J,Kambe N.Chem.Commun.,2009,9: 1115-1117

    (b)Genuis E D,Kelly J A,Patel M,et al.Inorg.Chem.,

    2008,47:6184-6194

    (c)Seward C,Chan J,Song D,et al.Inorg.Chem.,2003,42: 1112-1120

    [22]Akhbari K,Morsali A,Zhu L G.J.Mol.Struct.,2008,891: 132-137

    [23]Khlobystov A N,Blake A J,Champness N R,et al.Coord. Chem.Rev.,2001,222:155-192

    [24]He H Y,Zhu L G,Ng S W.Acta Crystallogr.,2005,E61: m601-m602

    [25]CrysAlisPro,Version 1.171.33.52,Oxford Diffraction Ltd., 2009.

    [26]Sheldrick G M.SHELXL-97,Program for the Refinement of Crystal Structure,University of G?ttingen,Germany,1997.

    [27]Farrugia L J.J.Appl.Cryst.,1999,32:837-838

    [28]Dolomanov O V,Bourhis L J,Gildea R J,et al.J.Appl. Cryst.,2009,42:339-341

    Structural Diversity,Supramolecular Assembly,and Electronic Spectra of Four Silver Coordination Polymers with Same Components of 2-Nitro-1,4-benzenedicarboxylate and 4,4′-Bipyridine

    MA Ai-Qing1,2ZHU Long-Guan*,1
    (1Department of Chemistry,Zhejiang University,Hangzhou 310027,China)
    (2School of Pharmacy,Guangdong Medical University,Dongguan,Guangdong 523808,China)

    Four diverse silver coordination polymers with the same components of silver,4,4′-bipyridine(4,4′-bipy), and 2-nitro-1,4-benzenedicarboxylic acid(2-H2nbdc)have been synthesized,namely{[Ag(4,4′-bipy)]·2-Hnbdc· 2H2O·CH3OH}n(1),{[Ag(4,4′-bipy)(2-Hnbdc)]}n(2),{[Ag2(4,4′-bipy)2(2-nbdc)]·2H2O}n(3),and{[Ag2(4,4′-bipy)2(2-nbdc)(H2O)]·2H2O}n(4),and characterized by IR,elemental analysis,TG,UV,fluorescence spectra,and powder X-ray analysis.The single crystal X-ray analysis showed that complex 1 is a 1D cation-anionic polymer,complex 2 is a 1D double chain without any solvent,and complexes 3 and 4 are 1D chain structures.Diverse structures differ with respect to molecular conformation,coordination modes of 2-Hnbdc,and weak interactions.In these complexes there are weak bonds,π-π aromatic stacking interactions,Ag…Ag interaction,and hydrogen bonding. The diverse structures are related to the thermal stability,UV absorptions,and fluorescence emissions.CCDC: 945166,1;945167,2;945168,3;945169,4.

    coordination modes;structure elucidation;silver coordination compound;nitrobenzenedicarboxylate

    O614.122

    A

    1001-4861(2015)08-1651-10

    10.11862/CJIC.2015.227

    2015-05-04。收修改稿日期:2015-06-04。

    國家自然科學基金(No.21073157)資助項目。

    *通訊聯(lián)系人。E-mail:chezlg@zju.edu.cn;會員登記號:S06N0578M1207。

    猜你喜歡
    聯(lián)吡啶藥學院對苯二甲
    蘭州大學藥學院簡介
    四氯對苯二甲腈含量分析方法
    擴鏈劑對聚對苯二甲酸乙二醇酯流變性能和發(fā)泡性能影響
    中國塑料(2015年5期)2015-10-14 00:59:48
    純手性的三聯(lián)吡啶氨基酸—汞(II)配合物的合成與表征
    功能化三聯(lián)吡啶衍生物的合成及其對Fe2+識別研究
    咪唑-多聯(lián)吡啶釕配合物的合成、晶體結(jié)構(gòu)和性能研究
    基于四溴代對苯二甲酸構(gòu)筑的兩個Cu(Ⅱ)配位聚合物的合成與晶體結(jié)構(gòu)
    1,10-鄰菲咯啉和四氟對苯二甲酸構(gòu)建的兩個鎳(Ⅱ)的配合物:合成和晶體結(jié)構(gòu)
    基于環(huán)己烷甲酸根和2,2′-聯(lián)吡啶配體的雙核錳(Ⅱ)配合物的合成與表征
    HSCCC-ELSD法分離純化青葙子中的皂苷
    精品国内亚洲2022精品成人| 少妇人妻一区二区三区视频| 亚洲美女视频黄频| 国产一区二区三区在线臀色熟女| 精品无人区乱码1区二区| 国产综合懂色| 黄色一级大片看看| 欧美+亚洲+日韩+国产| 亚州av有码| 综合色丁香网| 成人二区视频| 赤兔流量卡办理| 国产熟女欧美一区二区| 久久精品国产清高在天天线| 午夜福利在线观看吧| 久久久久性生活片| 国产精品99久久久久久久久| 亚洲一区二区三区色噜噜| 久久精品国产清高在天天线| 久久久久九九精品影院| 午夜久久久久精精品| 网址你懂的国产日韩在线| 亚洲成人中文字幕在线播放| 精品免费久久久久久久清纯| 非洲黑人性xxxx精品又粗又长| 青春草视频在线免费观看| 成人特级黄色片久久久久久久| 美女免费视频网站| а√天堂www在线а√下载| 国产精品一二三区在线看| 麻豆一二三区av精品| 欧美日本视频| 国产亚洲欧美98| 22中文网久久字幕| 91av网一区二区| 一级a爱片免费观看的视频| 国产精品人妻久久久影院| www.色视频.com| 丰满的人妻完整版| 色在线成人网| 男女做爰动态图高潮gif福利片| 在线观看一区二区三区| 男女下面进入的视频免费午夜| 女同久久另类99精品国产91| 伦精品一区二区三区| 国产精品不卡视频一区二区| 欧美绝顶高潮抽搐喷水| 精品少妇黑人巨大在线播放 | 男女做爰动态图高潮gif福利片| 天堂√8在线中文| 我要搜黄色片| 六月丁香七月| 亚洲最大成人手机在线| 午夜免费激情av| 极品教师在线视频| 亚洲性久久影院| 最好的美女福利视频网| 两个人视频免费观看高清| 最新在线观看一区二区三区| 伊人久久精品亚洲午夜| 色综合亚洲欧美另类图片| 91在线精品国自产拍蜜月| 99热这里只有是精品在线观看| 在线国产一区二区在线| 日韩av不卡免费在线播放| 十八禁网站免费在线| 欧美xxxx黑人xx丫x性爽| 内地一区二区视频在线| 精品不卡国产一区二区三区| 99久久中文字幕三级久久日本| 久久久久国内视频| 亚洲第一电影网av| 日本黄色视频三级网站网址| 亚洲熟妇中文字幕五十中出| 国产视频内射| 亚洲色图av天堂| 看非洲黑人一级黄片| 岛国在线免费视频观看| 国产色爽女视频免费观看| av.在线天堂| 黑人高潮一二区| 亚洲av免费高清在线观看| 免费观看精品视频网站| 无遮挡黄片免费观看| 午夜亚洲福利在线播放| 亚洲第一电影网av| 日本黄色视频三级网站网址| 激情 狠狠 欧美| 国产亚洲欧美98| 一个人看视频在线观看www免费| 日韩中字成人| 97热精品久久久久久| 亚洲天堂国产精品一区在线| 22中文网久久字幕| 免费观看人在逋| 亚洲欧美精品综合久久99| 国内精品一区二区在线观看| 99热只有精品国产| 久久久久性生活片| 国产高清不卡午夜福利| 国产一区二区亚洲精品在线观看| aaaaa片日本免费| 人人妻人人看人人澡| 在线观看av片永久免费下载| 我要看日韩黄色一级片| 亚洲精品乱码久久久v下载方式| 人人妻人人澡人人爽人人夜夜 | 国产精品一二三区在线看| 亚洲人成网站在线观看播放| 黄片wwwwww| 久久6这里有精品| 亚洲不卡免费看| 最新中文字幕久久久久| 成人午夜高清在线视频| 直男gayav资源| 老熟妇乱子伦视频在线观看| 黑人高潮一二区| 最近在线观看免费完整版| 日韩大尺度精品在线看网址| 久久人人精品亚洲av| 偷拍熟女少妇极品色| 51国产日韩欧美| 日韩欧美在线乱码| 国产不卡一卡二| 亚洲婷婷狠狠爱综合网| 99精品在免费线老司机午夜| 97人妻精品一区二区三区麻豆| 91久久精品国产一区二区成人| 午夜久久久久精精品| 1000部很黄的大片| 最近视频中文字幕2019在线8| 麻豆精品久久久久久蜜桃| 欧美人与善性xxx| 黄片wwwwww| 国产成人影院久久av| 欧美国产日韩亚洲一区| 国产高清视频在线播放一区| 一个人免费在线观看电影| 欧美另类亚洲清纯唯美| 亚洲国产高清在线一区二区三| 十八禁网站免费在线| 国产片特级美女逼逼视频| 国产精品电影一区二区三区| 一级a爱片免费观看的视频| 欧美成人一区二区免费高清观看| a级一级毛片免费在线观看| 国产精品福利在线免费观看| 国产精品久久久久久av不卡| 亚洲人成网站在线观看播放| 久久这里只有精品中国| 亚洲欧美清纯卡通| 亚洲精华国产精华液的使用体验 | 俄罗斯特黄特色一大片| 国产精品久久电影中文字幕| 成人毛片a级毛片在线播放| 变态另类丝袜制服| 国产91av在线免费观看| 国产一级毛片七仙女欲春2| 丰满乱子伦码专区| 精品久久久久久久久久久久久| 我的老师免费观看完整版| 最近视频中文字幕2019在线8| 特大巨黑吊av在线直播| 日韩欧美 国产精品| 男女之事视频高清在线观看| 国产精品一区二区免费欧美| 国产一区二区三区av在线 | 国产91av在线免费观看| 免费在线观看影片大全网站| 日日摸夜夜添夜夜爱| 久久久a久久爽久久v久久| 嫩草影视91久久| 国产高清有码在线观看视频| 一级毛片aaaaaa免费看小| 国产真实伦视频高清在线观看| 国产精品久久久久久av不卡| 亚洲国产日韩欧美精品在线观看| 午夜a级毛片| 99在线视频只有这里精品首页| 搡老熟女国产l中国老女人| 男人舔女人下体高潮全视频| 亚洲欧美清纯卡通| 亚洲国产精品合色在线| 九色成人免费人妻av| 欧美3d第一页| 国产熟女欧美一区二区| 亚洲七黄色美女视频| 日本一本二区三区精品| 国产不卡一卡二| 麻豆国产av国片精品| 国产亚洲精品av在线| 日韩欧美一区二区三区在线观看| a级毛色黄片| 婷婷精品国产亚洲av| av免费在线看不卡| 色视频www国产| 亚洲国产精品合色在线| 精品久久国产蜜桃| 国产又黄又爽又无遮挡在线| 亚洲精品日韩在线中文字幕 | 晚上一个人看的免费电影| 欧美三级亚洲精品| 丝袜美腿在线中文| 99热精品在线国产| 成人三级黄色视频| 久99久视频精品免费| 亚洲性久久影院| 在线免费观看的www视频| 能在线免费观看的黄片| 九九在线视频观看精品| 免费看美女性在线毛片视频| 联通29元200g的流量卡| 18禁黄网站禁片免费观看直播| 毛片女人毛片| 成人高潮视频无遮挡免费网站| 国产精品人妻久久久影院| 久久久国产成人精品二区| 欧美日韩综合久久久久久| 成人特级av手机在线观看| 亚洲不卡免费看| 欧美一区二区精品小视频在线| 岛国在线免费视频观看| 久久久欧美国产精品| 男女做爰动态图高潮gif福利片| 午夜激情欧美在线| 日本黄色视频三级网站网址| 毛片一级片免费看久久久久| 日韩欧美在线乱码| 亚洲av美国av| 亚洲图色成人| 国产精品久久久久久亚洲av鲁大| 日韩亚洲欧美综合| 亚洲av五月六月丁香网| av在线天堂中文字幕| 观看免费一级毛片| 久久精品夜夜夜夜夜久久蜜豆| 成人性生交大片免费视频hd| 又黄又爽又免费观看的视频| 欧美性猛交╳xxx乱大交人| 丝袜喷水一区| 久久精品夜夜夜夜夜久久蜜豆| 国产黄色视频一区二区在线观看 | 国产伦一二天堂av在线观看| 久久精品综合一区二区三区| 十八禁国产超污无遮挡网站| 搡女人真爽免费视频火全软件 | 国产一级毛片七仙女欲春2| 91在线精品国自产拍蜜月| 美女被艹到高潮喷水动态| 婷婷六月久久综合丁香| 99热全是精品| ponron亚洲| 精品久久久久久久末码| 日韩,欧美,国产一区二区三区 | 色综合亚洲欧美另类图片| 国产亚洲欧美98| 国产成人精品久久久久久| 成人午夜高清在线视频| 小蜜桃在线观看免费完整版高清| 97超视频在线观看视频| 又爽又黄a免费视频| 午夜福利18| 日本 av在线| 男人和女人高潮做爰伦理| 色5月婷婷丁香| 国产高清视频在线观看网站| 天堂影院成人在线观看| 久久精品夜夜夜夜夜久久蜜豆| 久久人人爽人人片av| 午夜福利在线观看免费完整高清在 | av天堂在线播放| 国产亚洲精品久久久com| 天天一区二区日本电影三级| 深爱激情五月婷婷| 国产av麻豆久久久久久久| 亚洲综合色惰| 亚洲美女搞黄在线观看 | 内地一区二区视频在线| 精品久久久久久久久亚洲| 久99久视频精品免费| 熟女电影av网| 六月丁香七月| 看十八女毛片水多多多| 成人午夜高清在线视频| 日韩国内少妇激情av| 综合色av麻豆| 人妻丰满熟妇av一区二区三区| 亚洲美女视频黄频| 99热这里只有精品一区| 亚洲精品日韩av片在线观看| 在线免费观看不下载黄p国产| 99视频精品全部免费 在线| 综合色丁香网| 色5月婷婷丁香| 成年女人永久免费观看视频| 一本精品99久久精品77| 精品一区二区免费观看| 又爽又黄无遮挡网站| 国产精品亚洲一级av第二区| 欧美成人一区二区免费高清观看| 一个人看的www免费观看视频| 久久综合国产亚洲精品| 国产午夜精品论理片| 成年女人永久免费观看视频| 精品国内亚洲2022精品成人| 天堂√8在线中文| 国产aⅴ精品一区二区三区波| 美女免费视频网站| 久久草成人影院| 男人舔奶头视频| 午夜精品在线福利| 日本-黄色视频高清免费观看| 狠狠狠狠99中文字幕| 国产精品不卡视频一区二区| 久久久精品欧美日韩精品| 欧美一级a爱片免费观看看| 婷婷六月久久综合丁香| 欧美国产日韩亚洲一区| 菩萨蛮人人尽说江南好唐韦庄 | 男女之事视频高清在线观看| 熟妇人妻久久中文字幕3abv| 免费看美女性在线毛片视频| 伦精品一区二区三区| 91久久精品国产一区二区三区| 亚洲欧美日韩高清在线视频| 国产欧美日韩精品亚洲av| 亚洲天堂国产精品一区在线| 国产蜜桃级精品一区二区三区| 欧美成人免费av一区二区三区| 人人妻人人澡欧美一区二区| 最新在线观看一区二区三区| 国产一区二区三区av在线 | 91狼人影院| 久久久久久久午夜电影| 久久久久久久久中文| 国产成人福利小说| 天堂av国产一区二区熟女人妻| 免费高清视频大片| 欧美一级a爱片免费观看看| 久久中文看片网| 欧洲精品卡2卡3卡4卡5卡区| 国产精品av视频在线免费观看| 成年女人毛片免费观看观看9| 亚洲真实伦在线观看| 中文字幕精品亚洲无线码一区| 麻豆久久精品国产亚洲av| 给我免费播放毛片高清在线观看| 欧美日韩一区二区视频在线观看视频在线 | 国产精品一区二区三区四区久久| 国产乱人偷精品视频| 亚洲美女视频黄频| 国产在视频线在精品| 草草在线视频免费看| 成年av动漫网址| 精华霜和精华液先用哪个| 免费看av在线观看网站| 亚洲成人中文字幕在线播放| 国产91av在线免费观看| 草草在线视频免费看| 九九爱精品视频在线观看| 久久精品国产自在天天线| 老司机午夜福利在线观看视频| 午夜影院日韩av| 在线看三级毛片| 久久久午夜欧美精品| 在线免费观看不下载黄p国产| 91午夜精品亚洲一区二区三区| 可以在线观看的亚洲视频| 国产女主播在线喷水免费视频网站 | 久久精品国产亚洲av涩爱 | 亚洲欧美精品综合久久99| 久久国产乱子免费精品| 欧美成人免费av一区二区三区| 18禁黄网站禁片免费观看直播| 久久草成人影院| 亚洲成人中文字幕在线播放| 亚洲人成网站在线播| 日韩精品有码人妻一区| 亚洲第一电影网av| 亚洲av美国av| 国产欧美日韩精品一区二区| a级毛片免费高清观看在线播放| 国产激情偷乱视频一区二区| 久久久久久大精品| 国产伦在线观看视频一区| 综合色丁香网| 成年版毛片免费区| 插阴视频在线观看视频| 我的老师免费观看完整版| 亚洲国产精品成人久久小说 | 国产精品日韩av在线免费观看| 国产精品野战在线观看| 激情 狠狠 欧美| av在线亚洲专区| 一个人免费在线观看电影| 亚洲最大成人中文| 欧美xxxx黑人xx丫x性爽| 国产视频一区二区在线看| 99riav亚洲国产免费| 熟女电影av网| 亚洲欧美中文字幕日韩二区| 日产精品乱码卡一卡2卡三| 麻豆av噜噜一区二区三区| 久久人人精品亚洲av| 中出人妻视频一区二区| 草草在线视频免费看| 中文字幕人妻熟人妻熟丝袜美| av免费在线看不卡| 啦啦啦韩国在线观看视频| 精品久久国产蜜桃| 色5月婷婷丁香| 亚洲七黄色美女视频| 三级经典国产精品| 亚洲欧美清纯卡通| 欧美一区二区精品小视频在线| 久久精品夜色国产| 无遮挡黄片免费观看| 女的被弄到高潮叫床怎么办| 99热网站在线观看| 黄色欧美视频在线观看| 欧美一区二区国产精品久久精品| 国产亚洲精品av在线| 天美传媒精品一区二区| 亚洲专区国产一区二区| 亚洲欧美日韩高清专用| 亚洲激情五月婷婷啪啪| 久久久国产成人精品二区| 黄片wwwwww| 国内久久婷婷六月综合欲色啪| 色吧在线观看| 国产精品电影一区二区三区| 偷拍熟女少妇极品色| 久久久久国产网址| 97热精品久久久久久| 日本撒尿小便嘘嘘汇集6| 亚洲成人久久性| 久久人人爽人人片av| 久久人人精品亚洲av| 亚洲av电影不卡..在线观看| 美女黄网站色视频| 亚洲人成网站在线观看播放| 69人妻影院| 在线观看66精品国产| 午夜精品在线福利| av在线观看视频网站免费| 国产单亲对白刺激| 国产成人91sexporn| 黄色欧美视频在线观看| 久久久久久大精品| 欧美激情国产日韩精品一区| 欧美成人a在线观看| 中文亚洲av片在线观看爽| 别揉我奶头~嗯~啊~动态视频| 亚洲激情五月婷婷啪啪| 老司机福利观看| 国产蜜桃级精品一区二区三区| 亚洲在线自拍视频| 黄色视频,在线免费观看| 黄色配什么色好看| 18禁裸乳无遮挡免费网站照片| 两个人的视频大全免费| 国产精品一二三区在线看| 欧美bdsm另类| 久久久精品大字幕| 美女xxoo啪啪120秒动态图| 欧美不卡视频在线免费观看| 男插女下体视频免费在线播放| 午夜福利高清视频| 成人二区视频| 免费电影在线观看免费观看| 日日摸夜夜添夜夜添小说| av在线天堂中文字幕| 成年版毛片免费区| 欧美色视频一区免费| 亚洲真实伦在线观看| 亚洲久久久久久中文字幕| 国产精品免费一区二区三区在线| 免费一级毛片在线播放高清视频| 狠狠狠狠99中文字幕| 国产熟女欧美一区二区| 国产精品美女特级片免费视频播放器| 久久国产乱子免费精品| 十八禁国产超污无遮挡网站| 淫秽高清视频在线观看| 三级经典国产精品| 午夜爱爱视频在线播放| 五月伊人婷婷丁香| 国产色爽女视频免费观看| 丰满乱子伦码专区| 白带黄色成豆腐渣| 日韩亚洲欧美综合| 深夜a级毛片| 久久久久久久久久久丰满| 少妇的逼好多水| av在线亚洲专区| 欧美xxxx黑人xx丫x性爽| 欧美一区二区精品小视频在线| 国产精品伦人一区二区| 亚洲一级一片aⅴ在线观看| 免费一级毛片在线播放高清视频| av视频在线观看入口| 精品熟女少妇av免费看| 美女高潮的动态| www.色视频.com| 亚洲av中文字字幕乱码综合| 亚洲七黄色美女视频| 欧美三级亚洲精品| 国产69精品久久久久777片| 男女做爰动态图高潮gif福利片| 乱码一卡2卡4卡精品| 黑人高潮一二区| 成人综合一区亚洲| 在线观看一区二区三区| 国产一区二区在线av高清观看| 一区二区三区四区激情视频 | 国产伦在线观看视频一区| 床上黄色一级片| 真人做人爱边吃奶动态| 一级毛片电影观看 | 国产私拍福利视频在线观看| 亚洲久久久久久中文字幕| 日韩欧美一区二区三区在线观看| 色尼玛亚洲综合影院| 久久精品国产自在天天线| 久久人人爽人人片av| 亚洲真实伦在线观看| 免费看av在线观看网站| 久久国产乱子免费精品| 欧美成人精品欧美一级黄| av中文乱码字幕在线| 日本撒尿小便嘘嘘汇集6| 亚洲精品亚洲一区二区| 51国产日韩欧美| 国产三级中文精品| 国产精品嫩草影院av在线观看| 身体一侧抽搐| 久久久国产成人免费| 悠悠久久av| 麻豆成人午夜福利视频| 12—13女人毛片做爰片一| 国产淫片久久久久久久久| 一进一出抽搐gif免费好疼| 国产精品一区www在线观看| ponron亚洲| 三级毛片av免费| 久久欧美精品欧美久久欧美| 久久久国产成人免费| 日本免费一区二区三区高清不卡| 国产真实乱freesex| 久久精品91蜜桃| 国产亚洲精品久久久com| 12—13女人毛片做爰片一| 可以在线观看的亚洲视频| 欧美又色又爽又黄视频| 午夜激情欧美在线| 亚洲成人精品中文字幕电影| 老司机午夜福利在线观看视频| 看非洲黑人一级黄片| 精品久久久久久久久久久久久| 国产精品免费一区二区三区在线| 亚洲av成人精品一区久久| 亚洲最大成人av| 日韩国内少妇激情av| 日日干狠狠操夜夜爽| 国内精品一区二区在线观看| 午夜亚洲福利在线播放| 欧美人与善性xxx| 最近中文字幕高清免费大全6| 大香蕉久久网| 国产精品久久视频播放| 在线a可以看的网站| 午夜免费激情av| 两个人的视频大全免费| 欧美xxxx性猛交bbbb| 久久人人精品亚洲av| 欧美中文日本在线观看视频| 国产真实伦视频高清在线观看| 校园春色视频在线观看| 日日撸夜夜添| 亚洲欧美日韩高清在线视频| 少妇的逼好多水| 亚洲欧美成人精品一区二区| 我要搜黄色片| 人人妻人人澡人人爽人人夜夜 | 国产成人影院久久av| 日韩欧美 国产精品| 国产视频内射| 久久这里只有精品中国| 中国美白少妇内射xxxbb| 一本一本综合久久| 国产一区二区在线观看日韩| 看黄色毛片网站| 春色校园在线视频观看| 黄片wwwwww| 欧美高清成人免费视频www| 毛片女人毛片| 国内揄拍国产精品人妻在线| 亚洲精华国产精华液的使用体验 | 淫妇啪啪啪对白视频| 亚洲国产精品成人综合色| 亚洲激情五月婷婷啪啪| 十八禁国产超污无遮挡网站| 欧美激情在线99| 日日啪夜夜撸| 精品久久久久久久久久免费视频| 免费人成视频x8x8入口观看| 国产av在哪里看| 青春草视频在线免费观看| 美女内射精品一级片tv| 色在线成人网| 国产精品野战在线观看| 午夜免费激情av| 久久精品久久久久久噜噜老黄 | 99热6这里只有精品| av国产免费在线观看|